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ABSTRACT 
African Greater Cane Rat (AGCR) is a wild rodent currently being domesticated as an 

alternative source of animal protein in West African countries. Available research reports 

on the reproductive biology of the male AGCR have focused mainly on the adult without 

any information on age-related changes in the reproductive organs of the animal. This 

study was therefore designed to investigate age-related changes in the morphophysiology 

of the testis and epididymis of the AGCR. 

Fifty-two AGCR of known ages obtained from a commercial farm were used for the 

study. The rats were randomly assigned into 4 groups (n=13). Group I [prepubertal: ≤4 

months]; group II [pubertal: >4≤12 months]; group III [adult: >12≤30 months] and group 

IV [aged: >30 months]. All rats were acclimatised for 7 days. On day 8, blood samples 

were collected for serum hormonal assay [testosterone, Follicle Stimulating Hormone 

(FSH), Luteinising Hormone (LH) and oestrogen, and testis and epididymis were 

harvested. Semen characteristics (sperm motility, livability, sperm concentration) were 

studied from epididymal tissue. Light microscopy and transmission electron microscopy 

were used to study age-related morphological changes in testis and epididymis. Testicular 

and epididymal immunoreactivities to vimentin, S-100, neurofilament and Glial Fibrillary 

Acid Protein (GFAP) were also estimated using standard methods. Data were analysed 

using descriptive statistics and one-way ANOVA at α0.05. 

There were significant increases in the concentration of testosterone (2.02±0.19, 

3.85±0.29,4.12±0.15 ng/mL) and oestrogen (0.94±0.00, 1.48±0.4, 4.33±0.82 pg/mL) for 

prepubertal, pubertal and adult, respectively as age increases, while there were no 

significant differences in these hormones between adult and aged AGCR. The 

concentrations of FSH (12.33±0.83, 10.58±0.95, 9.250±0.6 mIU/mL)and LH 

(15.50±0.88, 12.83±1.20, 10.17±0.83 mIU/mL) decreased significantly for prepubertal, 

pubertal and adult, respectively, while the adult and aged were similar. No spermatozoa 

was observed for the prepubertal rats. Sperm motility and concentration (80.00±4.08%; 

135.3±6.42 x 106 sperm/mL, respectively) significantly increased in adult rats compared 

to pubertal (62.50±4.79%; 101.50±7.96 x 106 sperm/mL) and aged rats (55.00±5.00%; 

91.25±2.56 x 106 sperm/mL). However, sperm livability showed no significant difference 



 
 

vii 
 

across pubertal, adult and aged rats. The canalisation of the seminiferous tubules was 

absent in prepubertal rats, while it showed significant increases from pubertal to aged. 

Spermatogonia and spermatocytes in prepubertal had more mitochondria compared to 

others. Sertoli cell nuclei were uniquely roundish in prepubertal compared to their 

triangular shape in pubertal, adult and aged. Also, epididymal epithelium changed from 

simple cuboidal in prepubertal to pseudostratified columnar in other groups. Vimentin, S-

100, neurofilament and GFAP were markedly expressed in the testis and epididymis of 

adult AGCR compared to other groups. 

Age-related morphophysiological changes in the testis and epididymis of African greater 

cane rats were established. Hence, the adult cane rat is recommended for breeding 

programme. 

Keywords:  African greater cane rat,Rat testis, Rat epididymis, Rat spermatozoa. 

Word count:  444 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

The African greater cane rat (Thryonomys swinderianus Temminck, 1827) [AGCR] 

otherwise referred to as grasscutter or marsh cane rat is an hystricomorphic grass-

eating rodent found majorly in the several savanna biotic zones of the rainforest of 

sub-Sahara Africa. (Happold, 1987; Monadjem et al., 2015). It is characterized by a 

large size, long coarse hairs, massive blunt head, short limbs and a relatively short tail 

(Happold, 1987). The male cane rat attains sexual maturity at about 8 months of age 

and can live up to 4 years in captivity (Happold, 1987; Soro et al., 2014).  

The cane rat is a recognised excellent source of protein with reduced fat per unit 

weight relative to rabbit and chicken and also contains high calcium and phosphorus 

(Jori et al., 1995; Juste et al., 1995; Fayenuwo et al., 2003) which accounts for its 

vigorous exploitation for meat through aggressive hunting and bush burning. It is 

known to contribute to the domestic and foreign earnings of most contries in the 

South of the Sahara where its meat is expensively sold and prefentially demanded 

over other wild rodents (Baptist and Mensah, 1986; Ntiamoa-Baidu, 1998; Asibey and 

Addo, 2000). Currently, this rodent in Nigeria and other neighboring West Africa 

countries is being domesticated for increased stocking and intensification of 

production (Adu et al., 2005) to mitigate the existing acute insufficient protein in the 

face of increasing demand for livestock products (Adekola and Ogunsola, 2009). 

The mammalian reproductive biology generally entails knowledge of the structure and 

function of male reproductive system crucial for suitable management, breeding and 

reproductive studies (Simões et al., 2016). The reproductive system in male mammals 

is composed of two testes, a paired excurrent duct system consisting of efferent 

ductules, epididymis and deferent duct and accessory sex glands (Dyce et al., 2002). 

The paired mammalian testes are involved in spermatozoa and sex steroid hormone 

production, being both exocrine and endocrine in glandular activities (Costa et al., 

2006). They are constituted of two compartments: a series of convoluted seminiferous 

tubules containing Sertoli cells and germ cells and the interstitial compartment 

housing blood and lymphatic capillaries, myoid, Leydig cells and connective tissue 

fibres (Costa et al., 2006). Gonadal steroids, androgens and estrogens have been 

shown to be very important in the male reproductive function (Nilsson and 
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Gustafsson, 2002; Hess, 2003; Welsh et al., 2009). Unlike the testicular composition, 

the epididymis remains an essential site for spermatozoa maturation and storage 

(Cornwall, 2009). It is divided into different segments and zones by connective tissue 

stroma and has epithelium that houses several cell types with diverse functions 

(Robaire et al., 2006). 

The regulation of testicular functions have been found not to be limited to the gonadal 

steroids and gonadotropins. Recent evidences have associated testicular nerves with 

the production of growth factors and neurotransmitters mostly cathecolamines and 

neuropeptides in the control of the gonadal function (Frungieri et al., 2000; Wrobel 

and Schenk, 2003). These neurotransmitters in the presence or absence of 

hypophyseal hormones, is validated by numerous studies to be capable of triggering 

receptors on the Leydig cells, Sertoli cells and smooth muscle cells of the testis 

(Mayerhofer et al., 1990; Setchellet al., 1994; El-Gehani et al., 1998). Several 

neuronal markers have been utilized to localise testicular nerves around the branches 

of the testicular artery, interstitial Leydig cells and seminiferous tubules (Kulkarni et 

al., 1992; Tamura et al., 1996; Lakomy et al., 1997; Wrobel and Moustafa, 2000). 

Conspicuous evidence of abundant innervations has been reported in the testis of 

prepubertal pigs in a study that investigated age-related changes in the density, 

distribution pattern and neurochemical coding of nerve fibers of boars from postnatal 

period to adulthood (Wrobel and Brandl, 1998). 

Similarly, neuronal fibres in the epididymis have been localised within the 

perimuscular coat, sub-epithelial regions and in the coat of vessels within the 

interstitium (Kempinas et al., 1998; Ligoury et al., 2013). The distribution pattern in 

the epididymis has been found to be segment- specific with the cauda segment having 

the highest nerve ramifications owing its thick muscular wall (Kaleczyc et al., 1993). 

The neurotransmitters in the epididymal nerves have been suggested to be important 

in mediating epididymal epithelial cell function of electrolyte transport and protein 

processing (Chan et al., 1994; Ricker et al., 1996).  

It is important to know that the morphophysiological changes in the male reproductive 

system especially the gonads (testes) and epididymis in relation to age differences is 

becoming popular subject of interest (Haidl et al., 1996). Prominent changes in the 

testis and epididymis of mammals as reported by earlier investigators include; 
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thickened and plicated seminiferous tubular basal lamina with irregular projections 

into seminiferous epithelium in advanced senescence, thickened tunica abuginea, 

germ cell degeneration and decrease tubular diameter, modification in junctional 

complexes, Leydig cell hyperplasia, numerous lipofuscin accumulation in both 

testicular and epididymal epithelium and decrease in number and proportion of 

principal and basal cells with concomitant increase in halo cells in all segments of the 

epididymis (Andrew, 1971; Johnson and Neaves, 1981; Holstein et al. , 1988; 

Lowseth et al., 1990; Nipken and Wrobel, 1997; Wang et al., 1999; Calvo et al., 

1999; Pastor et al., 2011). The detailed understanding of these age-related changes 

and their functional implications as it pertains to male grasscutter reproductive 

biology is highly essential owing to the fact that in cane rat breeding, only one male is 

used for mating several females (Soro et al., 2014).  

The existing reports on reproductive biology of African greater cane rats; efferent 

duct ultrastructure (Aire and Van der Merwe, 2003); morphology of epididymis, 

accessory sex gland and penis, structural, ultrastructural and immuhistochemical 

features of seminal vesicle and coagulating gland (Adebayo et al., 2009; Adebayo and 

Olurode, 2010; Adebayo et al., 2014,2015 respectively); sperm morphological 

characteristics, gonadal and extra gonadal sperm reserves, biometrical observation on 

the testes and epididymis, testicular and epididymal histomorphometry (Olukole et 

al., 2009, 2010) focused mainly on the adult group of AGCR. There is paucity of 

information on the age-related changes in the morphophysiology of the testes and 

epididymis of AGCR. Hence, this study hopes to fill this gap and possible results 

emanating from this study will constitute baseline data on age-related changes in the 

reproductive biology of AGCR. In addition, due to the potential of this animal to 

become an indigenous laboratory animal for biomedical research in Africa (Opara, 

2010) as well as being a rich source of animal protein (Bruntup and Aina, 1999), data 

to be generated would be beneficial to the rodent researcher, wildlife veterinarian and 

farmers.  

1.2 Justification 

Considering the huge economic, nutritional and possible research potentials of 

African greater cane rats, the ongoing increased intensification of the production 

practices targeted at actualising the potentials is still being retarded by scanty reports 

on its reproductive biology most especially as it is influenced by variation in age 
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(Yeboah and Adamu, 1995; Addo et al., 2002). In addition, there is dearth of 

information on the age-related changes in the neuronal and glial cell expressions in 

the testis and epididymis of the African greater cane rat.  

1.3 Research Questions 

 Specific age-dependent gross morpho-biometrical changes occur in the  

testis and the  epididymis of mammals (Don White et al., 2005; Kangawa 

et al., 2016). 

i. How do testicular and epididymal morphological characteristics 

change with age in AGCR? 

 Histological, histochemical and ultra-structural details in the testicular and 

epididymal architecture change with age (Calvo et al., 1999; Morales et 

al., 2004). 

ii. What is the trend of histological, histochemical and ultrastructural 

changes in testicular and epididymal architecture across the 

different age-groups of AGCR? 

 The gonadal and extragonadal sperm reserves are affected by age variation 

(Robaire et al., 2006). 

iii. What is the pattern of sperm reserves in testes and epididymides 

across different age groups of AGCR? 

 The distribution of Vimentin, S-100,neuronal and glial-like cells in both 

mammalian testes and epididymis is influenced by age variation (Wrobel 

and Brandl, 1998; Gong et al., 2009; Czykieret al., 2010; El–Desouki et al., 

2017; Falade et al., 2017). 

iv. What is the distribution pattern of vimentin, S-100, neuronal and 

glial-like cells in the testes and epididymides of AGCR of different 

age groups? 

 Reproductive integrity can be evaluated in the male from the level of 

follicle stimulating, luteinising, testosterone and estradiol hormones in 

circulation (Uboh et al., 2007).  

v. What is the pattern of sex hormone levels in different age groups of 

AGCR? 
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1.4 Aim of the Study 

This study is aimed at investigating age-related changes in the morphophysiology of 

the testis and epididymis of the African greater cane rat. 

 

1.5 Specific Objectives 

This study aims at investigating the following in the different age groups of 

AGCR: 

i. To describe the gross morphology and morphometry of the testis and 

epididymis 

ii. To characterize the variation in the histology, histochemistry, 

histomorphometry and ultrastructure of the testis and epidiymis  

iii. To assess the patterns of the gonadal and extra gonadal sperm morphological 

characteristics and spermiogram  

iv. To determine the immunohistochemical expression of structural proteins 

(Vimentin and S-100), nerves (Neurofilament), glial-like cells (Glial fibrillary 

acid proteins) as well as histochemical demonstration of nerves using Golgi 

silver techniques 

v. To determine the serum hormonal profiles in AGCR with respect to age 

variations. 

 

1.6 Significance of Study 

i. The changes in the structure and function with advancement in age of this 

animal will be better understood. 

ii.  This study will generate data that will be beneficial to cane rat breeders, wild 

life veterinarians and rodent researchers 
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1 Scientific Classification of the African Greater Cane rat 

The African greater cane rat (Thryonomys swinderianus Temminck, 1827) [AGCR] is 

a wild herbivorous rodent popularly known as the grasscutter,marsh cane rat and cane 

cutter in most countries of east, west and southern African continent (Happold, 1987). 

Based on scientific classification, the taxonomy of AGCR is described as follows; 

Kingdom: Animalia 

Phylum: Chordata 

Class: Mammalia 

Order: Rodentia 

Sub order: Hystricomorpha 

Infraorder: Hystricognathi 

Family: Thryonomidae 

Genus: Thryonomys  

Species:  Thryonomys swinderianus (Greater cane rat) (Temminck, 1827) 

 

2.1.2 Distribution, Physical Features and Habitat 

Thryonomis swinderianus is found majorly in the several savanna biotic zones and to 

a lesser extent in the grassy regrowth areas on the fringes of the rainforest of sub 

Sahara Africa. (Happold, 1987; Monadjem et al., 2015). It is also found in the grassy 

zones of Southern Africa more specifically in countries like Namibia, Botswana, 

Zimbabwe, Mozambique and South Africa (van der Merwe, 1999). It is rarely found 

in the 15°N of the northwestern part of the Africa and in the 5-10°N in the North-

eastern Africa (Happold, 1987). In spite of obvious evidence that the population 

number of AGCR is rapidly declining due to urbanization especially around large 

urban settlements in sub Sahara Africa as well as decimation through aggressive 

hunting, AGCR is still being considered by the International Union for Conservation 

(IUCN) as least concern or threatened animal (Hoffman, 2008). The detailed 
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description of the physical features of African greater cane rat was documented by 

Happold (1987). The AGCR is known to be an extremely large rodent characterized 

by long coarse hairs, massive blunt head with broad flattened muzzle, small eyes, 

ventrally situated mouth, short and rounded ears, short limbs and a relatively short tail 

(Happold, 1987). The tail is thick at the base and tapers at the tip. It has a set of broad 

orange-coloured upper incisor teeth. The AGCR in the wild can be found in the 

swamps, semi-aquatic habitats, in long grass savanna where grass-cover is dense, in 

habitats that are subjected to seasonal flooding as well as in fields of sugarcane, maize 

and guinea corn (Bishop, 1984; Happold, 1987).  

Thryonomis swinderianus is the next largest rodent of African origin after the Cape 

porcupine and has an average body weight of 4.54 kg with a weight range of (3.18-

5.22 kg) in adult males and an average weight of 3.58kg with a weight rangeof (3.41-

3.8) in adult females (Skinner andSmithers, 1990). The female cane rats give birth at 

least once a year and more frequently in some areas to litters of two to four fully 

furred young ones with eyes opened and can follow the mother within an hour of birth 

(Bishop, 1984).The gestation as well as the weaning periods span between 132-

172days and  4-6 weeks respectively (Aluko et al., 2014).  Sexual maturity in the 

female is attained at about seven months which could for the first time litter at about 

one year of age (Asibey, 1974). Similarly, male cane rats attain sexual maturity at 

about 8 months of age and can live up to 4 years in captivity (Happold, 1987; Soro et 

al., 2014). Generally, the age of AGCR in captive breeding is mostly estimated using 

birth registration and dental formula (Adjanohoun, 1989). It is important to mention 

also that in AGCR rearing, the common practice is the use of only one male for 

mating several females which underscores the crucial need for the male to be healthy 

reproduction-wise (Soro et al., 2014). 

2.1.3 Economic, Nutritional and Research Potentials of African Greater Cane 

Rat 

Among the wild rodents of Southern Sahara, cane rat remains the favorites (Asibey 

and Eyeson, 1973; Clottey, 1981). It is reputed for excellent source of protein even 

over rabbit and chicken (Fayenuwo et al., 2003). It has reduced fat per unit weight 

relative to rabbit and chicken and also contains high calcium and phosphorus which 

accounts for its preference (Jori et al., 1995; Juste et al., 1995; Fayenuwo et al., 

2003). The AGCR is reputed for impacting on the economic growth of a number of 
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countries in West Africa where its meat is expensively sold and prefentially 

demanded over other available wild rodents (Baptist and Mensah, 1986; Ntiamoa-

Baidu, 1998; Asibey and Addo, 2000) thereby making it a contributory factor to its 

vigorous exploitation for meat through aggressive hunting and bush burning (Owen 

and Dike, 2012). Because of the high demand for AGCR meat, currently, this rodent 

in Nigeria and several other African countries is being domesticated for increased 

stocking and intensification of production to mitigate the existing acute shortage of 

protein in the face of increasing demand for livestock products (Jori et al., 1995; Adu 

et al., 2005; Adekola and Ogunsola, 2009).  
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Figure 2.1: Photograph of the African greater cane rat (Thryonomys 

swinderianusTemminck, 1827). Source: Adoun (1993) 
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The AGCR is a rodent of African origin that has received impressive interests from 

many workers who have reported findings on the reproductive system (Aire and Van 

der Merwe, 2003; Adebayo et al., 2009; Adebayo and Olurode, 2010; Adebayo et al., 

2014a and b, 2015, 2016, 2019; Olukole et al., 2009, 2010), circulatory system (Opara 

et al., 2006; Soro et al., 2014), nervous system (Dwarika et al., 2008; Spruston, 2008; 

Byanet et al., 2009; Elston and Manger, 2014), digestive system (Byanet et al., 2008), 

endocrine system (Igbokwe, 2010) and skeletal system (Olude et al., 2014; Parés-

Casanova et al., 2015). 

2.2 Male Reproductive Biology 

The male reproductive system in mammals is composed of the following; the paired 

testicles and its appendages (rete testes and ductuli efferentes), paired duct system 

(epididymis and ductus deferens), accessory glands (vesicular, prostate, ampullary 

and bulbourethral), urethra and penis (Dyce et al., 2002; König and Liebich, 2014). 

Generally, the full set of accessory glands (vesicular, ampullary, prostate and bulbo-

urethral) in mammals release their secretions into the pelvic urethra where they mix 

with the fluid discharge of both testicular and epididymal origin (Goeritzet al., 2003).  

There is marked species variation in the distribution of accessory glands in domestic 

mammals (König and Liebich, 2014). The full set of accessory glands is present in the 

bull, stallion and ram. However, the absence of both ampullary and vesicular glands 

in the cat, ampullary gland in the boar as well as both vesicular and bulbourethral 

glands in the dog have been documented (König and Liebich, 2014). Male Cane rat 

just like other mammals bear paired vesicular, prostate and coagulating glands as well 

(Adebayo et al., 2014a and b, 2015). 

2.2.1 Testicular Development  

The embryonic development of the testes in mammals especially in the rodent begins 

with the bipotential gonad, an initial structure, that usually appear as condensation of 

the ventral side of the mesonephros of the developing embryo at day 10 (Griswold, 

2016). Sex specificity is later acquired by the embryo after 2days as a result of 

primary driving role exerted by the expression of Sry gene principally from the cells 

meant to become the Sertoli cells of the testis (McLaren, 1998). Because of the 

absence of Sry expression in females, the cascade of gene expression events that 

coordinates the formation of granulosa cells in the developing ovary is then favored.  
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With regard to male, primordial germ cells (PGCs) which are the precursors of germ 

cells arise from the endodermal yolk sac and are first seen in the epiblast at day 6 of 

embryonic development (ED). The PGCs then undergo both passive and active cell 

migration before their eventual arrival at and infiltration of the developing gonadal 

ridge at ED day 11 (McLaren, 1998; Dyce et al., 2002).  

Sex determination and complete testes formation occur when the PGCs interact with 

embryonic Sertoli cells, Leydig cells and myoid cells at about ED 12.5 (Cool and 

Capel, 2009; Cool et al., 2012). Sequel to the interaction, PGCs is seen in close 

proximity with Sertoli cells and in concert they give rise to seminiferous cords that 

will end up in becoming the seminiferous tubules. The PGCs of embryonic testis then 

go through a phase of mitotic proliferation within the cords and are then referred to as 

pro-spermatogonia or gonocytes (McCarrey, 2013). It is important to mention that the 

numerous proliferations occur within the medullary aspect of the embryonic testis 

(gonad) while the cortical aspect thin out to later become tunica albuginea (Dyce et 

al., 2002). Subsequent to the increased population of PGCs, the pro-spermatogonia 

progress into a quiescent non-proliferative phase pending the time of birth in the 

rodent.  

The pro-spermatogonia are initially situated near the center of the seminiferous cords 

but in the end move to the margin where numerous essential changes take place. The 

changes lead to the appearance of the morphologically distinct spermatogonia in the 

first few days after birth (McCarrey, 2013). It has been hypothesized that a number of 

this pool of pro-spermatogonia in mice form the initial differentiating spermatogonia 

that represent a“first wave” of germ cell development (Nakagawa et al., 2007). 

Substantial variation exists in the rate of post natal development of the testis in 

different species.  For instance, in the laboratory rat, increase in testicular weight 

begins shortly after birth and continues until adult size is attained. The weight 

increase is associated with the onset of spermatogenesis which occurs as early as five 

days after birth (Dyce et al., 2002). 
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2.2.2 Testicular Morphology 

The paired mammalian testis is an oval structure that is situated in a specialized pouch 

of skin called scrotum (Banks, 1993). The testis has both exocrine (produce 

spermatozoa) and endocrine (secrete gonadal hormones) functions (Monteiro et al., 

2012). In most vertebrate animals, the testis is enveloped by a testicular capsule tissue 

whose morpho-architecture permits the entrance and exit of blood vessels and nerves 

into the parenchyma of the organ (Aire and Ozegbe, 2007). 

2.2.2.1 Testicular Capsule and Peritubular (Boundary) Tissue 

Histologically, from the outside  inwards, testicular capsule is made up of three 

layers; the external (outermost) layer, the tunica serosa, which is detached from the 

peritoneum, the middle layer, the tunica albuginea, and the innermost which is a less 

differentiated layer, the tunica vasculosa (Banks, 1993; Singh, 2011). The tunica 

albuginea remains the massive component of the testicular capsule in most mammals 

studied so far, and consists of collagen, elastic fibres and abundant fibroblasts (Davis 

et al., 1970; Hodges, 1974). The testicular septa of mammals emanate from the 

internal aspect of the capsule, and provide channels which extend into the testicular 

substance for the inward and outward ramification of both the blood vessels and 

nerves (Davis et al., 1970).  The connective tissue of the tunica albuginea in the 

caudal aspect of the testis expands into a thick fibrous tissue mass (mediastinum 

testis) that project through the middle of the testicular substance containing rete testis 

(Parsquini et al., 1997).  Several septa run from the mediastinum testis to the tunica 

albuginea, and divide testicular substance into a large number of lobules. Each lobule 

is nearly conical with the apex of the cone pointing towards the mediastinum testis 

(Banks, 1993; Singh, 2011). Each lobule houses one or more highly convoluted 

seminiferous tubules (Singh, 2011). 

Previous studies by Holstein and Weiss (1967), Davis et al. (1970), and Hargrove et 

al. (1977) have reported the presence of smooth muscle cells in the testicular capsule 

of a number of mammalian species which on contraction may aid in extruding 

testicular spermatozoa into the excurrent duct system. Also, testicular capsule has 

been reported to respond by contraction to a variety of chemical and electrical 

stimulations (Davis et al., 1970; Banks et al., 2006). 
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The mammalian testis is structurally constituted into two major compartments: the 

intertubular or interstistial compartments between seminiferous tubules in a lobule 

housing blood and lymphatic vessels, nerves, connective tissue cells, besides 

macrophages, mastocytes, and Leydig cells and tubular compartment which houses 

the seminiferous tubules (the seat of spermatogenesis) (Costa et al., 2006).  The 

individual seminiferous tubule within the testicular parenchyma is enveloped or 

bounded by peritubular tissue in all mammalian species (Maekawa et al., 1996).  

Although its organisation appears to be specie-specific, the fact that it is widely 

distributed among different mammalian species implies that boundary tissue is an 

essential testicular constituent (Maekawa et al., 1996). The peritubular tissue is 

structurally made up of myoid or smooth muscle-like cells in different species of 

mammals (Virtanen et al., 1986; Maekawa et al., 1996) and birds (Rothwell and 

Tingari, 1973; Aire, 1997). Moniem et al. (1980) described the peritubular tissue 

being constituted of four basic components; a homogenous matrix, collagenous fibres, 

elongated contractile (myoid) cells and fibroblasts. Functionally, peritubular tissue is 

assumed to have diverse roles that include; mechanical support, extrusion of 

spermatozoa and as a physiological barrier controlling material exchange across it 

(Marettova et al., 2010; Rezigalla et al., 2012).   

2.2.2.2 Testicular Germ Cells 

Between the seminiferous peritubular tissue and the tubular lumen, several layers of 

cells of various sizes and shapes representing stages in the formation of spermatozoa 

are found and are collectively referred to as germ cells (Singh, 2011). The germ cells 

are flanked by the sustentacular cells, the Sertoli cells (Young et al., 2006). In 

mammals at puberty onwards, the germ cells consist of sets of spermatogonia, 

spermatocytes, spermatids (round and elongating) and spermatozoa (Beguelini et al., 

2009). Seminiferous epithelium in the newborn of mammals consists of two different 

cell types; gonocytes and Sertoli cells. The gonocytes are large round cells 

(approximately 20-24µm in diameter) evident at the centre of the seminiferous cords. 

They bear spherical nuclei containing homogenous chromatin, and centrally placed 

filamentous nucleoli as well as low spherical cytoplasmic mitochondria (Bellve et al., 

1977).  

 

 



 
 

Figure 2.2. Equine seminiferous tubule. Note the relationship in architectural 

disposition of the Sertoli cells and the developing spermatozoa.  Source: Amann 

(1981).  
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2.2.2.3 Spermatogonia 

Spermatogonia constitute the foundation of spermatogenesis and male fertility 

(Phillips et al., 2010). They are entirely found in the basal compartment along the 

seminiferous tubular basement membrane and are separated from other 

developinggerm cells by Sertoli cell tight junctions (Singh, 2011; Beguelini et al., 

2011). Two forms of spermatogonia are recognised, the stem spermatogonia and the 

differentiating spermatogonia (Phillips et al., 2010). The former represent only 0.03 

percent of the entire germ cells in rodent testes (Tegelenbosch and de Rooij, 1993).  

The differentiating spermatogonia which are diploid in nature are committed to 

entering spermatogenesis and undergo a set of mitotic divisions that are species 

specific, prior to the formation of preleptotene primary spermatocytes (de Rooij, 

1983). They can be divided into three major morphological types; A, Intermediate (In) 

and B, on the basis of their nuclear morphology, chromatin condensation (quantity of 

heterochromatin within their nuclei) and position within the seminiferous epithelium 

(Bakst et al., 2007; Beguelini et al., 2009). 

Type A spermatogonia are typically large in nature and bear ovoid nuclei whose long 

axes lie parallel to the basement membrane of the tubules. The nuclear chromatin of 

type A is generally described as "homogenous and dust-like" (Setchell, 1978). 

Contrastly, the intermediate and type B spermatogonia appear to have a somewhat 

less ovoid to rounded nuclei and increased heterochromasia along their nuclear 

envelope giving their chromatin a crust-like appearance (Courot et al., 1970). Type B 

spermatogonia have the most pronounced chromatin accumulations compared to 

others (Setchell, 1978). The basal surfaces of all spermatogonia are generally 

flattened along the basal lamina, while surfaces in contact with the surrounding 

Sertoli cells appear rounded (Russell et al., 1990b).  

2.2.2.4Spermatocytes 

Spermatocytes are the next set of germ cells in spermatogenesis that correspondto the 

meiotic phase, the process in which spermatocytes undergo meiotic divisions that give 

rise to haploid spermatids (Russell et al., 1990a). The meiotic process begins with a 

single round of DNA replication (Lodish et al., 2005) in pre-leptotene spermatocytes. 

The latter are actually formed by the final spermatogonial division and are the last 

spermatogenic cell types to go through the S-phase of the cell cycle (Russell et al., 

1990b). Sequel to the replication of their DNA, primary spermatocytes enter the long 

prophase of meiosis characterized by genetic recombination to give rise to four 
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haploid spermatids after two rapid cell divisions. The primary spermatocytes during 

the duration of the meiotic prophase undergo progressive morphological changes that 

entail altered cellular and nuclear sizes as well as degree of coiling of the nuclear 

DNA (Russel and Frank, 1978). These highlighted changes in the spermatocyte 

nucleus appearance form the basis for partitioning the meiotic prophase into leptotene, 

zygotene, pachytene and diplotene phases.  

2.2.2.4.1 Leptotene 

The leptotene phase actually indicates the commencement of the meiotic prophase 

and begins with the transformation of the crust-like chromatin nature of the 

preleptotene primary spermatocytes to fine filamentous or thread-like chromatin as a 

result of spiralization and contraction of the DNA into individual chromosomes 

(Russell et al., 1990a). Morphologically, the cells assume a more rounded form during 

this phase as they migrate from the basal aspect of the seminiferous tubule (Russell, 

1977a; 1978) and then move into the adluminal compartment. 

2.2.2.4.2 Zygotene 

In zygotene phase, analogous chromosomes form pairs which are attached via 

synaptonemal complexes, a well conserved structure containing paired lateral material 

together with a centralized area (Beguelini et al., 2011). Thus, the zygotene chromatin 

threads become visibly thicker than those of the leptotene phase when viewed under 

light microscopy and also bear conspicuous nucleoli (Setchell, 1978).  

2.2.2.4.3Pachytene 

Pachytene spermatocyte is typified by fully condensed chromosomes, visible 

chromatids and crossing over between paired chromosomes that lead to a unique 

combination of the genetic material, distinct from that of the individual's somatic cells 

(Setchell, 1978). There is rapid increase in the cellular and nuclear size towards the 

end of pachytene phase (Russell and Frank, 1978) and hence the chromosomes appear 

to be more widely distributed within the nucleus (Russel et al., 1990b). Also, the 

synthetic ability of the cells increases (Monesi, 1965) coupled with enlargement of 

nucleoli as well as appearance of sex vesicle (Solari and Tres, 1967). Of all the 

spermatocytes, pachytene spermatocytes have the longest life span that range between 

11/
2 - 2 weeks (Courot et al., 1970). On the other hand, pachytene remains 

thespermocyte most susceptible to damage from testicular heating (Waites and 

Ortavant, 1968; Setchell, 1978, 1998).  
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2.2.2.4.4 Diplotene 

The Diplotene phase of primary spermatocyte is usually brief and occurs when the 

nucleus has reached maximum size (Setchell, 1978). There is conspicuous 

disappearance of synaptonemal complexes between homologus chromosomes. 

However, the observation of remnants of the synaptonemal complexes can only be 

seen during diakinesis (Setchell, 1978; Beguelini et al., 2011). 

2.2.2.4.5 Secondary Spermatocyte 

By the end of first meiosis, one chromosome from each homologus pair is distributed 

to each of the two secondary spermatocytes formed. Due to the absence of prophase 

between first meiosis and second meiosis, secondary spermatocyte meiosis II occur 

within hours of the first, resulting in one chromatid from each chromosome separating 

into each of the haploid spermatids (Clermont, 1972; Steinberger and Steinberger, 

1975). Secondary spermatocytes are difficult to view in sections of testis because their 

cells transiently remain in interphase for short duration and then progress into the 

second meiotic division, which is equally fast (Arroyo et al., 2015). By virtue of size, 

the secondary spermatocytes formed by the first meiotic division, is smaller compared 

to the primary spermatocytes (specifically diplotene) and bigger relative to the early 

round spermatids.  Both the former and the latter are morphologically identical as a 

result of the presence of several patches of more deeply stained chromatin and one or 

two nucleoli (Setchell, 1978; deKrester and Kerr, 1994).  

2.2.2.5 Spermatids 

Spermatids are spherical cells formed after second meiotic division (Costa et al., 

2004). They bear centrally located round nucleus and are about 30% smaller in size 

than secondary spermatocytes which they resemble morphologically (Russell et al., 

1990b). The cytoplasm of a spermatid is characterized by a well developed Golgi 

complex, a pair of centrioles and numerous mitochondria that are either dispersed 

throughout the cytoplasm or lie adjacent to the plasmalemma (Russel et al., 1990b; 

deKrester and Kerr, 1994). The formation of spermatids begins with morphological 

transformation of round spermatids into highly differentiated, species-specific, 

spermatozoa via a process known as spermiogenesis. The latter involves concurrent 

events of a number of morphogenic processes such as the acrosomal development, 

flagellar development, nuclear condensation and elongation, mitochondrial 

reorganisation and removal of excess cytoplasm made redundant during the cellular 
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reshaping process (Courot et al., 1970; Clermont, 1972; Setchell, 1978; Russell, 1993; 

Sharpe, 1994). Several descriptions of spermiogenesis, at both the light and electron 

microscopic levels, are available for a range of mammalian species (Leblond and 

Clermont, 1952;Oakberg, 1956; Clermont, 1963; Ploen, 1971; Holsten, 1976; Russel 

et al., 1990a; Beguelini et al., 2011; Arroyo et al., 2015). 

2.2.2.6Spermiogenesis 

Morphological changes in spermiogenesis begin with emanation of the acrosome of 

the spermatid from the Golgi complex which elaborates a number of small 

proacrosomal granules that coalesce to form a single acrosomal granule (Olukole et 

al., 2018). The latter together with its vesicle migrate towards the nucleus and become 

associated with the nuclear envelop and from this, the vesicle spreads over the nuclear 

surface. The level of coverage of the nucleus by the acrosome generally differ 

between species ranging between 25% and 60% and in some species extending 

beyond the nucleus to form an apical segment (Fawcett, 1970; Fawcett, 1975; de 

Krester and Kerr,1994). Subsequent to the formaton of the acrosome, the Golgi 

complex begins to migrate caudally and is ultimately included in the residual 

cytoplasm detached from the spermatozoon during spermiation (Fawcett and Phillips, 

1969a; Fawcett et al., 1971). 

It has been observed that the nuclear position changes from central to eccentric during 

the formation of the acrosome and the nuclear pole covered by the acrosome become 

placed closer to the plasmalemma. The repositioning highlighted above is followed by 

a progressive nuclear chromatin condensation with marked evidence of specie 

variation in the timing and degree of condensation. For instance nuclear condensation 

succeed nuclear elongation in the rat and mouse (Meistrich, 1993), but the two 

processes seem to concurrently occur in the dog (Russell et al., 1990b).  Another 

major event is the reshaping of spermatid nuclear and head shape which in rodents 

dramatically changesfrom spherical to a highly asymmetrical falciform shape. 

Chromatin structure, DNA constituents, and nuclear proteins within spermatid 

nucleus has been suggested to contribute to some aspects of nuclear shape by 

providing resistance to external pressures, albeit, there being no credible evidence to 

elucidate their major role in the determination of nuclear shape (Meistrich, 1993).  

The development of the spermatid tail begins from the centrioles which migrate to a 

position beneath the cell membrane that is opposite to the acrosomal development 
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region. The distal centriole is then perpendicularly oriented to the cell membrane 

leading to the formation of axoneme of the tail and the proximal centriole lies at right 

angles to it (deKrester, 1969; Fawcett and Phillips, 1969). The development of the tail 

is advanced by the elongation of the axoneme (nine outer doublet microtubular 

arrangement surrounding an inner pair of single microtubules) enclosed by the 

plasmalemma protruding from the spermatid. The distal centriole is then attached to 

the cell membrane by a ringlike structure, the annulus, situated at the base of the tail 

so that on distal movement of the spermatid cytoplasm, a canal is formed between the 

cytoplasmic lobes and the spermatid tail.  With continuous elongation of the axoneme, 

the dense outer fibre complex emanates in continuity with and external to the outer 

doublet microtubules (Fawcett and Phllips, 1969). Below the level of the annulus, the 

fibrous sheath, circumferential rib-like structures joined at intervals to two fibrous 

columns formed from dense fibres three and eight, surround the dense fibres in the 

principal piece. Caudal to the latter, the mitochondria of the spermatid usually 

surround the dense fibres in a helical fashion late into spermatogenesis after the 

degeneration of the manchette to form the middle piece of the tail (Fawcett et al., 

1971). Almost around the same time with tail development, the proximal centriole 

gives rise to a sheet of dense material that in turn develops to form the capitulum or 

connecting piece that usually links the tail to the nucleus at the implantation fossa 

precisely on the caudal nuclear surface (Setchell, 1978).  

During spermiogenesis, cellular reorganisation within the spermatid results in large 

quantity of redundant cytoplasm and organelles. It is on record that approximately 

75% of all spermatid cytoplasm is eliminated (Sprando and Russell, 1987). The 

elimination of the excess cytoplasm and organelles in spermatid occurs via three 

means; by means of water elimination during spermatid elongation (Sprando and 

Russell, 1987), loss via tubulobulbar complexes (Russell, 1979; Russell and Malone, 

1980) and majorly by post caudal displacement within the cell which is possibly 

facilitated by the manchette (Fawcett et al., 1971).  

2.2.2.7 Spermiation 

Spermiation encompasses the process involved in the release of matured spermatids 

by Sertoli cells into the seminiferous tubular lumen before its epididymal transit 

(O'Donnel et al., 2011). Between the head and tail of the spermatid, residual body 

(houses many organelles such as Golgi complex, mitochondria and chromatoid bodies 
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that are not included in the spermatozoa) are formed and then  invaginate into the 

Sertoli cell (Kerr and de Krester, 1974; Beguilini, 2011). The residual body is pinched 

off from the spermatid at its release from the seminiferous epithelium and then 

become embedded in the cytoplasm of the Sertoli cell for subsequent phagocytosis 

(Sapsford et al., 1969; Fawcett and Phillips, 1969a; Kerr and deKrester, 1974). The 

final minute quantity of excess cytoplasmic remnants attached to the released 

spermatozoon as a cytoplasmic droplet that migrates from the neck region to a 

junction between the middle and principal pieces of the tail, from where it is removed 

during epididymal transport (O'Donnel et al., 2011). 

2.2.2.8 Spermatogenesis  

Spermatogenesis is a complex process occurring in the seminiferous tubule and 

involves the transformation of undifferentiated cells of the germ line (spermatogonial 

stem cells) into a highly specialized haploid cell or spermatozoon (Barratt, 1995; 

Costa et al., 2004). The general arrangement of spermatogenesis is essentially similar 

in all mammals and can be divided into three phases of which all germ cells must 

sequentially pass through over time (Hess and Franca, 2008;Santos et al., 2014). They 

include: 

(a) Proliferative phase: in this phase, germ cells undergo fast successive divisions 

that result in increased cell population size available to enter meiosis. The 

amount of cell divisions occurring among the spermatogonial stem cell division 

and meiosis determines the possible number of spermatozoa that can be 

produced by males and vary between species (Clermont, 1962, 1963; Amman, 

1981; Paniagua et al., 1987a). A classical example is found in the laboratory rat 

in which the pre-meiotic cell population is increased by one thousand fold 

during the proliferative phase and by a four-fold increase in the germ cell 

population during subsequent phases of spermatogenesis (Russell et al., 1990b). 

(b) Meiosis: theoretically, each primary spermatocyte in this phase is expected to 

produce four haploid spermatids; however, programmed cell death always 

accompanies the meiotic divisions, thereby reducing the overall cell yield 

(Roosen-Runge, 1973). 

(c) Spermiogenesis (Cytodifferentiation): this phase entails some morphological 

transformations of the round haploid germ cells to become differentiated to 

species-specific form of the spermatozoon that is structurally endowed to 

migrate and fertilize the egg (Arroyo et al., 2015). As previously stated, these 
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morphological changes are similar in majority of animals and include acrosomal 

development, nuclear elongation and condensation, development of a flagellum 

and removal of surplus organelles and cytoplasm as residual bodies (Russell et 

al., 1990a Chatchavalvanich et al., 2005).  

2.2.2.9 Spermatozoa Structure 

As viewed by transmission microscope, a normal mammalian spermatozoon is chiefly 

elongated and structurally divided into four distinct segments namely; head, neck, 

mid-piece and tail (Toshimori, 2009).  

2.2.2.9.1 Spermatozoon Head  

The head of sperm cell is flattened bilaterally, mostly oval in appearance and 

occupied by the nucleus and acrosome together with a minute cytoplasm enveloped 

within the extent of the plasma membrane (Maree et al., 2010). The acrosome which 

is vesicular in nature is made up of two membranes (the inner acrosomal membrane 

overlying the nucleus and the outer acrosomal membrane underlying the plasma 

membrane) that envelops roughly two thirds of the cranial aspect of the nucleus (Eddy 

and O'Brien, 2006). Between the acrosomal membranes lies the acrosomal enzyme 

matrix rich in network of cytoskeletal structures dispersed throughout the sperm head, 

mostly in the sub-acrosomal layer (between the inner acrosomal membrane and the 

nuclear envelope) as well as in the post-acrosomal space between the nucleus and the 

plasma membrane. The two layers of post-acrosomal space form the perinuclear 

theca, which enclose most of the sperm nucleus apart from the implantation fossa, the 

narrow region around the attachment of the tail (Eddy and O'Brien, 2006). The 

dislocation of the spermatozoa nuclear implantation fossa has been implicated in the 

pathogenesis of flagellar coiling (Ricci et al., 2015). The posterior ring is a structure 

situated at the junction between the postacrosomal region of the head and the 

connecting piece (Eddy and O'Brien, 2006).  

The nucleus of a mature mammalian spermatozoon is oval and flattened in shape, 

extremely condensed, much smaller in size compared to that of a somatic cell and 

bounded by a nuclear envelope consisting of two lipid bilayers, 7-10 nm apart, with a 

complete absence of nuclear pores (Eddy and O'Brien, 2006). Genetically, the nucleus 

is haploid in nature, contains a single set of 23 chromosomes due to meiotic divisions 

during spermatogenesis, and bears inactive nuclear DNA that remains in this state 

until its protamines are displaced upon entry into an oocyte. Mature sperm cell does 
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not have the capacity to synthesize RNA due to the absence of organelles like 

ribosomes and nucleoli (Grunewald et al., 2005).  

 

2.2.2.9.2 Spermatozoon Neck  

The spermatozoon neck (connecting piece) defines the border between the sperm head 

and the middle piece (Teixera et al., 1999). The sperm connecting piece is primarily 

constituted by two principal structures, the capitulum and the segmented columns 

(Teixera et al., 1999; Eddy and O'Brien, 2006). The two structures support the 

spermatozoon head-flagellum attachment. The segmented columns consist of two 

major and five minor columns extending to the posterior end of the capitulum. At 

these end, these columns fuse to the nine longitudinal outer dense fibres that extend 

all through the flagellar length, thus providing the rigidity and structural support 

known with flagellum (Eddy and O'Brien, 2006; Ricci et al., 2015). Part of the 

constituents of connecting piece is a pair of centrioles, the proximal and the distal 

centrioles. The proximal centriole is situated below the basal plate and perpendicular 

to the long axis of the nucleus; while, the distal counterpart is placed parallel to the 

spermatozoa long axis beneath the proximal centriole (Sathananthan et al., 1996). The 

distal centriole is almost degenerated subsequent to the development of the axoneme 

in a mature spermatozoon, but the proximal centriole persists and participates in the 

formation of a short microtubular structure known as the microtubule adjunct 

(Manandhar et al., 2000).  

2.2.2.9.3 Spermatozoon Midpiece  

The midpiece of the spermatozoon occupies the distance between the caudal end of 

the connecting piece and the annulus which is a ring-like structure separating the 

flagellar midpiece from the principal piece (Beguilini et al., 2011). Functionally, the 

annulus serves as gated diffusion barrier controlling the transport of particles between 

the two spermatozoa regions and equally seems to stabilize the midpiece by 

preventing its mitochondria from slipping backwards (Curry and Watson, 1995; Briz 

and Fabrega, 2013). The midpiece is chiefly made up of mitochondrial sheath of 80 

nm thickness and situated directly beneath the plasma membrane (Eddy and O'Brien, 

2006). The sheath, reputed as energy source for spermatozoa motility, consists of 

orderly packs of spirally arranged elongated mitochondria connected from end to end 

around the underlying axoneme (Briz and Fabrega, 2013). The latter which constitutes 

the central axis of the midpiece is surrounded by nine keratin-like protein fibres 
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otherwise referred to as the outer dense fibres. Interestingly, the axoneme together 

with the dense fibres of the midpiece extends to the caudal tip of the flagellum 

(Toshimori and Eddy, 2014).  

 

2.2.2.9.4 Spermatozoon Tail  

The mammalian spermatozoon tail consists of the principal piece, the longest part of 

the tail, and end piece (Teixera et al., 1999). Though many authors agree on inclusion 

of connecting piece and midpiece as part of the tail (Ogwuegbu et al., 1985; Meisner 

et al., 2005; Batalha et al., 2006; Brito et al., 2010). The tail plays significant role in 

the production of motion force required for sperm movement (Briz and Fabrega, 

2013). Flagellar motion force is generated by sliding of the axonemal microtubule 

doublets against each other resulting in the development of symmetrical propulsive 

waves that propagate through the tail length for the linear progression (Mortimer, 

1997). Specific function of the flagellum is in the provision of cell motility, which 

facilitate the active transport of spermatozoon through the female reproductive tract to 

reach and penetrate the oocyte (Briz and Fabrega, 2013). Structurally, the flagellar 

principal piece has fibrous sheath in addition to the axoneme and the outer dense 

fibres which replace the mitochondrial sheath of the midpiece. The fibrous sheath is 

located under the plasma membrane and consists of two longitudinal columns linked 

by circumferentially oriented ribs and suggested to provide the flagellum with 

elasticity and support. It is also postulated to modify the beating characteristics of the 

flagellum, possibly through restriction of the degree of its bending. The fibrous sheath 

and other cytoskeletal structures are absent in the short end piece of the flagellum but 

contain only the axoneme surrounded by the plasma membrane (Brito, 2007, Briz and 

Fabrega, 2013, Curry and Watson, 1995).  

2.2.2.9.5 Spermatozoon Axoneme Structure  

The axoneme of mammalian spermatozoon consists of highly ordered structure that 

forms the core of the flagellum (Teixera et al., 1999). It is made up of two central 

singlet microtubules (doublet) connected to each other by linkages and surrounded by 

the central fibrous sheath. The doublet microtubules are also surrounded by nine pairs 

of peripheral placed microtubules (the 9+2 pattern) that extend in almost the entire 

length of the sperm tail (Toshimori and Eddy, 2014). Each microtubule doublet is 

composed of two structures reffered to as subunit A and subunit B. The subunit A is a 
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complete microtubule with circular shape; while the subunit B is incomplete with C-

shaped appearance in cross sectional view (Nojima et al., 1995).  

The neighboring outer microtubule doublets are linked to each other in a clockwise 

pattern by two large motor protein projections, dynein arms, projecting from subunit 

A of one doublet to the subunit B of the adjacent doublet. Dynein arms are 

multisubunit ATPase complex depicted as inner or outer in accordance to their 

position relative to the central pair of microtubules (Marchese-Ragona and Johnson, 

1990; Neesen et al., 2001). Physiologically, the flagellar dynein arms (outer and 

inner) are assumed to contribute independently to the regulation of the flagellar 

waveform and the frequency of beating (Myster et al., 1999). The inner dynein arms 

are postulated to significantly participate in the development and propagation of the 

flagellar bending motion; while, the outer counterpart tends to maximize the 

microtubule sliding velocity with consequential acceleration of the flagellar beat 

frequency (Toshimori and Eddy, 2014). Due to possession of ATPase activities by 

dyein, there is regular conversion of chemical energy from ATP to the kinetic energy 

required for sperm motility (Mortimer, 1997).  

2.2.2.10   Sertoli Cell 

The Sertoli cell, also referred to as Sustentacular cell is an essential component of the 

seminiferous epithelium aside from the germ cells (Samuelson, 2007). It is columnar 

in shape and thought to span between the seminiferous tubular basement membrane to 

the lumen (Russell, 1993; Hess and Franca, 2005).  It is referred to as nursing cell 

because of its ability to extend its cytoplasmic processes to surround the developing 

germ cells and also by forming specialized junctional complexes (Byers et al., 1986; 

Cheng et al., 2002).  The lateral sides of neighbouring Sertoli cells form numerous 

infoldings and different types of cell junctional complexes (Cheng et al., 2002). The 

interactions between the lateral sides of the sustentacular cell have been attributed to 

the development and functional activities of spermatogenic cells (Weber et al., 1983; 

Samuelson, 2007). Extensive interactions between the Sertoli and germ cell within the 

seminiferous epithelium has been found to modulate the intermittent events of 

assembly and disassembly of Sertoli cell -adherens and tight junctions as well as the 

Sertoli-germ cell adherence junctions that assist in the movement of germ cells across 

the epithelium (Cheng and Mruk, 2002). 
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The nucleus of a Sertoli cell is located very close to the basal aspect of the cell in 

most mammalian species or occasionally could appear resting on the basement 

membrane (Hess and Franca, 2005). The contrast to the typical Sertoli nuclear 

location is in the monkey and  Spixy yellow toothed cavy rodent testes where it is 

located at appreciable distance from the basement membrane precisely somewhere in 

the middle of the seminiferous epithelium (Hess, 1990; Santos et al., 2014 ). The 

nuclear size ranges between 250–850 μm3 and can assume different shapes based on 

the seminiferous cycle stage and the age of development (Russell et al., 1990a). The 

nucleus is normally elongated in outline and extends toward the lumen from birth to 

adulthood; but specific changes in nuclear appearance occur with testicular maturity 

(Heyn et al., 2001). The nuclear envelope of virtually all Sertoli nuclei of adult testis 

bears deep indentations which confer on it the pyramidal, triangular and the 

planoconvex shapes (Russell, 1993). The nucleoplasm of Sertoli cell is more 

euchromatic in nature and contains less amount of scattered heterochromatin along its 

membrane but the latter is present in remarkable amount in the developing testis 

(Hess and Franca, 2005).  

The cytoplasm of the Sertoli cell contains large quantities of mitochondria, which is 

an indicator of increased metabolic activity (Russell, 1993). In the body of the cell, 

mitochondria are abundantly distributed among the other organelles.  Smooth 

endoplasmic reticulum is another major organelle often seen in adult Sertoli cells and 

is suggestive of the cell capability in lipid metabolism. The smooth endoplasmic 

reticulum(SER) within Sertoli cell is situated close to the mitochondria and in some 

species it can be found between the elongated spermatid head in the vicinity of the 

tubular lumen or surrounding lipid droplets (Russell, 1993).  But the rough 

counterpart is sparsely distributed in the basal aspect of the cell (Hess and Franca, 

2005). 

Sertoli cell is known for the secretion of several hormones prominent among which is 

inhibin that acts on the hypothalamus and pituitary glands to exert control on the 

follicle stimulating hormone (Steinberger and Steinberger, 1976; Lumpkin et al., 

1981). Deoxyribose nucleic acid synthesis in the germ cell of rat at the onset of 

spermatogenesis is usually inhibited by inhibin (Demoulin et al., 1979; Setchell, 

1980). Testosterone, estrogen and anti-paramesonephric hormones have recently been 
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found to be secreted by Sertoli cell (Ichihara and Pelleniemi, 2007; Carreau et al., 

2011).  

2.2.2.11   Leydig Cell 

The intertubular spaces of the adult mammalian testes are occupied by loose 

connective tissue with a population of mixed cells including polygonal, fusiform and 

clear cells as well as complex networks of blood and lymphatic vessels (Burgos et al., 

1970; Wrobel and Bergmann, 2006). The conspicuously large polygonal cell of the 

intertubular tissue is the Leydig cell and has been extensively described in variety of 

mammals (Wrobel and Bergmann, 2006). Two different populations of Leydig cells; 

fetal and adult are recognised to arise at different times of testicular development in 

mammals (Lording and de Kretser, 1972; Huhtaniemi and Pelliniemi, 1992). The 

former corresponds to fetal Leydig cells that appear and function throughout the 

prenatal masculinization stage of the male urogenital system; while, the latter is the 

adult Leydig cell that postnatally develops during sexual maturation (Mendis-

Handagama and Ariyaratne, 2001; Akhmerova, 2006). Fetal-type Leydig cells are 

believed to degenerate or de-differentiate almost immediately after the completion of 

the morphogenesis of the extragonadal tract in male (Byskov et al., 1983; Kuopio et 

al., 1989; Hardy et al., 1991), although fetal Leydig cells can continue into the adult 

testis where they constitute a tiny minority within the population of adult Leydig cells 

(Kerr and Knell, 1988). In some mammalian species such as man, the two populations 

of Leydig cells are recognised easily using the temporal separation, but in the rodents, 

they are not different from one another due to population overlap (Lording and De 

Kretser, 1972; Kerr and Knell, 1988). The adult fetal population that appears prior to 

or during puberty is accountable for spermatogenesis and the preservation of male 

secondary sex characters (de Kretser and Kerr, 1988).  

The Leydig cells produce androgens and this steroidogenic activity is markedly 

reflected in their cellular ultrastructure (Zirkin et al., 1980; Ewing and Zirkin, 1983). 

Originally, prospective Leydig cells consist of aggregated undifferentiated 

mesenchymal cells with oval to irregular dark-staining nuclei and minute cytoplasm.  

With progressive development, Leydig cells acquire conspicuously increased 

cytoplasmic volume and appearance of organelles with characteristic features of 

steroid-producing cells including numerous mitochondria displaying tubular cristae; 

extensive smooth (agranular) endoplasmic reticulum (SER); some rough (granular) 
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endoplasmic reticulum (RER); and dark-staining cytoplasm (Byskov, 1986; de 

Kretser and Kerr, 1988). In addition to this, there is appearance of abundant 

cytoplasmic lipid in form of distinct electron-dense droplets (Zirkin et al., 1980; 

Huhtaniemi and Pelliniemi, 1992). In human Leydig cells, specialized crystal (Reinke 

crystals) and lipofuschin pigment granule are seen within their cytoplasm (Weiss, 

1983). 

The amount of Leydig cells within the testicular interstitium of aged man is usually 

reduced (Kaler and Neaves, 1978; Neaves et al., 1985), but is not notably altered in 

the aged rat (Kaler and Neaves, 1981). The Leydig cells of the horse testis are 

exceptionally different because they display an age-related increase in total volume 

and quantity from 2 to 20years of age (Johnson and Neaves, 1981). Similarly, there is 

no marked difference in the Leydig cell ultrastructure of postpubertal, adult and aged 

horses except for the demonstration of huge accumulation of lipofuschin granules in 

aged horses (Johnson and Neaves, 1981). Part of the reported age–related changes in 

the testicular interstital components include hyalinosis of the arterial vasculature, 

infiltration of lymphocytes into the peritubular space and increase in both collagen 

and elastic fibres of the lamina propria (Bishop, 1970; Andreset al., 1981; Paniagua et 

al., 1987). 

The secretory activities of the Leydig cells are regulated by pituitary gonadotrophic 

hormone, the luteinising hormone otherwise known as interstitial cell stimulating 

hormone (Wheater et al., 1990). In seasonal breeders, the Leydig cells and other 

germinal epithelial components are morphologically regressed; while, in non seasonal 

breeders including man and laboratory rats spermatogenic and Leydig cell activities 

are continuous throughout the year (Christensen, 1975; Chaves et al., 2012). 

Apart from the Leydig cells, the other components of the interstitium include very few 

macrophages which are closely associated with few single or a group of Leydig cells 

(Bergh, 1987; Gayton et al., 1994). Some blood derived cells such as lymphocytes, 

plasma and mast cells may also be seen in the interstitium of some species 

(Christensen and Fawcett, 1977).  
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2.3 Morphology of the Epididymis 

2.3.1 Development of Epididymis 

The genital ducts, Wolffian (Mesonephric) and Mullerian (paramesonephric) ducts 

have common precursor which is intermediate mesoderm. They are simultaneously 

derived from the latter. Sequel to this, male sexual diffenrentiation commences with 

the regression of Mullerian duct and further differentiation of mesonephric ducts into 

the following male organs of reproduction; epididymis, ductus deferens and seminal 

vesicles (Kobayashi and Behringer, 2003; Hannema and Hughes, 2006). The entire 

process of sexual differentiation is regulated by genetic influence of sex chromosome 

(França et al., 2005). The triggering mechanism of the latter in Mullerian duct 

regression is yet to be understood (Arroteia et al., 2012).  However, a non steroidal 

anti-Mullerian hormone produced by Sertoli cell has been implicated (Moore and 

Persaud, 2003).  

Following the regression of Mullerian duct, there is differentiation of Leydig cells 

under the influence of a placental hormone, human chorionic gonadotropin (hCG), to 

begin the production of androgens which will in turn exert a positive regulation on the 

mesonephric duct. The interplayof the earlier stated hormones above induced the 

cranial aspect of the duct trasnform to tortuous structure and eventually develop to 

become epididymis (Arroteia et al., 2012). The epididymis is predominantly made up 

of messenchymal tissue at birth (Akbarsha et al., 2015). The development of the 

epididymis during postnatal life is characterized by substantial parenchymal 

remodeling that involves series of duct elongation and convolution (Hannema and 

Hughes, 2006). On attainment of puberty, the epididymis become completely 

differentiated and assumes a well convoluted channel lined by epithelium of diverse 

component cells (Rodríguez et al., 2002). 

2.3.2 Gross Anatomy 

The Epididymis is a single convoluted duct that is otherwise referred to as ductus 

epididymis (Akbarsha et al., 2015). It connects the efferent ducts with the vas 

deferens (Singh, 2011). It is situated subjacent to the testis on each side and adhere to 

the latter on the medial side via connective tissue. Distally, it is secured by the 

ligament of the tail of epididymis and the epididymal fat cushion (Dyce et al., 2002). 

In different mammals, the ductus epididymis measure between 3-80 metres. It is a 

well convoluted duct that is enclosed by a thin capsular covering that ends up forming 
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the epididymis (Akbarsha et al., 2015). The epididymis is in turn divided into many 

segments by septae that run along its length (Singh, 2011).  

2.3.3 Epididymal Histology and Ultrastructure 

The epididymis was formerly thought to be histologically divided into three distint 

regions (segments); the caput which is situated at the testicular cranial pole, the 

corpus occupies the side of the testes and the cauda segment located at the caudal 

(posterior) pole (Hermo, 1995).  Robaire and Hermo (1988) later discovered an initial 

(earliest) segment that is situated ahead of caput and an intermediate zone was 

subsequently between the initial segment and caput especially in rats (Hermo et al., 

1991). A number of studies on different mammalian species have identified many 

other slight histo-architectural differences such as additional zones and segments 

along the ductus epididymal length (Jones et al., 1979; Oke et al., 1989, Adebayo and 

Olurode, 2010). 

It is important to mention that remarkable differences exist in the ductal diameter, 

epithelial height (single pseudostratified in nature), parenchymal cell types as well as 

their distribution in the various segments of the epididymis (Akbarsha et al., 2015). 

The epididymal epithelial thickness also varies along the tubule being thickest at the 

proximal caput and thinnest at the caudal region (Arroteia et al., 2012). In most 

mammals, the proximal to the distal segment of the epididymis usually have 

progressive increase in luminal diameter and periductal muscle coat thickness 

(Lasserre et al., 2001). Spermatozoa concentrations are usually scanty in the initial 

segment, but are largely concentrated in the lumen of cauda epididymal region 

(Yanagimachi et al., 1985; Cornwall, 2009). 

The pseudostriated epithelium of the epididymis is populated by different cell types 

that include; principal, basal, apical, clear and halo cells which is synonymously 

called intra-epithelial leucocyte or intraepithelial lymphocyte or macrophages by 

some authors (Akbarsha et al., 2015). Based on the epithelial cell population, two 

(principal and basal cells) of these cell types are regarded as main epididymal cells 

while others are accessory (Agnes and Akbarsha, 2001).  

The principal cells constitute the most abundant (roughly 80%) of the epithelial cell 

type in the cranial segments (initial segment, intermediate zone and caput) of the 

epididymis and decrease to about 69 and 65 % in corpus and caudal epididymal 
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segments respectively (Robaire and Hermo 1988). Histologically, the principal cells 

rest on the basement membrane where they assume high columnar shape and extend 

through the entire epithelial height (Singh, 2011). Their heights decrease 

craniocaudally from the initial to caudal epididymal segment (Akbarsha et al., 2015). 

They bear densely packed stereocilia at their apical border (Karmore et al., 2015). The 

stereocilia height and distribution decline craniocaudally down the epididymal 

segments (Calvo et al., 1999). Intercellular communications between neighbouring 

principalcells are accomplished by series of cell junctions; lateral zonular occludens 

which form the blood epididymis barrier and the zonular adherens that form tight 

junctions (Cornwall, 2009; Akbarsha et al., 2015).  

The ultrastructural profile of the principal cells in the different segments of the 

epididymis in most mammals is characterized by spherical to irregular nuclear shape 

occupying about basal one third of the cell (Akbarsha et al., 2015). The supranuclear 

region of PC in the initial, intermediate and caput segments of the epididymis is 

typified by well developed Golgi apparatus which is finely arranged as vertical 

masses of sacs and discs as well as numerous SER (Dacheux et al., 2005). In addition, 

the apical part of the supranuclear region (luminal border) is characterized by 

endocytotic apparatus with endososmes, lysosomes, multivesicular bodies, coated and 

uncoated pits and vesicles (Robaire and Hermo, 1988; Goyal and Williams, 1991; 

Arroteia et al., 2012). The corpus epididymis has the highest concentration of 

lysosomes (Robaire and Hermo, 1988). The apical coated pits are physiologically 

essential in resorption of substances across the lumen via receptor-mediated 

endocytosis and thus help in controlling luminal microenvironment (Ramos-Ibeas et 

al., 2013). On the trans-face of the Golgi piles, smooth surface vesicles (secretory 

vesicles) required for both intra and extracellular movement of secretory material are 

in abundance. At the perinuclear region, numerous endoplasmic reticulum is evident 

around the Golgi apparatus and is characteristically granular in nature relative to the 

supranuclear region (Akbarsha et al., 2015). 

The Basal cell is next to the principal cell in term of cell population along the 

epididymal epithelium (Arrotéia et al., 2012). Histologically, basal cell is located 

below the principal cells and consists of sets of elongated flattened triangular cells 

(Yeung et al., 1994).  They bear round to somewhat flattened nuclei with cytoplasm 

characteristically occupied by lysosomes which are filled with lipofuscin pigment 
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thereby suggesting their roles in scavenging reactive oxygen species from the 

epididymal interstitial tissues (Robaire et al., 2000; Cornwall, 2009; Akbarsha et al., 

2015). In addition, basal cells regulate the role of principal cell in electrolyte and 

water transport via local production of prostaglandings (Leung et al., 2004). They 

have also recently been implicated in surveillance of sperm antigens during 

epididymal sperm movement obstruction which they finally processed to an 

amorphous structure called dense bodies (Seiler et al., 2000; Aruldhas et al., 2006).  

Clear cells are markedly vacoulated cells with very pale cytoplasm. The vacoulations 

are striking at the apical region of the cell and are also rich in supra nuclear dense 

granules (Schimming et al., 2012). It also bears some microvilliated structures on its 

apical surface (Păunescu et al., 2014). In term of distribution, clear cells are confined 

to the corpus and cauda epididymal segments. Clear cells have variable nuclear 

positions which are somewhat round in shape and pale staining with conspicuous 

nucleolus (Schimming et al., 2012). The basal region of the clear cell bears dense 

bodies in moderate proportion (Akbarsha et al., 2015). Physiologically, they are 

essential in the removal of sperm cytoplasmic droplet via lysosomal enzymatic action 

(Akbarsha and Averal, 1999). 

The halo cells which are made up of intra-epithelial structures (lymphocytes and 

macrophages) are located in all the segments of the epididymal epithelium (Akbarsha 

et al., 2015). They are distinguishably characterized by pale cytoplasm with dense 

nucleus containing patches of peripherally condensed chromatin (Robaire and Hermo, 

1988). Halo cells are typically migratory in nature and are thus found at various 

heights in clear spaces along the epididymal epithelium (Wang and Holstein 1983; 

Robaire and Hermo, 1988). They are believed to function in providing immunological 

barriers to antigenic substances on the epididymal epithelium (Dacheux et al., 2005; 

Robaire et al., 2006) 

2.3.4 Specific Morphological Changes in Testes and Epididymis with Age 

Advancement 

Specific age-related ultrastructural changes in the epithelial cells of corpus and caudal 

epididymis have been reported to include increase accumulation of secondary 

lysosomes, residual bodies, lipofuscin pigments, mitochondrial damages and 

increased cytoplasmic filament bundles in aged hamster (Serre and Robaire, 1998). 
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Lysosomes are known for housing hydrolytic enzymes that phagocytose aged or 

damaged cellular organelles, extracellular products and capable of storing lipofuscin, 

the main cellular undigested material implicated in ageing (Sohal and Brunk, 1990; 

Brunk et al., 1992; Ivy et al., 1996; Tabatabaie and Floyd, 1996). In addition, 

epididymis undergoing ageing has been found to demonstrate striking vacoulated 

principal cells with varying vacuolar sizes depending on species, being smaller in the 

principal cells of the distal epididymal region of aged rabbit and of giant dimensions 

in the proximal caudal epididymis of older rats (Cran and Jones, 1980; Serre and 

Robaire, 1998). The vacuoles usually lack the normal dense lysosomes peculiar to 

active adults thereby reflecting a clear manifestation of the disruption of regular 

endosomal maturation (Dunn and Maxfield, 1992). Age-related alterations in the 

epididymal luminal spermatozoa of aged rats have been observed to be characterized 

by the presence of spermatozoa debris in small endosomes and giant vacuoles, despite 

the apparent absence of opening of the endosomal vacuoles into the lumen (Cooper 

and Hamilton, 1977; Bernard, 1984; Serre and Robaire, 1998). Parts of the 

progressive structural changes reported in epididymis of mammals is the gradual 

thickening of the basement membrane with advancement in age and the 

complementary emission of pseudopods by the basal cells into the thickened 

membrane which is a morpho-physiological adaptive mechanism to maintain the 

epithelial homeostasis (Serre and Robaire, 1998). 

Epididymal histomorphometric variables such as external ductal diameter, epithelial 

height, periductal muscular wall width and stereocilia height have been reported to 

differ in the various epididymal segments and across different age groups in hamster 

rats (Calvo et al., 1999).  External ductal diameter has been found to increase 

postnatally in all the epididymal segments except in the caudal epididymal tubules of 

older rat where it is markedly reduced. On the contrary, epithelial height in hamster 

has been found to progressively decrease cranio-caudally from the proximal to the 

caudal epididymis during post natal life to adulthood (Calvo et al., 1999).  The 

periductal muscle coat width is similar across different age groups but with marked 

thickness around the caudal tubules. The profile of the stereocilia height of the 

principal cells from birth to adulthood is typified by progressive decrease from the 

proximal caput to the caudal segment of the epididymis (Calvo et al., 1999). 
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2.3.5 Epididymal Function 

The four major functions of the epididymis can be summarized to consist of 

spermatozoa transportation, sperm motility development, sperm fertilizing ability 

development and the establishment of specialized luminal environment suitable for 

spermatozoa maturation process through the absorptive and secretory activities of the 

epididymal epithelium (Robaire et al., 2006).  

The spermatozoa produced in the testes are released into the seminiferous tubular 

lumen and transported via efferent duct into the epididymal compartment (Singh, 

2011).  Effort has been directed to determining the transit duration of the sperm 

within the epididymis and the best approach in the estimation of the total transit 

through epididymis or transit within each segment is by using the ratio of epididymal 

sperm reserves and daily testicular sperm production provided there is no difference 

in inter-segmental transit speed and absence of sperm resorption (Orgebin-Crist, 

1962). 

2.3.6 Epididymal Sperm Storage 

It is important to mention that roughly half of all spermatozoa that leave testicular 

compartment naturally die, disintegrate and are reabsorbed by the epididymal 

epithelium (Robaire et al., 2006). With respect to spermatozoa storage, almost 70% of 

the remaining mature spermatozoa are stored in the cauda epididymis where repetitive 

fertile ejaculations can easily be favoured (Mortimer, 1994; Sharma and Agarwal, 

2011). The cauda epididymis provides the required environment of slightly lower 

temperature for preserving spermatozoa and bears a volume that is directly 

proportional to the storage capacity of the male tract (Bedford, 1978). The caudal 

epididymal storage capacity and the possible frequency of ejaculates vary with 

species for instance, in stallions and bull, the number of stored spermatozoa in cauda 

epididymis is adequate for more than ten successive ejaculates  while in man, less 

than three ejaculates capacity are reserved in their poorly developed cauda 

epididymidis (Sullivan et al., 2005; Frenette, 2006).  

Caudal spermatozoa in aged mammals are usually associated with some considerable 

alterations which have been suggested to arise from prolonged sexual inactivity 

(Robaire et al., 2006). When these spermatozoa are included in ejaculated sperm cell, 

there could be impairment of semen quality, unless they are removed from the male 

reproductive tract at regular interval (Mortimer, 1994).  
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2.3.7 Sperm Morphology 

Sperm morphological evaluation in mammals constitutes an essential part of breeding 

soundness examination (Oyeyemi and Babalola, 2006). Morphologically, 

spermatozoa in several species of mammals bear a distinct head compartment that 

house both the nuclear and the acrosomal materials, a mid-piece and a long tail aspect 

which is roughly divided into two segments; the principal and the end  pieces 

(Oyeyemi and Babalola, 2006; Oyeyemi et al., 2009).  The spermatozoa head houses 

the dense DNA and in most mammalian species, the shape of the head is flat and oval 

but the exception is in the rat, golden hamster and volcanomouse (Blandau, 1951; 

Leblond and Clermont, 1952; Villalpando et al., 2000). Breed (2005) reported that 

some families of rodents have spermatozoa heads that fold back on to themselves 

presenting appearances similar to hook shape and thus called the apical hook. 

Ostriches, galliformes as well as reptiles have filliform type of spermatozoa (Soley, 

1992; Jamieson, 2007).  

The acrosome, an important structure surrounding the sperm head, bears a thin double 

layered membraneous sac that seals the anterior two-thirds of the spermatozoon head 

similar to a crescent cap (Singh, 2011). The sperm head usually acquires acrosome 

during the last stages of spermiogenesis. The acrosome consists of hydrolytic enzyme, 

the acrosin (Muller-Esterl and Fritz, 1981) hyalonuronidase (Rowland, 1994; 

Hunnicult et al., 1996b) esterases (Bradford et al., 1976) and acid hydrolases (NagDas 

et al., 1996) that are crucial for fertilization. 

Morphological abnormalities are also evaluated along with the assessment of 

morphological integrity because deformed or immature sperm cells have probability 

of causing a decreased or low chance of oocyte fertilzation (Ayad, 2018). The 

presence of abnormal shaped spermatozoa in the ejaculate of mammals at a normal 

acceptable range of up 20% in cat and less than that in rodents is normally 

encountered (Moss et al., 1979; Wildtet al., 1999). It might be associated with 

impairment of fertility when they are present in large numbers (Moss et al., 1979). A 

good knowledge of the types of abnormalities of spermatozoa and their quantities in 

the ejaculate allows the diagnostician to make fertility prognosis which might specify 

a treatment course that will aid the recovery of a male with abnormal sperm 

production (Freneau et al., 2010). 
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Figure 2.3. Morphological Appearances of Spermatozoa in Different Animals. A. 

Ostrich B. Rat C. Turtle D. Rabbit. Note the filliform shape of the spermatozoa in A, 

presence of acrosomal hooks in B and D and ellipsoidal head shape in D. Sources: 

Hafez and Kanagawa (1973); Soley (1992); Toghyaniet al. (2013); Zhang et al. 

(2015).A - Acrosome, N - Nucleaus, Mp (M) - Midpiece, Pp (P) - Principal piece, Ep 

(E) - End piece, H-Head. 
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The significance of the usage of sperm morphology in determining reproductive 

success has been documented in many mammalian species; man (Menkveld et al., 

1991; Zamboni, 1992) and domesticated animals such as the bull (Barth and Oko, 

1989; Freneau et al., 2010), stallion (Brito, 2007), boar (Briz et al., 1996) and dog 

(Martínez, 2004). It has equally been found that ageing is an important factor in 

semen quality and is usually impaired in the aged animal due to morphological 

alteration in the epididymal epithelium most especially in the caudal region of the 

duct with probable consequential effect of disrupted sperm maturation (Calvo et al., 

1999). 

2.3.7.2 Sperm Morphometry  

Sperm morphometry refers to some linear dimensions of the head, mid-piece and the 

tail of a typical spermatozoon (Banaszewska et al.,2011). There is a strong 

relationship between sperm function and morphometry and has been empirically 

validated in different mammalian species (Immler et al., 2010). For instance in bulls, 

spermatozoa head morphometric parameters have been considered as excellent 

indicators of semen quality (Phillips et al., 2004). Sperm morphology in conjunction 

with the morphometry are essential reproductive indices to the theriogenologist as 

spermatozoa ability to fertilize an ovum as well as their motility are all dependent on 

sperm head and tail parameters respectively. Much interest is geared towards 

morphology and morphometry in relation to practice as well as theoretical science 

(Kolodzieyski and Danko, 1995). Also, the age of a male animal has equally been 

identified as an essential factor in causing difference in spermatozoa morphology and 

morphometric dimensions (Gregor and Hardge, 1995, Kondracki et al., 2005, 

Quintero-Moreno et al., 2009). 

Spermatozoa morphometric parameters which include head length and width – HL 

and HW, mid-piece length - MPL, tail length - TL and the entire spermatozoa lengths 

-SL have been determined in several mammalian species (Cummins, 1983). 

Morphometric parameters in Maradi goat spermatozoon was reported by Ogwuegbu 

et al. (1985) to be; HL - 8.2 μm, MPL -12.8 μm, TL: 37.2 μm and SL - 58.2 μm 

respectively. Generally, sperm morphometric analysis determined so far in majority of 

the mammalian species observed that the tail including the midpiece was the longest 

segment and on average could represent up to 89% of the total sperm length 
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(Ogwuegbu et al., 1985; Meisner et al., 2005; Batalha and Oba, 2006; Brito et al., 

2010). 

2.3.7.3Sperm Motility 

Spermatozoa are mostly not motile in the testicular compartment (Dacheux et al., 

2003; Ayad, 2018). It undergoes a series of significant maturational changes that 

culminate in the acquisition and development of motility while it is transiting in the 

epididymis (Dacheux and Dacheux, 2014). Full motility is induced and exhibited 

during ejaculation when spermatozoa produced are mixed with secretions from the 

various accessory glands (Mortimer, 1994).  

2.3.7.4 Sperm Concentration 

Spermatozoa concentration in the semen is expressed in millions per millilitre and 

constitutes an essential marker of semen quality as well as a predictive parameter for 

fertility potential (Guzick et al., 2001; Nallella et al., 2006). Concentration of 

spermatozoa in an ejaculate varies among mammals (Oyeyemi et al., 2002). In the 

laboratory sperm concentration is usually estimated by professional observers who are 

trained to use both macroscopic and microscopic examinations to estimate such 

(Hafez and Hafez, 2000). Also, the estimation of spermatozoa can be determined 

using Brown opacity tubes and more objectively the use of absorption meter is more 

reliable (Laing, 1979). Sperm concentration can be altered by numerous factors that 

include; drugs, malnutrition, non-use or overuse of the animal in breeding (Oyeyemi 

et al., 2009; Oloye et al., 2011).   

2.4 Testicular and Epididymal Innervations and Astrocyte-like Cell 

Demonstration 

2.4.1 Testicular and Epididymal Innervations 

The male gonad neuronal network is formed by the peripheral nerves (the superior 

and the inferior spermatic nerve (SSN and ISN) fibres that emanate from the 

autonomic ganglionic system (Motoc et al., 2010). The superior spermatic nerve 

fibres emanate from the superior mesenteric ganglion coupled with inputs from renal, 

spermatic and aortic plexuses and descend bilaterally to approach the testes in the 

company of testicular artery and gain entrance into the testis at the cranial pole 

(Setchell et al., 1994; Rauchenwald et al., 1995; Sosa et al., 2009). The SSN can also 

receive afferent and possibly vagal parasympathetic fibres. While the inferior 
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spermatic nerve fibres carry mostly sympathetic fibers. It originates from the inferior 

mesenteric ganglion and pelvic plexus accompanied by the vas deferens and then gain 

access to the caudal pole of the testes through the inferior ligament of the tail of 

epididymis (Setchell et al., 1994; Rauchenwald et al., 1995).  

The morphological closeness between neuronal elements and testicular cells (Leydig 

cells, boundary tissue and vascular cells) make testicular cells direct targets of 

catecholamines and neuropeptides and thereby provide strong proof for a functional 

association (Nistal et al., 1982; Prince, 1992, 1996; Frungieri et al., 2000). These 

neurotransmitters in the presence or absence of pituitary hormones are capable of 

intrinsic triggering of receptors on the Leydig cells, Sertoli cells and smooth muscle 

cells of the testis (El-Gehani et al., 1998, Wrobel and Schenk, 2003).  

One of the research paths on the innervations of the reproductive tract in many species 

of animals studied dealt with distribution and chemical coding of nerve fibres 

supplying male genital organs (Sienkiewicz et al., 2015). Several workers have 

optimized neuronal markers: cathecholaminergic (Tyrosine hydroxylase and 

Dopamine Beta Hydroxylase) and peptidergic (Substance P, Neuropeptide Y and 

Calcitonin gene-related peptide) to localise testicular nerves around branches of the 

testicular artery, interstitial Leydig cells and seminiferous tubules in marmoset rat 

(Wistar), dog, pig and donkey (Kulkarni et al., 1992; Zhu et al., 1995; Tamura et al., 

1996; Wrobel and Brandl, 1998; Wrobel and Moustafa, 2000).  
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Fig. 2.4. Schematic diagram of the testicular innervation of rat. SSN: superior 

spermatic nerves; ISN: inferior spermatic nerves; RP: renal plexus; HP: hypogastric 

plexus [Source: Campos et al., 1990]. 
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Sienkiewicz et al. (2015) has described the neuronal architecture of the testes in an 

adult Chinchilla rabbit. Nerve fibres were found to be very dense in the tunica 

albuginea portion adjacent to the mesorchial border of the testis. The number of the 

fibres progressively reduced toward the free border of the testis. In addition, the parts 

of the tunica albuginea casing both extremities (cranial and caudal) of the testis have 

higher density of the nerve fibres than those found in the rest of the testicular capsule. 

Nerve fibres were observed penetrating the parenchyma (interior region of the testis) 

from the tunica albuginea into septa of the testis to supply neighbouring blood vessels. 

However, non vascular tissues of the parenchyma are devoid of nerve fibres apart 

from some intermittently distributed nerve terminals that supply the seminiferous 

tubules. Nerves fibres running through the testicular septa eventually end in 

mediastinum of the gonad. Similar testicular innervation has earlier been reported by 

Wrobel and Abu-Ghali (1997) in bull but with no evidence of dense nerve network 

terminals within the mediastinum of the gonad. 

Age-dependent variance in testicular innervation is assumed to reflect its distinct 

functions at different age stages (Gong et al., 2009). Age related changes in the 

distribution of nerves access to the testis and its investment in pigs has been described 

by Wrobel and Brandl (1998). It was shown that the testes of piglets less than 7-day-

old have innervations restricted to the septal and mediastinal regions. While those 

between 3 to 5 weeks old bear the most intense and steady innervation, which reaches 

the gonad through three different routes: the funicular, caudal and mesorchial 

innervations. Their testicular nerve fibers supply the vascular structures of the 

spermatic cord, the tunica albuginea, almost all the septula testis and the mediastinum. 

In pigs of  7-10 week-old, varying degree of testicular innervation withdrawal are 

conspicuous and in the adult boar testes, the funicular nerve supply to the testicular 

artery and pampiniform plexus are retained but with no evidence of intrinsic nerves. 

It has been shown that the intimate anatomical association between peptidergic nerves 

and Leydig cells enable the numerous neuropeptides released from the nerves to act as 

modulators for steroidogenesis in Leydig cells (Gong et al., 2009). However, 

neuropeptide-like substance P has been found to reduce number of luteinising 

hormone-binding sites in Leydig cells and thus inhibits their testosterone production 

(Kanchev et al., 1995). In addition, the gap junctions between Leydig cells further 
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facilitates the prompt response of the cells to the physiological effect of 

neurotransmitters (Pérez-Armendariz et al., 1994). 

Molenaar et al. (1997) has earlier proposed that an inverse functional correlation exist 

between the nervous and endocrine regulation of mammalian testis more specifically 

the porcine testis. The porcine endocrine Leydig cell population appears in a wave-

like manner during normal postnatal development, and could be divided into four 

periods of distinct histological characteristics: Fusiform-like Leydig cells become 

polygonal throughout the period of early postnatal proliferation (from birth to day 14); 

Leydig cells attain maximal size during the period of prepubertal hypertrophy (3 to 7 

weeks) and exhibit all the ultrastructural and histochemical characteristics of steroid 

production; cellular degeneration and a drastic reduction of the surviving Leydig cells 

occur during the period of prepubertal regression (7 to 12 weeks) and the period of 

Leydig cell proliferation in pubertal period (begining at 15 weeks) culminates to the 

adult phase (Wrobel et al., 1973, 1974; Dierichs et al., 1973). The first period of 

Leydig cell hypertrophy in adult is accompanied by abundant innervation, while the 

second period of  Leydig cell activity is followed by a complete absence of nerves 

from the testis proper (Wrobel and Brandl, 1998). 

2.4.2 Astrocyte Expression in the Testes 

 Astrocytes are glial cells that are usually situated close to nerves as support cells in 

both central and peripheral nervous systems.  Functionally, astrocytes have many 

roles prime of which is the maintenance of blood-brain barrier (Falade et al., 2017). 

The recognised marker of astrocyte in the CNS remains an intermediate filament, the 

glial fibrillary acid protein (GFAP) (O’Callaghan and Sririam, 2005; Sofroniew and 

Vinters, 2010). Recent studies have shown its expression in non CNS tissues with 

messenchymal stellate cells including the liver, kidney, pancreas, lungs, and testes, 

which share functional similarity with astrocytes (Bush et al., 1998; Zhao and Burt, 

2007; Lim et al., 2008). Astrocytes have been localised in Leydig cells of the rat and 

human testes (Holash et al., 1993; Davidoff et al., 2002). 

2.5 The Physiology of S-100 and Its Distribution in Mammalian Testis and 

Epididymis 

S-100 protein, a family of calcium binding proteins, bears a low molecular weight 

ranging between 10 to 12kDa (Heizmann et al., 2002). It was named for its dissolving 

ability in ammonium sulphate solution saturated at 100% and at pH of 7 (neutral) 
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(Moore, 1965). S—100 consists of two subunits (S100-α and S100-β) which are 

expressed selectively by specific cell types that form either homodimers (α – α called 

S-100 α or β – β referred to as S-100 β) or heterodimers (recognised as S-100a) 

(Cruzana et al., 2003). Based on phlethora of works, this protein is known for diverse 

roles ranging from calcium-buffering through intracellular (such as enzymatic 

activities modulation, energy utilization, movement and secretion) and nuclear 

(including transcription and apoptosis) roles as well as extracellular activities 

including secretion, neurite growth and chemotaxis (Heizmann et al., 2002).  

Saturated 100 proteins has been demonstrated in physiological 

conditions in cells and organs like  nerve fibers, amnion, 

trophoblast, decidual cells of fetal membranes, in Sertoli cells, 

Leydig cells, seminiferous peritubular cells, efferent ductule, 

thyroid gland parathyroid gland, hair cuticle cells, myeloid cells, 

lung, kidney, liver, cardiac and skeletal muscle (Schäfer and Heizmann, 

1996; Wicki et al.,1996; Boni et al., 1997; Heizmann and Cox, 1998; Vogl 

et al., 1999; Donato, 1999, 2001; Paulsen et al., 2000; Arcuri et al., 

2002; Marinoni et al., 2002). In addition, S100 proteins have recently been 

used as reliable diagnostic markers for detecting melanoma metastasis (Krähn et al., 

2001), brain damage induced by hypoxia, examining the progress of cardiac arrest 

(Böttiger et al., 2001), squamous-cell carcinomas and breast cancer (Lauriola et al., 

2000) and as prognostic indicators for gastric (Yonemura et al., 2000) and esophageal 

(Ninomiya et al., 2001) cancers. 

S-100 proteins have been immuno-localised in the testis and 

epididymis of different mammalian species including rat and cat 

(Amselgruber et al.,1994; Cruzana et al., 2000), farm animals (Amselgruber et 

al., 1992; 1994; Alkafafy, 2005), buffalo (Alkafafy et al., 2011), rabbit  and 

human (Michetti et al.,1985; Haimoto et al., 1987). In these diverse species, S-

100 has been suggested to participate in the secretory and absorptive functions and 

may also play roles in blood-testis barrier formation (Czykier et al., 2000; Cruzana  et 

al., 2000; Cruzana  et al., 2003; Abd-Elmaksoud et al., 2014).  
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Generally, S-100 immunostaining of the testicular parenchyma and epididymis have 

been reported to present varied staining intensity. Strong staining intensity occurred 

within the vasculature (arteries, veins and capillaries) of testis and epididymis 

especially in rat, pig, sheep, goat and European bison and man (Amselgruber et al., 

1992; 1994; Czykier et al., 1999, 2000 and 2010) as well as in the nuclear and 

cytoplasmic portions of the Leydig cells of rats, cats, and human (Amselgruber et 

al., 1994). Also, distinct immunostaining was reported in peritubular cells of the 

testis of tom, dog and rat (Amselgruber et al., 1994; Cruzana et al., 2000). 

However, weak S-100 immunostaining was demonstrated in the testicular Leydig cell 

of pig and stallion (Amselgruber et al., 1994; Czykier et al., 2000). Similarly, 

the epididymal basal and principal cells nuclear and cytoplasmic parts have been 

reported to show intense S-100 immunostaing in bovine, donkey, buffalo and camel 

(Alkafafy, 2005; Alkafafy, 2009; Alkafafyet al., 2011). It is essential to state that in 

bovine the ciliated cells of the epididymis have been found to be strongly stained by 

S-100 marker (Alkafafy, 2005). 

Age-related changes in the expression of S 100 in the testis and epididymis in 

mammals is less reported. Czykier et al.  (2010) observed a weak expression of S-100 

in the smooth muscle cells of epididymal arteries and vein of young European Bison 

relative to their adult counterpart and an equally strong positive expression in the 

endothelium of the vasculature (arteries, veins and lymphatics) of both young and 

adult epididymis. 

 

2.6 Role and Distribution of Vimentin in Mammalian Testis and Epididymis 

The mammalian tissues are made up of five principal intermediate filaments which 

include; vimentin (expressed in mesenchymally derived cells), cytokeratins (in 

epithelial cells), desmin (in muscular precursor cells), glial fibrillary acidic proteins 

and peripherin (expressed in many components of nervous system) (Kopecky et 

al., 2005).  

Vimentin, a typical intermediate filament, forms component of cytoskeleton in the 

testicular and epididymal cells and has a molecular weight of 57 kDa (Lydka et al., 

2011).Vimentin has been localised in the testicular Sertoli cells, peritubular-myoid 

and Leydig cells (Steinert et al., 1984; Wang et al., 1985; Virtanen et al., 1986 and 
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Bilin´ska 1989, 1994) and in sub epithelial myoid cells and interstitial stroma between 

the epididymal ducts (Sasaki et al., 2010).  

In Sertoli cells, vimentin is expressed around the basal and perinuclear regions and 

progressively radiates towards the cytoplasmic apex to relate with specialized 

membrane structures existing between the Sertoli cells and adjacent germ cells 

(Kopecky et al., 2005). Thus, the role of vimentin in this regard has been assumed 

to be involved in attachement of germ cells to the seminiferous epithelium and in the 

movement of the elongated spermatid within the epithelium (Show et al., 2003; 

Hejmej et al., 2007; Kotula-Balak et al., 2007). In addition, their distribution within 

the Sertoli cells helps in safeguarding spermatogenic process (Lydka et al., 2011). It 

important to mention that damage to vimentin could result in seminiferous epithelial 

disintegration and this usually culminates in non favorable restoration of 

spermatogenesis even after recovery (Kopecky et al., 2005). Vimetin expression in 

the peritubular myoid cells of mammalian testis has been linked to its crucial role in 

the contractions of the seminiferous tubules in transporting spermatozoa and testicular 

fluid (Miyake et al., 1986; Maekawa et al., 1996; Sasaki et al., 2010). 

Available data on age-related changes in vimentin expression intensity in testicular 

cells most especially Sertoli cell was documented by Sasaki et al. (2010) in mouse 

deer. It was observed that despite the existence of variation in Sertoli cell sizes 

between immature and adult mouse deer, there was no remarkable difference in the 

localisation and intensity of vimentin positive reaction. Similarly, the sub epithelial 

myoid cells and the stroma between the epididymal duct interstices positively 

expressed vimentin in both immature and adult deer (Sasaki et al., 2010). 

 

2.7 Sex Hormone Interplay in Male Mammals 

2.7.1 Gonadotropin Releasing Hormone 

Gonadotropin releasing hormone neurons of the hypothalamus are the primary driving 

regulatory factors of the reproductive axis (Gore, 2002a). GnRH neurons secrete 

pulsatile gonadotropin releasing hormone (GnRH) into the pituitary vascular 

(hypophyseal portal) system through which it is transported to the anterior pituitary 

gland. The gonadotrope cells of pituitary bearreceptor sites for GnRH coupling which 

on binding to the latter stimulates the biosynthesis and secretion of the gonadotropins; 
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luteinising hormone (LH) and follicle stimulating hormone (FSH) (Ehlers and 

Halvorson, 2013). The gonadotropins travel through the peripheral circulation to act 

on the gonads to stimulate gametogenesis (development of sperm) and steroidogenesis 

(synthesis of estrogen, progesterone and androgens) (Ehlers and Halvorson, 2013). 

Physiologically, the gonadal steroids exert feedback on the hypothalamus and 

pituitary to decrease GnRH and gonadotropin secretion (Ehlers and Halvorson, 2013). 

The GnRH bears a short half life of about 2-4 min which could be attributed to its 

rapid cleavage by peptidases. Owing to its fast degradation coupled with its massive 

dilution, biologically active concentrations of GnRH is not present in the peripheral 

circulation (Wetsel and Srinivasan, 2002). Thus, the serum levels of LH and FSH are 

usually employed clinically as substitute markers of pulsatile GnRH secretion (Ehlers 

and Halvorson, 2013).  
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Figure 2.5. Regulation of hypothalamic-pituitary-testis. The solid lines represent 

stimulating effects and the dashed lines negative feedback actions. 

Source: Nadir et al. (2016) 
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2.7.2 Luteinising Hormone  

The luteinising hormone (LH) stimulates the secretion of sex steroids from the gonads 

of both sexes (Banks, 1993). The physiological effect of LH in male subject is usually 

brought to the fore when it binds to its receptor on testicular Leydig cell membrane to 

initiate the production of testosterone biosynthetic enzymes which participate in the 

conversion of cholesterol to testosterone (Speroff  and Fritz, 2005; Araujo and 

Wittert, 2011). Apart from the aforementioned, LH is also needed for the 

differentiation of Leydig cells and the growth of the testes (Araujo and Wittert, 2011). 

2.7.3 Follicle Stimulating Hormone 

Follicle stimulating hormone (FSH) regulates spermatogenesis subsequent to its 

binding to the FSH receptor in the basal aspect of the plasma membrane of Sertoli 

cells in the testis (Araujo and Wittert, 2011). On its own, FSH is capable of exerting 

influence and in conjuction with testosterone can initiate Sertoli cell proliferation, 

maturation and function that will eventually produce regulatory signals and nutrients 

for the preservation of developing germ cells (Oduwole et al., 2018). The production 

of FSH secretion is under the alteration of two gonadal hormones; activin and inhibin 

(Kumar, 2009; Peltoketo et al., 2010). Activin is secreted by the Sertoli cell, 

boundary and Leydig cells (Araujo and Wittert, 2011). In the gonadotroph cells of the 

pituitary, activin interact by binding to activin receptor type II on it to initiate follicle 

stimulating hormone secretion (Araujo and Wittert, 2011).   

Elevation in the secretion of FSH is postulated to be by the stimulation of 

hypothalamic GnRH (Kumanov et al., 2005). Similarly, inhibin is largely 

produced in the Sertoli cells and its release is stimulated by FSH (Araujo and Wittert, 

2011). The released inhibin in turn suppresses FSH secretion via a negative feedback 

mechanism (Meachemet al., 2001; Araujo and Wittert, 2011).  

2.7.4 Testosterone 

Testosterone is a primary male sex hormone that is secreted by Leydig cells of the 

testis (Banks, 1993). On binding of LH to Leydig cells, there is increased expression 

of steroidogenic acute regulatory protein (StAR).  The latter promotes the transfer of 

cholesterol (precursor for testosterone synthesis) to the inner mitochondrial membrane 

and initiates steroidogenesis (Araujo and Wittert, 2011).  Scott et al.  (2009) described 

the steroidogenetic process on the inner membrane. At the inner mitochondrial 

membrane, cholesterol is converted to pregnenolone by the action of P450 side chain 
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cleavage enzyme. Pregnenolone is then converted to dehydroepiandrosterone (DHEA) 

in a two-step process mediated by 17, 20-lyase (17α-hydroxylase). The DHEA due to 

high expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 1 7β-

hydroxy steroid dehydrogenase (17β-HSD) in the Leydig cells is rapidly converted to 

testosterone via the intermediates androstenediol and androstenedione. In target 

tissues, testosterone is converted to dihydrotestosterone (DHT) by the action of 5α-

reductase. The DHT accounts for most of the testosterone’s biological action though 

its concentration is about one-tenth that of testosterone. Plasma testosterone is 

available as unbound or free testosterone, bound testosterone (i.e with albumin) and 

testosteronecoupled to sex hormone-binding globulin (SHBG) (Maitsumoto, 2001). 

The total plasma testosterone assays measure both free testosterone and testosterone 

coupled to SHBG and albumin (Araujo and Wittert, 2011). 

2.7.5 Estrogen 
Estrogens, principal female hormones responsible for female sexual characteristics are 

not entirely found in female only but also synthesized in males (Schulster et al., 

2016). Circulating testosterone is first converted to androstenedione which is in turn 

modified to form estradiol and estrone by the action of aromatase (P450aro) in certain 

peripheral tissues (Scott et al., 2009). These estrogens (estradiol and estrone) are 

believed to locally exert their influence and subsequently metabolized in target 

tissues. It is important to mention that some testicular and brain nuclear receptors 

modulate estrogenic actions involved in male reproductive function (Schulster et al., 

2016; Torran-Allerand et al., 2005) and via estrogen –dependent mechanisms through 

which it can mediate negative feedback exerted by testosterone on GnRH expression 

(Naftolin et al., 2007). 

2.7.6 Progesterone 

The importance of progesterone in male endocrine system is less clear before now; 

however, in recent times its role as modulator of male endocrine system become more 

obvious (Oettel and Mukhopadhyay, 2004). It is believed to play a role in activating 

sperm in the female reproductive tract and as a modulator of male sexual response and 

behaviour (Oettel and Mukhopadhyay, 2004). In steroidogenesis cycle, pregnenolone 

remains the precursor of progesterone. The latter becomes 17α-OH-Progesterone (P) 

(main serum metabolites of progesterone) when catalyzed by 17,20-hydroxylase. On 

further catalysis, the 17α-OH-P yields androstenedione and dehydroepiandrosterone 



 
 

which are intermediate steroids in the biosynthesis of androgens and estrogens 

(Shackleton and Malunowicz, 2003).

 

 

 

 

Figure 2.6. Stages involved in steroidogenesis (Source: Mostaghel, 2013) 
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which are intermediate steroids in the biosynthesis of androgens and estrogens 

(Shackleton and Malunowicz, 2003). 

. Stages involved in steroidogenesis (Source: Mostaghel, 2013) 
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2.7.7 Age-related Changes in Hormonal Profile  

Age-associated alteration in the anterior pituitary gonadotropes’physiology regulating 

luteinising hormone and follicle stimulating hormone secretions has been associated 

with reproductive senescence (Hall and Gill, 2001). Available report on the profile of 

pituitary gonadotropins (LH and FSH) especially in man showed that their levels in 

the serum increase with age advancement (Feldman et al., 2002). The gonadotropins 

elevated levels with advancement in age  has been found to coincide with the 

consistent decrease in level of testosterone provided that the feedback pathway is 

normal to permit suboptimal testosterone level to exert influence on hypothalamic-

pituitary axis to permit FSH and LH secretions (Bagatell and Bremnar, 1996). 

Although study conducted by Woerdeman et al. (2010) has shown that a reasonable 

decrease in the synthesis of testosterone may not be entirely accompanied by elevated 

LH production even in young male subject which is suggestive of level of moderation 

within the system to variation in the levels of gonadal steroids.  

The climax in the level of testosterone especially at puberty is influenced by a 

complementary hypertrophy of Leydig cell which has been hypothesized to be 

involved in inducing proliferation of germ cells and central nervous system 

differentiation on sexual basis (Choi and Smitz, 2014). Though available data from 

hormonal profile study in man showed a decline in testosterone level with age, such 

finding has been found not to be universal as testosterone level may be unchanged or 

elevated with advancement in age in a number of men and rodents such as hamster 

rats (Calvo et al., 1999; Travison et al., 2007). 

Serum estrogen level rises with increasing age mainly because of increased body fat 

as well as increase in aromatase activity (Leder et al., 2004). The elevated level of the 

latter could result in decline in testosterone level. However, the influence of age 

variation on the pattern of estrogen levels has been variously reported to either decline 

or remain steady (Orwoll et al., 2006; Araujo et al., 2008). 
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CHAPTER THREE 

3.0       MATERIALS AND METHODS 

3.1 EXPERIMENT ONE 

3.1.1 Gross Morphological and Morphometric Studies of the Testis and 

Epididymis in Different Age Groups of the Cane Rat.  

3.1.1.1Experimental Animals 

Twenty (20) apparently healthy AGCR were obtained from a commercial farm, 

Pavemgo grasscutter, Ibereko, Badagry, Lagos state, reputable for keeping birth 

records. The birth records of the AGCR were taken at the point of purchase. The 

grossly accessible reproductive organs (testes and penis) were clinically examined for 

their presence in normal location. Thereafter, they were stabilized for 7days in the 

Experimental Animal Unit of Department of Veterinary Anatomy, University of 

Ibadan. During the period, the animals were fed with dry corn feed daily and water ad 

libitum.    

3.1.1.2 Experimental Design 

The grouping (young: 1-3 months, young adult: 4-7 months and adult:>8 months) 

reported by Soro et al. (2014) for AGCR in a similar age-related study was modified 

and used for sorting AGCR into four (4) groups of five (5) animals each; prepubertal 

(1-4 months), pubertal (5-11 months), adult (12- 30 months) and aged (>30 months). 

3.1.1.3Anesthesia and Organ Excision 

The rats were anaesthetized using intramuscular injection of xylazine and ketamine 

combinations (20mg/kg: 80mg/kg bdwt; respectively).  Thereafter, the abdominal 

wall of each rat was opened upby a ventral midline incision through the linea alba. 

Using the approach of Olukole et al. (2010), the testes together with their attached 

epididymis were excised via the opening created by surgical incision on the tunica 

vaginalis and then placed in petrish dishes containing normal saline to prevent organ 

dessication.  

3.1.1.4Determination of Testicular and Epididymal Gross Morphometric 

Parameters  

Prior to the dissection of the anaesthetized AGCR, bodyweight of each rat was taken 

using a digital weighing scale (Camry, China). Consistently, the weight of the right 
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testis and epididymis of the different group of AGCR was determined using digital 

Microvar weighing balance and biometric parameters were measured using digital 

vernier caliper (Mitutoyo Company, Japan). The relative weights of each of the 

organs were calculated with the use of the formular below: 

Relative Weight (%) = Weight of Organ (g)   X 100 
  Weight of animal (g) 

Gross testicular and epididymal biometric parameters such as length, width and 

circumference were obtained using the description of Olukole et al. (2009). The 

length was taken as the distance between the anterior to the posterior borders, the 

width as the distance between the lateral and medial borders and the circumference as 

the total distance obtained when testis is encircled at its mid-portion with a calibrated 

nylon tape. 

3.1.1.5 Statistical Analysis 

Data obtained were expressed as mean ± SE. Using GraphPad Prism Version 4.00 for 

Windows, GraphPad Software (GraphPad Prism, 2003), one way analysis of variance 

(ANOVA) was used to evaluate significant difference across groups and the values of 

p<0.05 was considered significant. A Turkey post hoc test was further used to 

evaluate significant difference between groups. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

53 
 

3.2 EXPERIMENT TWO 

3.2.1 Age-related Changes in the Histology, Histochemistry, Histomorphometry 

and Ultrastructure of the Testis and Epididymis of the African Greater 

Cane Rat  

3.2.2 Experimental Animals  

A total of thirty (32) AGCR were obtained from the same commercial farm and 

stabilized as stated in section 3.1.1 

3.2.3 Experimental Design 

This is similar to the design in section 3.1.1.2. However, testes and epididymaltissues 

from twenty (20)out of the 32 animals were used for histological, histochemical and 

microsterological analysis. While, the remaining twelve (12) were used for 

ultrastructural study. 

3.2.4 Preparation of Secondary Fixative (10% buffered formalin solution) for 

Light Microscopy 

The secondary fixative was prepared by adding 100 ml of formalin (37-40% stock 

solution) into 900 ml of distilled water. Phosphate buffer salts (6.5 g/L of sodium 

phosphate dibasic, Na2 HPO4i.e disodium hydrogen orthophosphate, anhydrous) and 

4g/L sodium phosphate monobasic, NaH2PO4 (i.e sodium dihydrogen phosphate) 

were added to the solution to neutralise the pH of the fixative. 

3.2.5 Preparation of Karnovsky Glutaraldehyde Fixative for Electron 

Microscopy  

The fixative was prepared by mixing paraformaldehyde powder (2 g) with distilled 

water (25 ml) in a beaker. The mixture was then heated to 60°C on a magnetic stirrer 

plate (78-1 Magnetic hot plate, China).  Once moisture started appearing on the sides 

of the flask, 2-4 drops of (1M) sodium hydroxide was added and stirred until the 

solution became clear and thereafter allowed to cool. The solution was then filtered 

and to the filtrate 10ml of 25% glutaraldehyde was added as well as 20 ml of 0.2M 

cacodylate buffer maintained at pH range of 7.2 to 7.4. 

3.2.6 Anaesthesia  

The same protocol described in section 3.1.1.3 was used. 
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3.2.7 Dissection and Perfusion 

The abdominal wall of each rat was dissected open through a ventral midline incision 

and the thoracic cage opened to expose the heart. This was then followed by the 

perfusion of 0.5 L of pre-perfusion (primary) solution [0.9% sodium chloride 

(Aventra, Fidson, Nigeria) and 25, 000 IU of heparin (2IU\ML) (Heparinum; Polfa). 

The pre-perfusion fluid was introduced with an 18G x ¾ butterfly needle via the left 

ventricle. A complementary slit was made into the right atrium to minimize pressure 

build-up within cardiac chambers. The heparin in the pre-perfusion solution helped to 

prevent blood clotting in the smaller capillaries during perfusion so that a clean 

perfusion can be achieved. The primary solution was followed with secondary 

perfusion of either 10% buffered formalin for tissues meant for light microscopy or 

Karnovsky glutaraldehyde fluid perfusion for tissues needed for ultrastructural 

investigation. The perfusion persisted till satisfactory change was observed in the 

testes colour.  

3.2.8 Organ Excision 

The testes and epididymides were carefully excised from the anaesthetized rats using 

the description in section 3. 1. 1. 3 and trimmed for further processing.  For those 

tissues required for electron-microscopy, further trimming into tiny pieces using sharp 

razor blade into a rice grain size for thorough permeation of the fixative into the tissue 

during post fixation in sample bottle was carried out. In case of epididymal 

ultrastructure, tissues were carefully taken from three segments (caput, corpus and 

cauda) of the epididymis. 

3.2.9 Tissue Processing for Histology, Histochemistry and Histomorphometry 

Trimmed right testicular and epididymal tissues were processed for histology using 

the protocol of Olukole et al. (2010). Briefly, trimmed tissues were dehydrated in 

graded concentrations of alcohol; 70% for 1 hour, 90% thrice for 1hour and two times 

in absolute alcohol (100%) for 1 hour each. This was then followed by clearing of 

dehydrated tissues in xylene for 2 hours each and in turn embedded in paraffin wax at 

60°C. The waxed tissue blocks were then sectioned at 5μm thickness using rotary 

microtome (Leica, USA). Sections obtained were mounted on clear albuminized 

slides subsequent to floating on a warm water bath and then dried in an oven and 

stained with haematoxylin and eosin (H & E). The stained tissues were then examined 
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under light microscope (Olympus BX3-CBH, USA) for variation in histoarchitecture 

in relation to age differences. 

Masson trichome staining:This was carried out in accordance with the method of 

Kumari (2013). Briefly, sections from tissue blocks were dewaxed in xylene for 5 

minutes. The dewaxed tissues were later rinsed in 100%, 96% and 70% alcohol each 

for 1minute. This was followed by rinsing in distilled water for 5 minutes and 

subsequently stained in filtered Celestine blue solution for 15 minutes. This was 

succeeded by rinsing the tissue thrice in distilled water and followed with staining in 

Lily-Mayer haematoxylin for 1minute. Bluing was then done under tap water for 10 

minutes, followed by staining with the Biebrich Scarlet Fuchsin solution for 15 mins 

and rinsed again in distilled water. The tissues were then subjected to mordanting in 

Phosphotunstic-phosphomolybdic acid for 5 mins, counter-stained in aniline blue for 

5 minutes and in turn rinsed in distilled water. Rinsed tissues were then differentiated 

for 3mins in 1% glacial acetic acid, dehydrated in 96% and 100% alcohol, cleared in 

xylene and mounted on Entellan slide. On viewing, parts of the tissues that were 

positive for collagen fibres stained bluish while the nuclei appeared black and 

cytoplasm, keratin, muscle fibre and intercellular fibres stained reddish  

Periodic Acid Schiff's staining: This was carried out as earlier described by Rajani et 

al. (2008). Briefly, waxed sections of testis and epididymis from the different AGCR 

groups were dewaxed in xylene for 5 minutes and rinsed consecutively in 100%, 96% 

and 70% alcohol for 1minute each. This was followed by placing rinsed tissues in 

distilled water and subsequently treating with undiluted periodic acid for 10 minutes. 

The treated tissues were washed in eight changes of distilled water, exposed to 

Schiff's solution for 1hour and washed in running tap water for 10 minutes. The nuclei 

were distinctly stained with Lilly Mayer’s heamatoxylin for 1 min and further 

differentiation was avoided. Bluing of the tissues was done under tap water for 10 

minutes. This was followed by tissue dehydration in 96% and 100% alcohol, cleared 

in xylene and mounted in Entellan. When viewed under microscope, parts of the 

tissue that were positive for glycogen stained magenta while the nuclei stained bluish.  

Photomicrographs of the captured slides of the testis and epididymis of different age 

groups of AGCR were evaluated for variations in testicular (seminiferous tubular 

diameter, luminal diameter and epithelial height) and epididymal (ductal diameter, 
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ductal height, luminal diameter, stereocilia height and peritubular muscle coat 

thickness) parameters using GIMP2 Software. 

 

3.2.10 Processing of Cane Rat Tissues for Electron Microscopy 

Post-fixed tissues were transferred from fixative to sample bottle containing 

Millonig's buffer two times and centrifuged at 3000 revolution per minute (rpm) on a 

rotator for 10 minutes each during the changes. Thereafter, the tissues were taken 

through two (2) changes of Osmium tetraoxide in Millonigs buffer for 1 hour. Then, 

they were rinsed twice in distilled water for a duration of 10 minutes each. They were 

subsequently passed through increasing grades of alcohol; 50%, 70%, 80%, 96% for 

10 minutes duration in each of them and in two changes of 100% ethanol (with 

molecular sieve) for 10 minutes each. This was followed by; changes in propylene 

oxide (PO) two times at 10 minutes each, 2:1 ratio of PO to epoxy resin (ER) for 30 

minutes to 1 hour, 1:2 ratio of PO to ER for 24 hours. The tissues were then 

embedded in labeled moulds containing 100% epoxy resin with aid of a stereo 

microscope (Zeiss Stemi DV4, USA) for 36 hours under vacuum. Afterwards, tissues 

were further embedded in fresh ER and cured in oven at 65°C for 48 hours for 

microtomy. Semi-thin sections were stained with toluidine blue and viewed under the 

light microscope (Olympus BX63 with a DP72 camera). Thereafter, ultra-thin 

sections (70–80 nm) were cut using a diamond knife on an ultramicrotome (Leica EM 

UC7, USA). The sections were placed on copper grid screen, stained for five minutes 

in uranyl acetate (2% in distilled water) and ten minutes in lead citrate (0.5% in 

distilled water) respectively. The copper grids were viewed under a transmission 

electron microscope (Philips CM 10 TEM, USA) functioning at 80 kv. Micrographs 

of different stages of spermiogenesis were captured using a Gatan 785 Erlangshen 

digital camera (Gatan Inc., Warrendale PA) 

3.2.11 Statistical Analysis 

Data obtained from histomorphometry and image J quantification of PAS and Masson 

trichrome staining intensities were statistically analysed using GraphPad Prism 

Version 4.00 for Windows, GraphPad Software (San Diego, CA, USA). The 

differences between the four groups of AGCR were compared using one-way analysis 

of variance (ANOVA) and Turkey test was used for multiple comparisons post hoc. 

The results were expressed as group mean ± standard error of mean (SEM), with level 

of significance at p<0.05. 
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3.3 EXPERIMENT THREE 

3.3.1 Age-related Changes in the Sperm Parameters of the Testis and 

Epididymis in the African Greater Cane Rat 

3.3.2 Experimental Animals  

The same animals used in experiment 3.1.1.  

3.3.3 Experimental Design 

This is as described in 3.1.2. 

3.3.4 Anaesthesia and Organ Excision 

These were carried out as described in 3.1.3. The left testis of each of the group of 

AGCR was milked out of the incision site and exposed by incising the tunica 

vaginalis.  

3.3.5 Sperm Morphological Characteristics 

Morphological defects in the spermatozoa architecture were observed from a total of 

400 sperm cells using the method of Wells and Awa (1970). Briefly, a drop each of 

Wells and Awa stain (0.2g of Eosin and 0.6g of Fast green dissolved in distilled water 

and ethanol in ratio 2:1) and semen were placed on a warm slide, mixed and a smear 

was made with another slide. The stained smear was then air dried and viewed under 

the light microscope. Normal spermatozoa and site of defects in the abnormal 

spermatozoa (head, neck/midpiece, tail) were recorded and classified according to 

Bloom (1973) and Parkinson (2001) description. The following classical 

abnormalities; head (tailless head and headless tail), mid piece (curved mid-pece and 

bent mid-piece) and tail (rudimentary tail, bent tail, curved tail and looped tail) 

abnormalities were carefully look out for in the smear.  

3.3.6 Determination of Sperm Morphometrics 

Spermatozoa morphometry was performed as earlier reported by Sousa et al. (2013). 

Parameters measured were; sperm head length - SHL (the vertical distance between 

the tip of the acrosome and the boundary with the neck of spermatozoa), sperm head 

diameter (width) - SHD (longest horizontal  distance between the two edges of sperm 

head), Sperm mid-piece length - SML (distance between the commencement and the 

end of the mid-piece), STL (distance between the anterior end of the neck and the tip 

of the tail), SWL (the distance between  anterior tip of the sperm head and the tip of 
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the spermatozoa tail). Sperm morphometric analysis of sections captured for 

morphological study was performed using GIMP2 Software. For each of the five (5) 

animals per group, 10 spermatozoa devoid of any morphological defects were selected 

totalling 50 spermatozoa per group of AGCR. 

3.3.7 Determination of Sperm Motility 

The percentage of spermatozoa displaying a unidirectional progressive movement 

over a field on a microscope slide was observed with a camera mounted light 

microscope using the method described by Zemjanis (1970). Briefly, the excised testis 

and epididymal segments (caput, corpus and cauda) from each of the different groups 

of AGCR were incised on the surface and a small drop of semen was taken and mixed 

with 2.9% warm sodium citrate buffer on a clean slide. The percentage of motile 

spermatozoa moving in a straight forward unidirectional rectilinear motion were 

counted by quick observation at x10 low power microscope objective;while, 

spermatozoa in circular movement, in reverse  backward directions or those showing 

pendulous pattern of movements were ignored.   

3.3.8 Determination of the Testicular and Epididymal Sperm Counts  

The method of testicular and epididymal sperm count assessments 

described by Olukole et al. (2010) was used. Briefly, testicular and 

epididymal sections (caput, corpus and cauda) were crushed separately 

using scissors, washed out with 10 ml of saline and homogenized at 

6000 rev/min for 2 mins. Eosin was then added for staining the 

spermatozoa heads in the obtained homogenate. The testicular and 

epididymal sperm counts were then estimated as the total number of 

late spermatids and spermatozoa in the sperm samples obtained from 

the testes and the various segments of epididymis. All samples were 

finally made up to 1:20 before counting on the improved Neubauer 

hemocytometer counter. 

3.3.9 Assessment of Live-Dead (Liveability) Ratio 

From each of the incised testicular and epididymal tissues, a drop of semen was 

placed on a well labelled warm slide, mixed with a drop of warm Eosin-Nigrosin stain 

and then observed under the microscope at X40 objective. It was performed 

immediately to avoid wrong results. Live sperm cells fail to pick up the stain and 
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appeared as clear cells while, dead sperm cells picked up the stain and are seen to be 

purplish in colour.  The live and the dead sperm cells were separately counted from a 

total of 600 spermatozoa in smears stained with Eosin-Nigrosin and the ratio was 

determined according to the method of Zemjanis (1970).   

3.3.10 Statistical Analysis 

Data obtained were expressed as mean ± SE. One way analysis of variance (ANOVA) 

was used to evaluate significant difference between groups and the values of p<0.05 

were considered significant. A Turkey post ad-hoc test was used to evaluate 

significant difference between groups using GraphPad Prism 4.0 (GraphPad software 

Inc., California, USA.) statistical package. 
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3.4 EXPERIMENT FOUR 

3.4.1 Age-Related Changes in the Immunohistochemical Expression of 

Structural Proteins (Vimentin and S-100), Nerves (Neurofilament) and 

Glial-like cells (Glial Fibrillary Acid Protein) as well as Histochemical 

Demonstration of Nerves and Glial Cells Using Golgi Silver Techniques 

3.4.2 Experimental Animals 

 The same animals in 3.2.1 were used for this experiment.  

3.4.3 Experimental Design 

The left testis and epididymis of the twenty (20) animals used for histological, 

histochemical and microsterological analysis in section 3.2.2 was used for Golgi 

silver nerve demonstration technique.  Also, the waxed tissue blocks prepared in 

section 3.2.8 were further processed for all the immunohistochemical protocols. 

3.4.4 Anaesthesia and Perfusion 

Same as described in 3.2.5 and 3.2.6 

3.4.5 Tissue Processing for Golgi-silver Staining Procedure 

For the histochemical demonstration of nerves and glial cells, the method described 

by Olude et al.  (2015) was adopted. Briefly, trimmed  testicular  and epididymal 

tissues (1 mm thick) were immersed in sample bottles of 10-30 mL capacity 

containing 3% potassium dichromate solution for 5 days. During these days, the 

bottles were wrapped externally with foil paper to prevent light penetration into the 

solution.Stale solutions of dichromate were discarded and fresh one added on daily 

basis within the five days. On the 6th day, the tissue blocks were moved into 2% 

silver nitrate solution for impregnation in the next 3 days at room temperature. On day 

9, the impregnated tissues were removed from silver nitrate into a clean filter paper to 

remove excess silver precipitates on the tissues. The clean tissues were processed 

histologically by dehydration through increasing grades of alcohol; 70%, 90%, 100% 

alcohol and xylene for 5 minutes duration each. Dehydrated tissues were then 

infiltrated in molten wax at 56°C for 30 minutes. Sections (60 µm thick) were made 

from the tissue block using microtome (Microm – HM 330, Germany) and then air-

dried for 10 minutes and cover-slipped using DPX.Slides were viewed with light 

microscope for the presence of glial and neuronal structures. 
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3.4.6 Tissue Processing for Immunohistochemical Localisation of Structural 

Protein, Nerve Fibres and Astrocyte-like Cells in the Testes and 

Epididymis of the African Greater Cane Rat 

Sections cut from the testicular and epididymal blocks used in experiment 3.2 were 

processed for immunolocalisation of structural proteins (Vimentin and S-100), nerve 

structures (Neurofilament) and glial (GFAP) using the Avidin Biotin Complex 

method (ABC) described by Alkafafy (2009). Briefly, prepared slides were labeled 

with pencil, dewaxed in oven operated at 60°C and deparaffiinized in 2 changes of 

xylene. Sections were then hydrated in ascending grades of alcohol to water. This was 

followed by rinsing in distilled water and antigen retrieval was subsequently carried 

out on the sections to unmask antigenic sites using 10mM citrate buffer at pH of 6.0 

for 25 minutes.  Non specific antibody binding and endogenous peroxidase activities 

were inhibited by subjecting the testicular and epididymal tissue sections to 3% H2O2 

/methanol for 15 minutes. The sections were then wash in Phosphate Buffered Saline 

(PBS) and later encircled withPAP pen to create a hydrophobic barrier. This was 

succeded by blocking in phosphate buffered saline (2% PBS) containing 5% bovine 

serum albumin for an hour. Each section was then immunolabeled using the following 

primary antibodies; anti-S-100 (cytoskeleton),anti-Vimentin (cytoskeleton), anti-

Neurofilament (neuronal fibres) and anti-GFAP antibodies (astrocyte-like cells). 

Thereafter, each section was diluted in 1% PBS milk and 0.1% Triton X detergent (for 

rapid penetration of antibody) and then incubated overnight for 18hrs at 4°C. At this 

stage, HRP-conjugated secondary antibodies were consequently used by strictly 

adhering to the manufacturer protocol to detect the bound antibody. The end-product 

of the reaction was enhanced with 3, 3'-diaminobenzidine (DAB; Vectastain ABC kit) 

chromogen at 1:25 dilution ratio for 5 minutes. The sections were later dehydrated in 

grades of alcohol concentrations, de-alcoholized in xylene, mounted with DPX 

permanent mounting media, coverslipped and allowed to dry. The prepared slides 

were then viewed and photographed with the light microscope.  

3.4.7 Statistical Analysis 

Data obtained from the image J quantification of staining intensities of the different 

immunolabellings were analysed using GraphPad Prism Version 4.00 for Window 

(GraphPad software Inc., California, USA.) statistical package. The variations in the 

staining intensity of each immunolabelings were compared using one-way analysis of 
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variance (ANOVA) and Turkey test was used for multiple comparisons post hoc. 

Results were expressed as group mean ± standard error of mean (SEM) and level of 

significance at p<0.05. 
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Table 3.1. List of Antibodies Used for Immunohistochemical Labeling. 

Primary Antibody & 

Manufacturer 

Concentration Pre-incubation 

serum 

Secondary 

Antibody 

Polyclonal rabbit anti-S 

100 (Dako) 

1:400 Normal horse serum Horse anti-rabbit 

Monoclonal mouse anti- 

vimentin (Dako) 

1: 200 Normal bovine serum Bovine anti-mouse 

Monoclonal mouse anti-

human  neurofilament 

(Dako) 

1:100 Normal horse serum Horse anti-mouse 

Polyclonal rabbit anti-

glial fibrillary acid 

protein (Dako) 

1:500 Normal horse serum Horse anti-rabbit 
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3.5 EXPERIMENT FIVE 

3.5.1 Age-Related Changes in the Serum Hormonal Profile of African Greater 

Cane Rat 

3.5.2  Experimental Animals 

Fifty two animals were used for this study and were mainly from those used for 

experiments 3.1, 3.2 and 3.5. 

3.5.3 Experimental Design 

The design is as described in section 3.1.2 

3.5.4 Anaesthesia  

This is as described in 3.1.3. 

3.5.5 Blood Collection  

The linea alba was incised and extended cranially to the xyphoid cartilage to expose 

the heart.  The left ventricle of the exposed heart was punctured using an 18G x ¾ 

butterfly needle. Two (2) millilitres of blood was drawn from each of the rat's heart 

into 5 ml gauge syringe (Agary-ject, China) and released into a plain test tube 

(Micropoint Diagonistica, China). The blood samples were centrifuged at 3500 

revolutions per minute (rpm) for 5 minutes using centrifuge (Gallenkamp, England). 

Subsequent to the centrifugation, blood was separated into two layers (serum and 

aggregated blood cell portions). The tube was gently tilted and 1ml insulin syringe 

was inclined into it to draw the serum into ependorf tubes (Micropoint Diagonistica, 

China). The tubes were stored at -20°C prior to subsequent hormonal (testosterone, 

estrogen, progesterone, luteinising and follicle stimulating hormones) assays which 

were conducted within 48 hours using commercial kits; Dialab, Germany - for FSH, 

LH, Progesterone and testosterone determinations and Rapid Lab Ltd., UK -  kit was 

used to determine estrogen level. 

3.5.6 Hormonal Assay Procedure 

The method described by Uboh et al. (2007) was adopted for the determination of 

serum hormonal levels. Briefly, serum levels of testosterone, estrogen, progesterone, 

follicle stimulating and luteinising hormone were assayed for each of the animals in 

the different age groups of AGCR using the microplate immunoenzymometric assay 

kits specifically produced for each of the hormone. The test procedure for the five kits 

was almost similar for the five hormones and was carried out in accordance to the 
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manufacturer’s description. Twenty five (25µl) microlitre of each of the calibrators, 

control and serum samples of each of the thirteen cane rats from each of the different 

age groups of AGCR were pipetted carefully into well labeled microtitre wells in 

duplicate. One hundred (100 µl) microlitre of the conjugate was added to each well 

and then swirled for 20-30 seconds to mix. The latter was later covered and incubated 

for 60 minutes at room temperature after which the contents of the microplate were 

decanted and blot-dried with absorbent tissue paper. Three hundred (300 µl) 

microlitre of reconstituted washing solution (prepared by mixing the concentrated 

washing solution and distilled water at ratio 1:25 in a separate jar) was then added 

into each well. The latter was then decanted and blot-dried.  This washing was 

repeated for four consecutive times, after which 100 µl of TMB-substrate was 

pipetted into each well at timed intervals and subsequently incubated for 15-

20minutes at room temperature in a dark cupboard. The reaction was then stopped by 

the inclusion of 150 µl of the stopping reagent into each well at timed intervals and 

the microtitre wells eventually read on an ELISA reader (Robonik 11-2000, England).  

A calibration curve was plotted with the optic densities/absorbance on the Y-axis and 

calibrator concentration on the X axis for five hormonal parameters. The serum 

concentration of the hormone in each sample was estimated by locating the point of 

intersection of the average absorbance of the sample duplicates on the vertical axis of 

the graph to its complementary concentration on the horizontal axis of the graph. The 

test validity criteria for each of the assay were met in accordance with the kit 

manufacturer’s instructions.   

3.5.7 Statistical Analysis 

Data obtained were expressed as mean ± SE. One way analysis of variance (ANOVA) 

was used to evaluate significant difference between groups and the value of p<0.05 

was considered significant. A Turkey post ad-hoc test was used to evaluate significant 

difference between groups using GraphPad Prism 4.0 (GraphPad software Inc., 

California, USA.) statistical package. 
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CHAPTER FOUR 

4.0             RESULTS 

4.1 EXPERIMENT ONE  

4.1.1 Age-related Changes in the Morphology and Morphometrics of the Testis  

andEpididymis ofthe African Greater Cane Rat 

4.1.1.1 Testicular and Epididymal Gross Appearances in Different Age Groups 

of the African Greater Cane Rat  

The paired testes were suspended in the scrotal sac situated caudo-ventral to the penis. 

The colouration and shape of the testes were characteristically cream to milky-white 

and ellipsoidal respectively. The testes were secured at the cranial pole by the 

mesofurniculus fold (an homologue of the visceral lamina of the vaginal layer 

enveloping the spermatic cord). The testeswere adhered loosely to the epididymis at 

the epididymal border by ligament. The testes across all age groups were grossly 

covered by a transparent capsule, the tunica albuginea (Fig 4.1A&B). 

Unlike the testes, the epididymis of all AGCR hadinverted S-shaped outline and was 

loosely attached to the testis (T). Grossly, epididymis was less distinctly divided into 

caput (a), corpus (b) and cauda (c) segments. The caput and corpus segments showed 

visible convolutions relative to the caudal segment (Fig. 4.2A&B).  

4.1.1.2 Age-related Changes in the Gross Biometric Parameters of the Testis and 

Epididymis of theAfrican Greater Cane Rat  

The details of the testicular and epididymal biometric parameters were summarized in 

Table 4.1. The body weights (BW) of the AGCR used for this study 

increasedsignificantly (p<0.05) as age advances with the extremes of BW (0.75 ± 0.14; 

4.63 ± 0.24kg) observed in the pre-pubertal and aged respectively. Testicular weight 

was significantly reduced (p<0.05) in the pre-pubertal rat compared to other groups. 

Also, testicular weights markedly increased (p<0.05) in both the adult and aged testes 

when compared to others.  The testicular weight appeared to increase with the age of 

the animal.  

Regarding the relative testicular weight (RTW) or testiculosomatic index, significant 

decrease (p<0.05) was observed in the pre-pubertal rat when compared to others. 

There was no significant difference (p>0.05) in the RTW from pubertal to aged.An 

insignificant increase (p>0.05) was seen in the adult AGCR when compared to others. 

Similarly, testicular length (TL) and testicular width (TW) weresignificantly reduced 
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(p<0.05)in the pre-pubertal rat relative to others. However, significantly increased 

(p<0.05) TL and TW values were seen in both adult and aged AGCR when compared 

to others. For testicular circumference (TC), significantly decreased (p<0.05) values 

were observed in the prepubertal rat compared to others. There was no significant 

difference (p>0.05) in the TC of pubertal AGCR onwards, though, an insignificant 

increase (p>0.05) existed in the value of TC in adult AGCR relative to others. 

Epididymal weight (EW), epididymal length (EL), caput (CW), corpus (CPW) and 

cauda (CAW) widths presented similar trends of significantly decreased values in the 

pre-pubertal rat compared to other groups. There was no significant difference 

(p>0.05) in the values of these parameters from pubertal to aged,although, an 

insignificant increase (p>0.05) in their values occurs in the aged AGCR. In addition, 

there was no significant difference (p>0.05) in the relative epididymal weights in all 

the AGCR groups.  
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Figure 4.1. Photographs of the male reproductive organs in the cane rat in-situ. A. 

Pre-pubertal B. Adult. Note the creamy white ellipsoidal testes (T), the inverted S-

shaped epididymis (E) and its caput (a), corpus (b) and cauda (c) segments. Also 

observe the conspicuous albuginea vessels (arrow) and transparent tunica albuginea 

(arrow-head). 

  



 
 

 

Figure 4.2. Photographs of the epididymis of the African greater cane rat . A. Lateral 

view B. medial view. Note the inverted S

(b) and cauda (c) segments. Also, observe the visible convolutions (arrows) within 

caput and corpus segments.
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. Photographs of the epididymis of the African greater cane rat . A. Lateral 

view B. medial view. Note the inverted S-shaped epididymis and its caput (a), corpus 

(b) and cauda (c) segments. Also, observe the visible convolutions (arrows) within 

caput and corpus segments. 

B 
. Photographs of the epididymis of the African greater cane rat . A. Lateral 

its caput (a), corpus 

(b) and cauda (c) segments. Also, observe the visible convolutions (arrows) within 
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Table 4.1. Age-related Changes in the Biometric Parameters of the Testis and 
Epididymis of African Greater Cane Rat 

 PRE PUB ADULT AGED 

Body Weight (kg) 0.75  ± 0.14a 1.95 ± 0.08b 3.08 ± 0.15c 4.63 ± 0.24d 

Testi. Weight (g) 0.13 ± 0.04a 0.83 ± 0.09b 1.55 ± 0.13c 1.73 ± 0.05c 

Rel. Testi. Wt. (%) 0.02 ± 0.00a 0.04 ± 0.00b 0.05 ± 0.00b 0.04 ± 0.00b 

Testi. Length (mm) 12.50 ± 0.80a 20.00  ± 0.31b 28.00 ±  0.18c 30.03 ± 0.20c 

Testi. Width   (mm) 5.70 ± 0.70a 9.00 ± 0.10b 14.00 ± 0.60c 11.30 ± 0.88c 

Testi. Circum (mm) 15.00 ± 0.12a 

0.06  ± 0.00a 

30.30  ± 0.18b 

0.28 ± 0.00b 

38.00  ± 0.15b 

0.35  ± 0.00b 

36.80  ± 0.12b 

0.50 ± 0.00c Epid. Weight (g) 

Rel. Epid. Wt. (%) 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 

Epi. Length (mm) 13.30  ± 0.14a 20.55  ± 0.27a 34.30  ± 0.49b 40.25  ± 0.36b 

Cap. Width (mm) 3.25  ± 0.75a 8.00  ± 0.18b 11.00  ± 0.13c 12.25  ± 0.63c 

Cor. Width (mm) 1.75  ± 0.48a 6.75 ± 0.85b 9.00 ± 0.13b 10.00 ± 0.71b 

Cau. Width (mm) 1.43  ± 0.37a 5.50  ± 0.910b 7.88  ± 0.89b   9.25  ± 0.32b 

 

Values with different alphabet superscripts in the row are significantly different 

PRE- Pre-pubertal, PUB – Pubertal, Testi –Testicular, Rel – Relative, Wt  - Weight, 

Cap – Caput, Cor – Corpus, Cau –Cauda 
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4.2 EXPERIMENT TWO 

4.2.1 Age-related Changes in the Histology, Histochemistry, Histomorphometry 

and Ultrastructure of the Testes and Epididymis of African Greater Cane 

Rat 

4.2.1.1 Histological Changes in the Testes of Different Age Groups of the African 

Greater CaneRat 

The testis in all the groups was enveloped by a capsular covering which was made up 

of two distinct divisions; tunica albuginea and tunica vaginalis (Fig. 4.3). The tunica 

albuginea was the closest division to the testicular parenchyma and was composed of 

dense connective tissue rich in blood vessels, fibrocytes and collagens. Tunica 

vaginalis was the outermost layer of thin mesothelium. The thickness of testicular 

coverings seen in this study increased with age. On the difference in the seminiferous 

tubular architecture (Fig. 4.10), pre-pubertal AGCR (1-3months) lacked a patent 

lumen within its tubule and instead, the tubule is filled with cords of immature cells 

(spermatogonia, Sertoli cells and spermatocytes) (Fig. 4.10A). Evidence of patent 

seminiferous tubular lumen specifically begins in pre-pubertal 4 month old rat (Figure 

4.11). Complete spermatogenetic and sustentacular cells (spermatogonia, 

spermatocytes, spermatids (round and elongated), spermatozoa and Sertoli cell) are 

visible only in the seminiferous tubules of pubertal to aged AGCR (Fig. 4.10B-D). In 

addition, the intertubular space (interstitium) in the pre-pubertal rat contains wide 

non- cellular areas i.e scanty interstitial components (Fig. 4.17A) as opposed to the 

high Leydig cell presence in the interstitium of pubertal to aged AGCR (Fig 4.17B-

D). The cellularity of the interstitum in this study seems to increase with age. 

4.2.2 Masson’s Trichrome and Periodic Acid Schiff Stainings of the Testes of 

Different African Greater Cane Rat Groups  

With the use of Masson’s trichrome, portions of testes positive for collagen fibres 

were demonstrated  in the capsule, peritubular tissue and in the interstices of 

seminiferous tubules in all the AGCR groups (Figs. 4.6 and 4.13). The PAS positive 

stained areas for glycogen presence in the testes of different age groups of AGCR 

include the following; the testicular capsule, seminiferous tubular basement 

membrane and interstitum (Figs. 4.8 and 4.19). The quantification of the intensity of 

expression of the stains shows that the trend of both MT and PAS intensities were 
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similar in the testicular capsule and they increase significantly (p<0.05) with the 

advancement in age of AGCR (Figures 4.7 and 4.9 respectively). For the testicular 

parenchyma, the intensity of PAS stain was significantly higher (p<0.05) in the 

pubertal ACGR compared to others (Fig. 4.16B). However, there was no significant 

difference (p>0.05) in the MT intensity of all AGCR groups (Fig. 4.14) though; an 

insignificantly increased MT intensity values were observed in both the adult and 

aged AGCR.  

4.2.3 Age-related Changes in Testicular Histomorphometry 

4.2.3.1 Testicular Capsule Thickness and Percentage Capsular Tunic Thickness 

Testicular capsule thickness as shown in Fig. 4.4 was significantly reduced in the pre-

pubertal AGCR relative to others. In addition, there was no significant difference 

between the testicular capsule thickness of the adult and aged AGCR though the 

values were insignificantlyhigher in aged. The pattern of testicular capsule thickness 

displayed in this study seems to increase with age advancement.   

On the percentage capsular tunic thickness (Fig. 4.5), the contribution of the tunica 

albuginea (TA) to capsular thickness was significantly higher relative to the tunica 

vaginalis counterpart. With the exception of the significant increase (p<0.05) in TA 

thickness in pre-pubertal, TA thickness was not significantly different from pubertal 

onwards. Similarly, there was no significant difference in the TV thickness from the 

pubertal to aged AGCR.  

4.2.3.2Seminiferous Epithelial Height, Luminal Diameter and Tubular Diameter 

Due to the absence of patent lumen whose boundary is essential in determining the 

extent of seminiferous epithelial height (SEH), it was difficult to correctly determine 

the epithelial height as well as seminiferous luminal diameter (SLD) in prepubertal 

AGCR. In other AGCR groups, SEH trend displayed a decrease with increasing age 

of AGCR, with the pubertal showing significantly higher levels (p<0.05) while the 

adult and aged demonstrated no significant (p>0.05) difference. 

For the seminiferous luminal diameter (Fig. 4.12B), significant increase (p<0.05) was 

noticed in both adult and aged relative to the pubertal AGCR, though 

insignificantlyhigher (p>0.05) values occur in the adult when compared to the aged 

AGCR (Fig. 4.12B). In this study, SLD trend seems to increase with age increment.  
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On the profile of Seminiferous Tubular Diameter (STD) (Fig. 4.12C), significant 

increase (p<0.05) values was seen from pubertal to aged groups relative to prepubertal 

AGCR (Fig. 4.12C). Although, increase STD value was noticed in pubertal AGCR, 

this was not significant (p>0.05) enough to establish difference between the three 

groups (Fig. 4.12C). Thus, with exception of the prepubertal, the trend of STD with 

age advancement observed in this study appears to be constant.     
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Figure 4.3. Photomicrographs of the Testes of Different Age Groups of AGCR with 

Their Capsular Coverings. A. Prepubertal: B. Pubertal: C. Adult: D. Aged:  Note the 

tunica vaginalis (TV) with conspicuous elongated nuclei. TA: Tunica albuginea, FC: 

Fibrocytes, BM: Basement membrane, ST: Seminiferous tubule. Stain: H&E. 
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Figure 4.4. Age-related Changes in the Testicular Capsule Thickness of Different Age 

Groups of AGCR. Bars with different alphabet superscripts (a,b,c) are significantly 

different.  
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Figure 4.5. Age-related Changes in the Percentage Capsular Tunic Thickness of the 

Testes of Different Age Groups of AGCR. Bars bearing dissimilar superscripts 

(a,b,c,d) are significantly different. TA- Tunica albuginea, TV- Tunica vaginalis  
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Figure 4.6. Photomicrographs of the Testicular Capsule of Different Age Groups of 

AGCR with their Capsular Coverings. A. Prepubertal B. Pubertal C. Adult D. Aged. 

Note that the capsules are showing pink-staining smooth muscles (arrow) within the 

blue staining collagen fibres of tunica albuginea (TA); the collagen fibres surround 

the seminiferous tubules (ST). Stain: Masson Trichome; Scale bar: 20µm  
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Figure 4.7. Age-related Changes in the Intensity of Masson Trichome Staining of the 

Testicular Capsule in AGCR. Bars with different alphabet superscripts (a,b,c) are 

significantly different. 
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Figure 4.8. Photomicrographs of the Testicular Capsule of Different Age Groups of 

AGCR with their Capsular Coverings. A. Prepubertal B. Pubertal C. Adult D. Aged. 

Note the demonstration of PAS positive glycogen content in the capsules (star) as 

well as in the seminiferous tubular surroundings (arrow) Stain: PAS; Scale bar: 20µm  
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Figure 4.9. Age-related Changes in Intensity of PAS Staining of the Testicular 

Capsule in AGCR. Bars bearing dissimilar alphabet superscripts (a,b,c) are 

significantly different. 
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Figure 4.10. Photomicrographs of the Testis of Different Age Groups of AGCR. A. 

Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the absence of patent lumen (L) as 

well as the different types of spermatids in A.  PM - Peritubular myoid cell, SG- 

Spermatogonia, S- Sertoli, SC- Spermatocyte, ES- Elongating spermatids, RS- Round 

spermatids, L- Lumen. Stain: H&E; Scale bar: 20µm  
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Figure 4.11. Photomicrograph of the Testis of Pre-pubertal (4-month) Cane Rat.  Note 

the appearace of patent lumen (circle outline) within the seminiferous tubule.  PM - 

Peritubular myoid cell, SG- Spermatogonia, S- Sertoli, SC- Spermatocyte. Stain: 

H&E; Scale bar: 20µm  
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Figure 4.12 A-C. Age-related Changes in the Testicular Parameters of AGCR. A. 

Epithelial height B. Luminal diameter C. Tubular diameter. Bars with different 

alphabet superscripts (a,b,c,d) are significantly different 
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Figure 4.13. Masson’s Trichome Staining of the Testis of Different Age Groups of 

AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the less bluish staining 

collagen fibres (blackarrows) surrounding the seminiferous tubules (ST) in the 

different age-groups. Scale bar: 20µm  
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Figure 4.14. Age-related Changes in Intensity of Masson’s Trichome Staining of the 

Testicular Parenchyma in AGCR.  
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Figure 4.15. PAS Stainings of the Testis of Different Age Groups of AGCR. A. 

Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the demonstration of PAS positive 

areas in the interstitium (oval) as well as in the seminiferous tubular sorrounding 

(arrow). Scale bar: 20µm  
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Figure 4.16. Age-related Changes in Intensity of PAS Staining of The Testicular 

Parenchyma in AGCR. Bars bearing dissimilar alphabet superscripts (a,b,c) are 

significantly different. 
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Figure 4.17. Photomicrographs of the Testicular Interstitum of Different Age Groups 

of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the presence of wide 

non cellular (NC) area within theinterstitium of A.  LC- Leydig cell, F-Fibroblast, bv- 

blood vessel. Stain: Toludine blue; Scale bar: 20µm  
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4.2.4  Changes in the Testicular Ultrastructure with Age Advancement 

Age-related changes were sequentially observed from the wall of the seminiferous 

tubule to the core of the parenchyma as follows:   

4.2.4.1 Peritubular Tissue (Boundary Tissue) 

Testicular boundary tissue component was observed to be similar across the different 

age groups of AGCR investigated (Fig. 4.19). It was made up of the basal lamina, 

additional 4 basal lamina-like structures separated by single layer of myoid cell, 

collagen fibres and microfilament substances. 

4.2.4.2 Sertoli Cell 

The Sertoli cells of the different AGCR groups were seen close to the basement 

membrane and extended towards the tubular lumen (Fig. 4.18). It visibly formed 

junctional complexes around germ cells (Figures. 4.20 and 4.21). Sertoli cell 

contained roundish nucleus in pre-pubertal rat (Fig. 4.21A) while in pubertal onwards 

it was more triangular in shape with conspicuous nuclear cleft evident in the adult 

Sertoli cell (Fig. 4.21C).  

4.2.4.3 Spermatogonia 

Three (3) distinct spermatogonia types; Type A, Intermediate and Type B were 

identified close to the basal lamina from pre-pubertal rat onwards (Fig. 4.22-4.24). 

The nuclear chromatin nature, the presence as well as the location of nucleoli within 

spermatogonia were used to morphologically identify the spermatogonia types. Type 

A spermatogonia in all AGCR groups (Fig. 4.22) was characterized by oval nuclei 

that is devoid of nucleoli, the presence of mitochondria and interdigitations with basal 

lamina in all the groups. However, the nucleus in pre-pubertal was more euchromatic 

than others (Fig. 4.22A). Type B spermatogonia contain centrally positioned nucleoli 

with some degree of nuclear chromatin condensation (Fig. 4.23). Numerous 

mitochondria were seen in the cytoplasm of type B spermatogonia in pre-pubertal rat 

as well as increased nuclear euchromasia when compared to others (Fig. 4.23A). 

Intermediate spermatogonia were identified by the presence of some degree of 

chromatin condensation and with the presence of nucleoli that were almost 

approaching the centre of the nuclei (Fig. 4.24). 
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4.2.4.4 Spermatocyte 

Ultrastucturally, five types of spermatocyte (pre-leptotene, leptotene, zygotene, 

pachytene and diplotene) were recognised within the seminiferous epithelium of the 

different age groups of AGCR (Figs. 4.25-4.29).  The spermatocyte types were 

characterized by progressive increase in nuclear size, synaptonema formation and 

chromatin condensation. Preleptotene in all AGCR was characterized by spherical 

nucleus with granular chromatin and reduced cytoplasmic organelles except for 

prepubertal rat with intense euchromasia and conspicuous presence of many 

mitochondria (Fig. 4.25). Leptotene spermatocyte was observed to have spherical 

nucleus with well defined nuclear membrane and less chromatin condensation in all 

groups except for pre-pubertal rat with a somewhat ellipsoidal nuclear shape, intense 

nuclear euchromasia and numerous tubular mitochondria (Fig. 4.26). Zygotene 

spermatocytes in the different age groups of AGCR was observed to have reduced 

cytoplasm, less prominent synaptonemal complexes, more nuclear heterochromasia 

from pubertal onwards relative to the pre-pubertal rat (Fig. 4.27). There was also 

increased mitochondrial presence in the cytoplasm of zygotene in the pre-pubertal rat 

compared to others (Fig. 4.27A). The pachytene spermatocyte of all AGCR has 

prominent nucleolus, synaptonemal complex and extensive cytoplasm (Fig. 4.28A). 

The pre-pubertal rats have numerous mitochondria in their cytoplasm when compared 

to others (Fig. 4.28A). Diplotene spermatocyte in all AGCR was characterized by 

deep nuclear chromatins which were aggregated to one side of the nucleus and the 

presence of nucleoli (Fig. 4.29). The numerous mitochondria and higher degree of 

nuclear euchromasia consistently seen in the earlier listed spermatocytes of pre-

pubertal were also observed in this spermatocyte (Fig. 4.29A).  

4.2.4.5 Leydig Cell 

With the exception of the scanty nature of the Leydig cells in the interstitium of pre-

pubertal rat, the interstitial spaces in pubertal onwards were filled with Leydig cells 

(Fig. 4.17). It was observed that the Leydig cell was ovoid in outline and showed a 

roundish nucleus which in pre-pubertal contains greater amount of heterochromatin 

relative to other groups (Fig. 4.30A). Also, Leydig cell cytoplasm in pubertal rat 

contained numerous mitochondria, lipid droplets as well as smooth endoplasmic 

reticulum when compared to others (Fig. 4.30B). Numerous stacks of concentric 
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rough endoplasmic reticulum and smooth endoplasmic reticulum were seen in the 

cytoplasm of Leydig cell in adult and aged AGCR (Fig. 4.30Cand D). 

 

 

Figure 4.18. Transmission Electron Micrographs of the Seminiferous Epithelium in 

the Testes of Different Age Groups of African Greater Cane Rat. A. Prepubertal B. 

Pubertal C. Adult D. Aged.  Note the closeness of the Sertoli cell nucleus to the 

semiiferous tubular wall in the different AGCR. SG-Spermatogonia, S-Sertoli cell, 

SC- Spermatocyte, PT- Peritubular tissue. 
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Figure 4.19. Transmission Electron Micrographs of the Testicular Boundary Tissue of 

the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

basal lamina (L) as well as the several layers (1-4) of basal lamina-like structures 

(arrow heads) separated by myoid cells (m), collagen fibrils – C and Microfilament 

(White arrow-head). Mi – Mitochondria.   
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Figure 4.20. Transmission Electron Micrographs of the Basal Aspect of Sertoli Cell of 

the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. rER- 

Rough endoplasmic reticulum, sER- Smooth endoplasmic reticulum, N-Sertoli cell 

nucleaus, Mi- Mitochodria, Ly- Lysosome, Li- Lipid droplet, Jct- Sertoli cell junction, 

m- Myoid cell, PT- Peritubular tissue  
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Figure 4.21. Transmission Electron Micrographs of the Perinuclear Area of Sertoli 

Cell of the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. 

Note the intense nuclear heterochromatin (arrow) in the Sertoli cell nucleus (N) of A. 

No- Nucleolus, Sk- Satellite karyosomes, N-Nucleus, NC-Nuclear cleft, Jct- Sertoli 

cell junction, arrow head- euchromatin  
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Figure 4.22. Transmission Electron Micrographs of the Type A Spermatogonium in 

the Testis of the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. 

Aged. Note the oval nuclei (N) devoid of nucleoli, the presence of mitochondria (Mi) 

and interdigitations (arrow head) with basal lamina (Bl) in all the groups. Also, note 

that the nucleus in A is more euchromatic and numerous mitochondria in the 

cytoplasm. m: Myoid cell.  
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Figure 4.23. Transmission Electron Micrographs of the Type B Spermatogonium in 

the Testis of the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. 

Aged. Note the centrally positioned nucleoli (No), marked euchromatic nucleus 

(white arrow) in A as well as conspicous nuclear heteromasia in B-D (red arrow). m - 

Myoid cell. 
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Figure 4.24. Transmission Electron Micrographs of the Intermediate Spermatogonium 

Type in the Testis of the African Greater Cane Rat. A. Prepubertal B. Pubertal C. 

Adult D. Aged. Note condensed nuclear chromatin (arrow) and nucleoli (No) 

approaching the centre of the nuclei (N). Bl: Basal lamina, m: myoid cell, Mi: 

Mitochondria. Scale bar: 2µm  
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Figure 4.25. Transmission Electron Micrographs of the Preleptotene Spermatocytes of 

the African Greater Cane Rat.  A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

presence fine granular chromatin in the nucleus (N) and clear cytoplasm (Cy) across 

all age groups.  

 

 

 

 

 

 



 
 

Figure 4.26. Transmission Electron Micrographs 

the African Greater Cane Rat

presence of spherical nucleus (N) with 

chromatin (C) condensation in all groups except for

(N) shape of pre-pubertal

Junctional complex.  

 

 

 

 

 

 

99 

Transmission Electron Micrographs of the Leptotene Spermatocytes of 

he African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the

presence of spherical nucleus (N) with well defined nuclear membrane (Nm) and less 

sation in all groups except for the somewhat ellipsoida

pubertal.  Also note the numerous tubular mitochondria in A. JC

 

of the Leptotene Spermatocytes of 

Prepubertal B. Pubertal C. Adult D. Aged. Note the 

nuclear membrane (Nm) and less 

the somewhat ellipsoidal nuclear 

the numerous tubular mitochondria in A. JC- 
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Figure 4.27. Transmission Electron Micrographs of the Zygotene Spermatocytes of 

the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

reduced cytoplasm (Cy) across groups as well as less prominent synaptonemal 

complexes (arrow head). Also, observe the somewhat ellipsoidal nuclear (N) shape of 

pre-pubertal zygotene ccompared to others. 

 

 

 

 

 

 



 
 

Figure 4.28. Transmission Electron Micrographs of the Pachytene

the African Greater Cane Rat

prominent nucleolus (No), synaptonemal complex (arrow head) and extensive 

cytoplasm (Cy).  
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nsmission Electron Micrographs of the Pachytene Spermatocytes of 

he African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

prominent nucleolus (No), synaptonemal complex (arrow head) and extensive 

 

Spermatocytes of 

. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

prominent nucleolus (No), synaptonemal complex (arrow head) and extensive 
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Figure 4.29. Transmission Electron Micrographs of the Diplotene Spermatocytes of 

the African Greater Cane Rat. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the 

aggregation of the deep chromatin (C) towards one side of the nucleus and 

prominence of nucleoli (No). Also, observe the irregular shape of the nucleus (N) in A 

as well as high nuclear heterochromatin.   

 

 

 

 



 
 

Figure 4.30. Transmission E

A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the great amount of 

mitochondria (arrowhead), 

Leydig cell (LC) cytopla

reduced organelles in A compared to others and the numerous stacks of concentric 

rough endoplasmic reticulum (rER) 

LG- Lipofuschin granule. 
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Transmission Electron Micrographs of the Leydig Cells of 

B. Pubertal: C. Adult: D. Aged. Note the great amount of 

mitochondria (arrowhead), lipid droplets (Li), smooth endoplasmic reticulum (sER) in 

Leydig cell (LC) cytoplasm of pubertal AGCR relative to others. Also, observe the 

organelles in A compared to others and the numerous stacks of concentric 

rough endoplasmic reticulum (rER) in the cytoplasm of the adult and aged AGCR LC. 

Lipofuschin granule.  

F 

 

ells of the AGCR.  

B. Pubertal: C. Adult: D. Aged. Note the great amount of 

lipid droplets (Li), smooth endoplasmic reticulum (sER) in 

sm of pubertal AGCR relative to others. Also, observe the 

organelles in A compared to others and the numerous stacks of concentric 

in the cytoplasm of the adult and aged AGCR LC. 
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4.2.5 Histological Changes in the Epididymis of Different Age Groups of the 
African Greater Cane Rat 

Based on some histological characteristics such as connective tissue stroma 

partitioning, luminal diameter and shape as well as the nature of the epithelial lining 

cells, the epididymis in all AGCR groups was made up of four segments of six 

distinct zones; zone I, zone II, zone III (initial segment), zone IV (caput), zone V 

(corpus) and zone VI (cauda) (Figs. 4.31, 4.32 and 4.33). The first (initial) segment 

unlike others is further partitioned by connective tissue septae into three (3) 

histologically distinct sub-segments or regions or zones namely; proximal (zone I), 

middle (zone II) and caudal (zone III) initial segments (Fig. 4.32). The shape of the 

lumen of all the epididymal segments in the pre-pubertal rat was roundish (Figs. 4.34, 

4.39, 4.44, 4.49, 4.55 and 4.64). However, in the pubertal to aged AGCR, the 

proximal to the distal sub-segments of initial epididymal segment had stellate-shaped 

lumens (Figs. 4.34, 4.39 and 4.44), while their caput segment downwards bear 

characteristic round luminal shape (Figs. 4.49, 4.55 and 4.64). With respect to age-

related differences in the nature of the epithelial lining of the epididymal segments, 

pre-pubertal epididymal duct was lined by predominantly simple cuboidal to 

columnar cells (Figs. 4.34A, 4.39A, 4.44A, 4.49A, 4.55A and 4.64A). The epithelial 

lining of the epididymal duct in pubertal onwards was the typical pseudostratified 

ciliated columnar epithelium (Figs. 4.34B-D, 4.39B-D, 4.44B-D, 4.49B-D, 4.55B-D 

and4.64B-D). 

4.2.6 Age-related Changes in theContent of Glycogen and Collagen Fibres in 

the Epididymis of the African Greater Cane Rat 

Positive Masson’s Trichrome-stained areas within the segments of the epididymal 

duct of all AGCR groups were observed as bluish collagen substances in the ductal 

interstices and in the peritubular muscle coats (Figs. 4.35, 4.40, 4.45, 4.50, 4.56 and 

4.65).  With respect to PAS staining of the epididymis, positive areas appeared as 

magenta colour in the epididymal interstitium, lamina propria, peritubular muscle 

coat, perinuclear region of epididymal epithelial cells, ductal stereocilia and luminal 

content especially in the caput, corpus and cauda segments (Figs. 4.37, 4.42, 4.47, 

4.52, 4.58 and 4.67). On the intensity of  MT (Figs. 4.36, 4.41, 4.46, 4.51, 4.57 and 

4.66) and PAS (Figs. 4.38, 4.43, 4.48, 4.53, 4.59 and 4.68) expressions in the 

segments of epididymal duct, significant age-related increase (p<0.05) in values were 
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consistently observed for both stains. Interestingly, strong PAS and MT intensities 

were displayed in virtually all the segments of pubertal and adult epididymis relative 

to other AGCR groups.  

4.2.7 Age-Related Ultrastructural Changes in the Epididymal Architecture of 

the African Greater Cane Rat 

The principal cell of the caput epididymis (Fig. 4.54A) in the prepubertal rat was 

characterized by the presence of numerous mitochondria in the basal and perinuclear 

portions of its cytoplasm when compared to other age groups (Fig. 4.54B-D). 

However, the cytoplasm of principal cells of the adult and aged (Fig. 4.54 C, D) were 

riched in numerous long rough endoplasmic reticulum.    

Regarding the age-related differences in corpus epididymal ultrastructure, the nucleus 

of the principal cell in the corpus epididymis of all AGCR is irregular in shape and 

bears some degree of indentations that appeared to increase with the advancing age of 

AGCR (Figs. 4.60B-D; 4.61B-D and 4.62B-D). In addition, numerous lysosomal 

granules were more evident in the basal and perinuclear aspect of the principal cell of 

aged corpus epididymis (Figs. 4.61D and 4.62D). Prominent apical vacoulations were 

observed in the principal cell of pubertal rats (Figs. 4.63B). 

With respect to age-related changes in caudal epididymal ultrastructure, the principal 

cell in the aged AGCR was observed to bear numerous lysosomal granules as well as 

degenerating mitochondria (Fig 4.69D inset and 4.70D).  In addition, prominent 

principal cell nuclear indentation was noticed in pubertal rat onwards (Figs. 4.69B-D).  
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Figure 4.31. Schematic Representation of the African Greater Cane Rat Epididymis 

Illustrating its Partitioning by Connective Tissue Septae.IS - Initial Segment. 
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Figure 4.32. Photomicrograph of the Subdivisions of the Initial Segment (IS) of the 

Epididymis in Pubertal AGCR.  Note that IS is partitioned by connective tissues 

stroma (dashed lines). PIS – Proximal initial segment, MIS – Middle initial segment, 

DIS – Distal initial segment. Stain: H&E. 
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Figure 4.33. Photomicrograph of the Epididymal Segments in Pubertal AGCR. Note 

the delineation of the caput, corpus and cauda by connective tissues stroma (dashed 

lines). Stain: H&E; Scale bar: 200µm  
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Figure 4.34. Photomicrographs of the Proximal Initial Segment of the Epididymis in 

Different Age Groups of the AGCR. A. Prepubertal: shows conspicuously reduced 

but almost absent stereocilia height (arrow head), round ductal lumen (L) lined by 

simple columnar epithelial cells and more cellular epididymal interstitium (EI) B. 

Pubertal, C. Adult and D. Aged: display stellate-shaped ductal lumen prominently 

lined by pseudostratified columnar epithelium (oval) with prominent stereocilia 

(arrow head) as well as component cell types; basal cells (BC), Principal cells (PC) 

and apical (AC). Stain: H&E; Scale bar: 20µm  

 

 

 



 
 

110 

 

Figure 4.35. Masson’s Trichrome Staining of the Proximal Region of the Initial 

Segment of Epididymis in the Different Age Groups of AGCR. A. Prepubertal: B. 

Pubertal: C. Adult: D. Aged. BC- Basal cells, PC- Principal cells, AC- Apical cells, 

SC- Stereocilia, L-Lumen. Note the blue staining collagen fibres (arrow) in the 

epididymal ductal interstices (EI) together with pink-staining smooth muscles (arrow 

heads) surrounding the epididymal ducts  Scale bar: 20µm  
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Figure 4.36. Age-Related Changes in the Intensity of Masson’sTrichrome Staining of 

the Proximal Initial Segment in the AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.37. PAS Staining of the Proximal Initial Segment of Epididymis in Different 

Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. BC- Basal 

cells, PC- Principal cells, AC- Apical cells, SC- Stereocilia, L-Lumen. Note the PAS-

positive areas in the interstitium (short arrow), lamina propria (arrow head), ductal 

stereocilia (red arrowhead), supranuclear region (long arrow) of the epididymal 

epithelium.  Scale bar: 20µm  
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Figure 4.38. Age- related Changes in the Intensity of PAS Staining of the Proximal 

Initial Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.39. Photomicrographs of the Middle Region of the Initial Segment of 

Epididymis in Different Age Groups of AGCR. A. Prepubertal: shows markedly 

reduced stereocilia height (arrow head), round ductal lumen (L) lined by simple 

columnar epithelium and more cellular epididymal interstitium (EI) B. Pubertal, C. 

Adult and D. Aged: bear stellate-like lumen, duct lined by pseudostratified columnar 

epithelium (oval) with prominent stereocilia (arrow head) as well as the presence of 

basal cells (BC), Principal cells (PC) and moderate increase in apical cells (AC). 

Stain: H&E 
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Figure 4.40. Masson’s Trichrome Staining of the Middle Initial Segment of 

Epididymis in Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: 

D. Aged. BC- Basal cells, PC- Principal cells, AC- Apical cells, SC- Stereocilia, L-

Lumen. Note the blue staining collagen fibres (arrow) in the epididymal ductal 

interstices (EI) together with pink-staining smooth muscles (arrow heads) surrounding 

the epididymal ducts. Scale bar: 20µm. 
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Figure 4.41. Age-Related Changes in Intensity of Masson’sTrichrome Staining of the 

Middle Initial Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.42. PAS Staining of the Middle Region of the Initial Segment of Epididymis 

in Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. 

BC- Basal cells, PC- Principal cells, AC- Apical cells, EI- Epididymal interstitium, 

SC- Stereocilia, L-Lumen. Note the PAS positive areas in the interstitium (short 

arrow), lamina propria (arrow head) and supranuclear region (long arrow) of the 

epididymal epithelium.  Scale bar: 20µm  
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Figure 4.43. Age-related Changes in theIntensity of Periodic Acid Schiff’sStaining of 

the Middle Initial Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.44. Photomicrographs of the Distal Initial Segment of Epididymis in the 

Different Age Groups of AGCR.  A. Prepubertal: shows thickened peritubular 

muscular coat (PMC), reduced stereocilia height (arrow head), round ductal lumen (L) 

lined by simple columnar epithelium and more cellular interstitium B. Pubertal, C. 

Adult and D. Aged: bear stellate-like luminal shape, ducts lined by pseudostratified 

columnar epithelium (oval) with prominent stereocilia (arrow head) as well as the 

presence of basal cells (BC), Principal cells (PC) and markedly increase in apical cells 

(AC).  Stain: H&E; Scale bar: 20µm  
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Figure 4.45. Masson’s Trichrome Staining of the Distal Region of the Initial Segment 

of Epididymis in Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. 

Adult: D. Aged. BC- Basal cells, PC- Principal cells, AC- Apical cellsTI- Tubular 

interstitium, SC- Stereocilia, L-Lumen. Note the blue staining collagen fibres (arrow) 

in the epididymal ductal interstices (EI) together with pink-staining smooth muscles 

(arrow heads) surrounding the epididymal ducts. Scale bar: 20µm 
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Figure 4.46. Age-related Changes in the Intensity of Masson’sTrichrome Staining of 

the Distal Initial Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.47. PAS Staining of the Distal Initial Segment of the Epididymis in the 

Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. BC- 

Basal cells, PC- Principal cells, AC- Apical cells, SC- Stereocilia, EI – Epididymal 

duct interstices and L- Lumen. Note the PAS positive areas in the interstitium (short 

arrow), lamina propria (arrow head) and supranuclear region (long arrow) of the 

epididymal epithelium.  Scale bar: 20µm 
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Figure 4.48.  Age-related Changes in the Intensity of PAS Staining of the Distal Initial 

Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 

 

 

 

 

 

 



 
 

 

 

Figure 4.49. Photomicrographs of the Caput Segment of Epididymis i

Age Groups of AGCR. A. 

muscular coat (PMC), reduced stereocilia height (arrow head), roundish ductal 

luminal (L) shape lined by simple cuboidal to columnar epithelial lining. B. 

C. Adult and D. Aged: bear stellate to roundish l

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and more apical cells 

(AC).  Stain: H&E; Scale bar: 20µm 
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Photomicrographs of the Caput Segment of Epididymis in 

of AGCR. A. Prepubertal: displays markedly thickened peritubular 

muscular coat (PMC), reduced stereocilia height (arrow head), roundish ductal 

luminal (L) shape lined by simple cuboidal to columnar epithelial lining. B. 

: bear stellate to roundish like luminal shape, ducts lined by  

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and more apical cells 

(AC).  Stain: H&E; Scale bar: 20µm  

 

n the Different 

: displays markedly thickened peritubular 

muscular coat (PMC), reduced stereocilia height (arrow head), roundish ductal 

luminal (L) shape lined by simple cuboidal to columnar epithelial lining. B. Pubertal, 

ike luminal shape, ducts lined by  

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and more apical cells 
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Figure 4.50. Masson’s Trichome Stainingof the Caput Segment of Epididymis in 

Different Age Groups of AGCR . A. Prepubertal: B. Pubertal: C. Adult: D. Aged. BC- 

Basal cells, PC- Principal cells, AC- Apical cells EI- Epididymal interstitium, SC- 

Stereocilia, L-Lumen. Note the blue staining collagen fibres (arrow) in the epididymal 

ductal interstices (EI) together with pink-staining smooth muscles (arrow heads) 

surrounding the epididymal ducts. Scale bar: 20µm 
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Figure 4.51. Age-related Changes in the Intensity of Masson’sTrichrome Staining of 

the Caput Segment in AGCR.  
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Figure 4.52. PAS Staining of the Caput Segment of Epididymis in the Different Age-

Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. BC- Basal cells, 

PC- Principal cells, AC- Apical cells, EI- Epididymal interstitium, SC- Stereocilia, L-

Lumen. Note the PAS positive areas in the interstitium (short arrow), lamina propria 

(arrow head), ductal stereocilia (red arrow head) epithelial perinuclear region (long 

arrow) and luminal spermatozoa. Scale bar: 20µm 
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Figure 4.53. Age-related Changes in the Intensity of PAS Staining of the Caput 

Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.54. Transmission Electron Micrographs of the Basal Aspect of Caput 

Epididymis of the African Greater Cane Rat. A. Prepubertal: B. Pubertal: C. Adult: D. 

Aged. Note the presence of numerous mitochondria (Mi) in the basal part of A and B 

as well as abundant long rough endoplasmic reticulum (rER) in C and D. BC- Basal 

cell, PC- Principal cell, CC- Clear cell, AC- Apical cell, JC- Junctional complex, Li-

Lipid, GC-Golgi complex. Scale bar: main (2µm), inset (1µm).  

 

 

 

 



 
 

Figure 4.55. Photomicrographs 

Age-groups of AGCR.  

head) and roundish ductal luminal (L) shape lined by simple cuboidal to columnar 

epithelial cells. B. Pubertal,

glands, round ductal lumen shape containing spe

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and reduced apical 

cells (AC). EI- Epididymal interstitium, bv

20µm 
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. Photomicrographs of the Corpus Segment of Epididymis in 

 A. Prepubertal: displays reduced stereocilia height (arrow 

head) and roundish ductal luminal (L) shape lined by simple cuboidal to columnar 

Pubertal, C. Adult and D. Aged: bear numerous intraepithelial 

glands, round ductal lumen shape containing spermatozoa, ducts lined by  

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and reduced apical 

Epididymal interstitium, bv- blood vessel. Stain: H&E; Scale bar: 

 

n the Different 

: displays reduced stereocilia height (arrow 

head) and roundish ductal luminal (L) shape lined by simple cuboidal to columnar 

: bear numerous intraepithelial 

rmatozoa, ducts lined by  

pseudostratified columnar epithelium (oval) with prominent stereocilia (arrow head) 

as well as the presence of basal cells (BC), Principal cells (PC) and reduced apical 

ain: H&E; Scale bar: 
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Figure 4.56. Masson’s Trichrome Staining of the Corpus Segment of Epididymis in 

the Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. 

BC- Basal cells, PC- Principal cells, AC- Apical cells EI- Epididymal interstitium, 

SC- Stereocilia, L-Lumen. Note the blue staining collagen fibres (arrow) in the 

epididymal ductal interstices (EI) together with pink-staining smooth muscles (arrow 

heads) surrounding the epididymal ducts. Scale bar: 20µm 
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Figure 4.57. Age-related Changes in the Intensity of Masson’s Trichrome Staining of 

the Corpus Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.58. PAS Staining of the Corpus Segment of Epididymis in the Different Age 

Groups of the AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the PAS 

positive areas in the interstitium (short arrow), lamina propria (arrow head), epithelial 

perinuclear region (long arrow), ductal stereocilia (red arrow head) and luminal 

spermatozoa (LS) in B, C and D. Also observed the PAS positive areas within 

prepubertal epididymal duct [stereocilia (red arrow head)] as revealed by the insert 

from the black rectangular area. BC- Basal cells, PC- Principal cells, AC- Apical 

cells, EI- Epididymal interstitium, L-Lumen. Scale bar: 20µm  
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Figure 4.59. Age-related Changes in the Intensity of PAS Staining of the Corpus 

Segment in AGCR.  

Bars with different alphabets are significantly different (p<0.05) 

 

 

 



 
 

Figure 4.60. Transmission 

Greater Cane Rat. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the

shaped nucleus bearing some indentations in

AC- Apical cell, PMC-Peritubular muscle coat, Ly 
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. Transmission Electron Micrographs of the Corpus Epididymis

. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the

shaped nucleus bearing some indentations in the principal cell (PC). BC

Peritubular muscle coat, Ly -Lysosome. Scale bar: 10µm

 

he Corpus Epididymis of African 

. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note the irregularly 

principal cell (PC). BC-Basal cell, 

Lysosome. Scale bar: 10µm. 
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Figure 4.61. Transmission Electron Micrographs of the Basal Aspect of the Corpus 

Epididymis of African Greater Cane Rat. A. Prepubertal: B. Pubertal: C. Adult: D. 

Aged. Note numerous lysosomal granules (Ly) in the aged corpus epididymis. The 

irregular shaped nuclei bearing some indentations that appear to increase with 

advancing age. BC-Basal cell, PC- Principal cell, SMC- Smooth muscle cell, Li- 

Lipofuschin granules, GC-Golgi complex, Mvb –Multi-vesicular bodies, ER-

Endoplasmic reticulum, V-Vacoules.  
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Figure 4.62. Transmission Electron Micrographs of Perinuclear Aspect of the Corpus 

Epididymis Principal Cell of African Greater Cane Rat. A. Prepubertal: B. Pubertal: 

C. Adult: D. Aged. Note the irregularly shaped nuclei and their indentations that 

appear to increase with age as well as the prominent increase in lysosomal granules in 

the principal cell cytoplasm of D. PC- Principal cell, Ly- Lysosome, GC-Golgi 

complex, Mvb –Multi-vesicular bodies, ER-Endoplasmic reticulum, V-Vacoules. 

Scale bar: 5µm 
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Figure 4.63. Transmission Electron Micrographs of the Supranuclear Aspect of the 

Corpus Epididymis Principal Cell in the African Greater Cane Rat. A. Prepubertal: B. 

Pubertal: C. Adult: D. Aged. Note the conspicuous apical vacoulations (V) especially 

in the pubertal rats.  Also observe the numerous lysosomal granules in the apical 

region of A. Ly- Lysosomal granules, JC-Junctional complex, Mvb –Multi-vesicular 

bodies, V-Vacoules, ST-Stereocilia, C-Ciliated cell.  
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Figure 4.64. Photomicrographs of the Cauda Segment of Epididymis in Different Age 

Groups of AGCR. A. Prepubertal: displays markedly thickened peritubular muscular 

coat (PMC), reduced stereocilia height (arrow head), almost roundish ductal luminal 

(L) shape and copius epithelial fold (EF). B. Pubertal, C. Adult and D. Aged: bear 

numerous intraepithelial glands, large roughly round ductal lumen shape containing 

spermatozoa (S), ductal lining bears a markedly reduced pseudostratified columnar 

epithelium (oval) with prominent stereocilia (arrow head) as well as the dominating 

population of basal cells (BC) and Principal cells (PC). EI- Epididymal interstitium, 

bv- blood vessel. Stain: H&E; Scale bar: 20µm. 
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Figure 4.65. Masson’s Trichrome Staining of the Caudal Segment of Epididymis in 

the Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. 

BC- Basal cells, PC- Principal cells, AC- Apical cells EI- Epididymal interstitium, 

SC- Stereocilia, L-Lumen. Note the blue staining collagen fibres  (arrow) in the 

epididymal ductal interstices (EI) together with pink-staining smooth muscles (arrow 

heads) surrounding the  epididymal ducts in inset A and in other groups.Scale bar: 

Main 20 µm; inset 10µm 
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Figure 4.66. Age-related Changes in the Intensity of Masson’sTrichrome Staining in 

the Cauda Segment of the AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.67. PAS Staining of the Caudal Segment of Epididymis in the Different Age-

Groups of the AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. BC- Basal 

cells, PC- Principal cells, AC- Apical cells, EI- Epididymal interstitium, SC- 

Stereocilia, L-Lumen. Note the PAS positive areas in the interstitium (short arrow), 

lamina propria (arrow head), epithelial supranuclear region (long arrow) and lumina 

(L) spermatozoa. Scale bar: 20µm 
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Figure 4.68. Age-related Changes in the Intensity of PAS Staining in the Cauda 

Epididymal Segment of AGCR.  

Bars with different alphabets are significantly different (p<0.05) 
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Figure 4.69. Transmission Electron Micrographs of the Perinuclear Aspect of the 

Cauda Epididymis Principal Cells in the African Greater Cane Rat. A. Prepubertal: B. 

Pubertal: C. Adult: D. Aged. Note the conspicuous interdigitation of junctional 

complex (JC)  between principal cells (PC) in A, numerous lysosomal granules and 

degenerating mitochondria (inset arrow) especially in aged AGCR and prominent 

nuclear lobulations of PC in B, C and D. Ly- Lysosome, Li- Lipid, V- Vacoules, JC- 

Junctional complex, Mi- Mitochondria.  Scale bar; Main (1μm) and Inset (0.5 μm). 
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Figure 4.70. Transmission Electron Micrographs of the Supranuclear Aspect of the 

Cauda Epididymal Principal Cell of Cane Rat.  Note the degenerating 

mitochondria(Mi) within the apical PC of aged AGCR. Ly- Lysosomal granules, JC-

Junctional complex, Mvb –Multi-vesicular bodies, V-Vacoules, ST-Stereocilia, L-

Lumen.  
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4.2.8 Age- related Changes in the Histomorphometric Parameters of the 
Epididymis of the African Greater Cane Rat 

4.2.8.1 Ductal Diameter (DD) 

The DD was smallest in all the segments of epididymis in the prepubertal AGCR 

relative to others. The various segments of the epididymal duct show a significant 

increase in DD from prepubertal to aged AGCR.  The comparison along the rest of the 

epididymal duct of each AGCR group showed a significant (p<0.05) cranio-caudal 

increase in the DD with the highest in the caudal segments (Table 4.2A). 

4.2.8.2 Ductal Luminal Diameter (DLD) 

The ductal luminal diameter was significantly low (p<0.05) in the prepubertal relative 

to other AGCR groups. Also, the DLD of the entire epididymal segment was 

significantly higher (p<0.05) in the aged AGCR compared to others. The DLD of  the 

epididymal duct in all age groups shows a significant increase (p<0.05) with 

advancing age. On the difference along the epididymal duct within each group, a 

significant cranio-caudal increase (p<0.05) in luminal diameter more particularly in 

the caudal segment of all groups was observed (Table 4.2B).  

4.2.8.3 Ductal Epithelial Height (DEH) 

The ductal epithelial height of the prepubertal AGCR was significantly low(p<0.05) 

when compared to other groups.  The DEH in nearly all the epididymal 

segments(initial, middle and distal segments) were not significantly different (p>0.05) 

from pubertal to aged, though a markedly reduced DEH was noticed in the caudal 

segment of the aged AGCR. On comparison along epididymal duct, a progressive 

significant cranio-caudal decrease in DEH was seen in this study (Table 4.2C). 

4.2.8.4 Ductal Stereocilia Height (DSH) 

The ductal stereocilia height of the prepubertal epididymis was significantly low 

(p<0.05) relative to other groups. The DSH values from the pubertal to aged AGCR 

were not significantly different (p>0.05), though; an insignificant decrease DSH was 

exclusively found in the epididymal segments of aged AGCR. With respect to 

variation along the segments of epididymal duct of each AGCR group, a cranio-

caudal decrease in the trend of DSH values was noted. Also, the initial segments of 

each group bear significantly higher (p<0.05) stereocilia and a simultaneous 



 
 

147 
 

significantly lower (p<0.05) DSH values in the caudal segment of the epididymis 

(Table 4.2D).  

4.2.8.5 Periductal Muscle Coat Thickness (PMCT) 

The periductal muscle coat thickness was significantly increased (p<0.05) in the adult 

AGCR compared to other groups. The PMCT appear to increase significantly 

(p<0.05) with age. Regarding the differences along the epididymal duct, a fairly 

progressive increase PMCT was noticed with a consistently significant higher 

(p<0.05) values obtained in the caudal epididymal segment of all AGCR groups 

(Table 4.2E). 

 



 
 

148 
 

Table 4.2A. Age-related Changes in the Epididymal Ductal Diameter of the African Greater 

Cane Rat 

Parameter AGCR  

group 

Pro.  

 Ini. Seg 

Middle 

Ini. Seg 

Distal 

Ini. Seg 

Caput Corpus 

Ductal 

Diameter (µm) 

Prepub. 166.9 ± 8.89a 151.2 ± 6.98a 168.4 ± 15.51a 106.5 ± 5.47a## 167.6 ± 11.91

Pub. 329.5 ± 16.42b## 250.5 ± 6.65b 257.5 ± 8.58b 282.1 ± 11.06b 252.3 ± 7.60

Adult 309.0 ± 18.50b## 274.8 ± 7.64b 289.7 ± 16.86b 270.5 ± 13.70b 272.2 ± 16.28

Age 329.0 ± 8.78b 295.8 ± 9.87b 305.7 ± 12.13b 370.8± 10.49b 308.8 ± 12.30

 

- Values with the different alphabet superscripts (a,b,c,d) within the column are significantly 

different 

- Values with different number of harsh tag (#) in the same row are significantly different 

Pro. Ini. Seg - Proximal initial segment, Prepub - Prepubertal, Pub - Pubertal 
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Table 4.2B. Age-related Changes in the Epididymal Luminal Diameter of the African Greater 

Cane Rat. 

Parameter AGCR  

group 

Pro.  

 Ini. Seg 

Middle 

Ini. Seg 

Distal 

Ini. Seg 

Caput Corpus 

       
Luminal 

Diameter (µm) 

Prepub. 75.27 ± 6.73 a### 60.14 ± 3.99a 53.32 ± 3.08a 49.95 ± 4.39a 112.3 ± 8.80

Pub. 133.5 ± 10.57b### 118.6 ± 5.38b 110.4 ± 6.35b 171.8 ± 9.36b## 158.9 ± 9.44

Adult 187.8 ± 12.77c## 117.4 ± 7.15b 107.5 ± 8.25b 161.9 ± 10.64b## 183.2 ± 7.56

Age 213.7 ± 9.53c 190.6 ± 13.89c 190.2 ±8.82c 219.9 ± 16.20c 208.8 ± 10.52

 

- Values with the different alphabet superscripts (a,b,c,d) within the column are significantly 

different 

- Values with different number of harsh tag (#) in the same row are significantly different 

Pro. Ini. Seg - Proximal initial segment, Prepub - Prepubertal, Pub - Pubertal 
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Table 4.2C. Age-related Changes in the Epididymal Ductal Epithelial Height of the African 

Greater Cane Rat. 

Parameter AGCR  

group 

Pro.  

 Ini. Seg 

Middle 

Ini. Seg 

Distal 

Ini. Seg 

Caput Corpus 

       
Epithelial 

Height  (µm) 

Prepub. 41.74 ± 1.90a# 47.32 ± 2.21a# 47.80 ± 0.95a# 33.33 ± 1.65a## 39.23± 2.42

Pub. 65.43 ± 2.41b## 76.54 ± 2.35b# 73.41 ± 4.11b# 61.58± 2.37b## 55.95± 2.53

Adult 85.75 ± 3.39c# 86.43 ± 4.37b# 77.86 ± 2.55b# 66.61 ± 3.09b## 51.10 ± 1.64

Age 90.77 ± 4.06c# 64.50 ± 1.75c## 72.47 ± 5.01b## 70.24 ± 2.93b## 50.61 ± 2.52

 

- Values with the different alphabet superscripts (a,b,c,d) within the column are significantly 

different 

- Values with different number of harsh tag (#) in the same row are significantly different 

Pro. Ini. Seg - Proximal initial segment, Prepub - Prepubertal, Pub - Pubertal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

151 
 

Table 4.2D. Age-related Changes in the Epididymal Stereocilia Height of the African Greater 

Cane Rat. 

Parameter AGCR  

group 

Pro.  

 Ini. Seg 

Middle 

Ini. Seg 

Distal 

Ini. Seg 

Caput Corpus 

       Stereocilia 

Height  (µm) 

Prepub. 3.96 ± 0.24
a#

 2.76 ± 0.09
a
 2.59 ± 0.12

a
 2.44 ± 0.10

a
 2.53 ±  0.23

Pub. 8.51 ± 0.45
c##

 10.51 ± 0.47
c#

 8.71 ± 0.24
b##

 7.62 ± 0.30
b##

 7.94 ± 0.31

Adult 8.73 ± 0.49
c#

 7.74 ± 0.19
b##

 7.62 ± 0.24
b##

 6.47 ± 0.14
b##

 7.24 ± 0.14

Aged 6.95 ± 0.25
b#

 7.45 ± 0.38
b#

 6.99 ± 0.36
b#

 6.21 ± 0.29
b#

 5.79 ± 0.34

 

- Values with the different alphabet superscripts (a,b,c,d) within the column are significantly 

different 

- Values with different number of harsh tag (#) in the same row are significantly different 

Pro. Ini. Seg - Proximal initial segment, Prepub - Prepubertal, Pub - Pubertal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

152 
 

Table 4.2E.Age-related Changes in the Epididymal Perimuscular Coat Thickness of the 

African Greater Cane Rat. 

Parameter AGCR  

group 

Pro.  

 Ini. Seg 

Middle 

Ini. Seg 

Distal 

Ini. Seg 

Caput Corpus 

       
Perimuscular 

Coat 

Thickness       

(µm) 

Prepub. 13.25 ±  0.90
a####

 16.17 ±  1.21
b###

 10.54 ± 0.65
a####

 23.3 ± 2.40
d##

 21.12 ± 1.40

Pub. 14.74 ±  0.80
a
 17.93 ± 1.01

b
 13.2 ±  0.75

b
 11.36 ± 0.91

b
 16.87 ± 1.60

Adult 20.00 ±  0.90
c
 21.03 ± 1.90

c
 17.1 ± 1.40

c
 14.28 ±  1.30

c
 15.9 ±  1.40

Aged 17.22 ±  1.70
b##

 12.4 ± 0.91
a##

 16.1 ± 1.90
c##

 8.97 ± 0.44
a###

 14.17 ± 0.88

 

- Values with the different alphabet superscripts (a,b,c,d) within the column are significantly 

different 

- Values with different number of harsh tag (#) in the same row are significantly different 

Pro. Ini. Seg - Proximal initial segment, Prepub - Prepubertal, Pub - Pubertal 
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4.3 EXPERIMENT THREE 

4.3.1 Age-related Changes in the Sperm Parameters of the Testis and Epididymis of 

the African Greater Cane Rat 

4.3.2 Spermatozoa Morphological Characteristics 

The spermatozoa heads of the African greater cane rat were typically flat and ovoid in shape 

with indistinct neck (Figure 4.71B-D). The acrosomal head of sperms in all AGCR bear no 

evidence of hook (Figure 4.71B-D). There was no age-related difference in the division of the 

spermatozoa tail of AGCR which was characteristically made up of three distinct segments, 

namely; the midpiece, principal piece and endpiece. The base of the head continued with the 

midpiece, the first segment of the tail (Figure 4.71B-D insets). 

In addition, the percentage of the different types of abnormal sperm cells in both testis and 

epididymis were not significantly different (p>0.05) in pubertal to aged AGCR (Table 4.5). 

Across all age groups, curved and bent midpieces as well as curved and bent tail defects 

appeared to be present in greater amount relative to other types of abnormalities. It was also 

evident that roughly 85% of the spermatozoa of the pubertal, adult and aged AGCR displayed 

the normal morphology outlined in the inserts of Figure 4.71B-D.  

4.3.3 Sperm Morphometrics 

There was no significant difference (p>0.05) in the morphometric parameters in all the 

different age groups of AGCR (Table 4.3), although, the parameters tended to increase with 

advancement in age. The mean lengths of the spermatozoa in the different age groups of 

AGCR were 55.92 ± 1.39 μm, 57.06  ± 0.95 μm, and 58.41  ± 0.67 μm respectively for 

pubertal, adult and aged. The tail lengths were 45.22 ± 1.14 μm, 46.16 ± 0.84 μm and 48.47 ± 

1.08 μm respectively for pubertal, adult and aged. The mean sperm head lengths were 9.52 ± 

0.44 μm,10.26 ± 0.45 μm and 10.46 ± 0.50 μm respectively for pubertal, adult and aged, 

while; the mean sperm widths or diameters include 5.04 ± 0.23 μm, 5.18 ± 0.18 μm and 5.63 

± 0.19 μm in pubertal, adult and aged accordingly. Both the spermatozoa mean length and 

width linear measurements were comparatively shorter when compared to their tail 

counterpart and also increased insignificantly with age.  
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4.3.4 Sperm Motility 

Testicular spermatozoa were observed to be immotile in all the age group of AGCR. There 

was consistent significant increase (p<0.05) in the epididymal sperm motility of the pubertal 

and adult AGCR relative to the aged (Table 4.4). The sperm motility profile displayed in the 

epididymis appeared to increase with age increment. Motility values in the caudal epididymal 

segment of all age groups were markedly higher relative to other segments and were more 

remarkably elevated in the cauda epididymis of adult cane rats.   

4.3.5 Testicular and Epididymal Sperm Count 

Similarly, sperm count as shown in Table 4.4 followed similar pattern described for motility. 

Though, testicular sperm count (TSC) was significantly reduced (p<0.05) in the aged AGCR 

relative to other groups, the TSC values were not significantly different (p>0.05) in adult and 

pubertal AGCR. In the caput and corpus epididymal segments, sperm count values were not 

significantly different (p>0.05) in pubertal to aged AGCR, while in the caudal segment, 

spermatozoa counts of aged cane rats were significantly lowered (p<0.05) relative to the 

spermatozoa counts in pubertal and adult rats. 

4.3.6 Sperm Livability (Live-Dead) Ratio 

With respect to sperm livability, there was no significant difference (p>0.05) among the age 

groups (Table 4.4). 
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Figure 4.71. Photomicrographs of the Caudal Epididymal Spermatozoa of the African Greater 

Cane Rat. A. Pre-pubertal B. Pubertal C. Adult D. Aged. Note the absence of spermatozoa in 

A as well as absence of hook in the spermatozoa head of B-D. A-Acrosome, N- Nucleus, Mp- 

Mid piece, Pp- Principal piece, Ep-End piece. Stain: Nigrosin-eosin. 
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Table 4.3.  Age-related Changes in Sperm Morphometrics of The African Greater Cane Rat. 

  

      SHL  

SPERM  MORPHOMETRICS 

           SHD MPL  

(μm) 

           STL 

 

        SWL  

Pre-

pubertal 

- - - - - 

Pubertal   9.52 ± 0.40 5.04  ±  0.23 12.82 ± 0.33 45.22 ± 1.14 55.92 ± 1.39 

Adult 10.26 ±0.45 5.18  ±  0.18 13.21 ± 0.27 46.16 ± 0.84 57.06 ± 0.95 

Aged 10.46 ± 0.50 5.63  ± 0.19 13.86 ± 0.35 48.47 ± 1.08 58.41 ± 0.67 

P-values 0.5020 0.0580 0.6180 0.2530 0.4070 

SHL- Sperm head length, SHD- Sperm head diameter,  MPL- Mid-piece length, STL-Sperm 

tail length, SWL-Sperm whole length 
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                 Table 4.4. Age-related Changes in the Testicular and Epididymal Sperm 

Parameters of the African Greater Cane Rat. 

SPERM MOTILITY (%) 

ORGAN PRE-

PUBERTAL 

PUBERTAL ADULT AGED 

TESTES - Nm Nm Nm 

CAPUT - 

55.00  ± 5.00a 

65.00  ±  

0.89a 

37.50  ± 

2.50b 

CORPUS - 

60.00  ± 7.07a 

65.00  ±  

2.89a 

37.50  ± 

4.79b 

CAUDA - 

62.50  ±  4.79a 

80.00  ± 

4.08b 

55.00  ± 

5.00a 

                                                                   SPERM COUNT (X106 ml)  

TESTES - 

37.25  ±  2.49a 

37.75  ±  

2.02a 

28.50  ±  

1.04b 

CAPUT - 

43.25  ±  0.85 

44.25  ± 

1.11 

42.50  ± 

1.04 

CORPUS - 

48.00  ±  1.08 

50.00  ± 

0.71 

46.50  ±  

0.96 

CAUDA - 

101.5  ±  7.96a 

135.3  ± 

6.42b 

91.25  ±  

2.56c 

     LIVE DEAD RATIO 

TESTES - 

92.75  ± 1.03 

94.25  ± 

0.85 

96.75 ± 

0.75 

CAPUT - 

97.25 ± 0.75 

98.00  ± 

0.25 

96.25 ± 

063 

CORPUS - 

97.25 ± 0.75 

98.00  ± 

0.00 

96.00 ± 

0.71 

CAUDA - 

97.50 ± 0.50 

97.25  ±  

0.75 

97.30 ± 

0.7500 

     Values with different superscript are significantly different (p<0.05). Nm- Not 

motile 
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Table 4.5. Age-related changes in the morphological characteristics of the spermatozoa 
African greater cane rat 

 PERCENTAGE ABNORMAL CELL 
                              HEAD                                  MID-PIECE                                                         TAIL  

ORG GRP % TH %HT %CMP %BMP %CT %RT %BT % LT % TAC 

 
 
TES 

Pre - - - - - - - - - 

Pub 1.35 ± 0.11 1.03± 0.09 3.21 ± 0.16 2.55 ± 0.14 2.54 ± 0.06  0.43 ± 0.13 2.71  ± 0.24 0.41±0.13 14.42± 0.76

Adult 1.43 ± 0.06 1.12± 0.12 2.74 ± 0.10 2.49 ± 0.14 2.68 ± 0.06 0.50 ± 0.10 2.68  ± 0.16 0.38± 0.07 14.02 ±0.44

Aged 1.48 ± 0.17 1.07± 0.16 2.97 ± 0.24 2.84 ± 0.23 2.75 ± 0.15 0.67 ± 0.08 3.00  ± 0.14 0.33±0.05 15.11±0.97

p value 0.7673 0.8877 0.2318 0.3765 0.3753 0.3054 0.3054 0.8368 0.6088

 
 
CAP 

Pre - - - - - - - - - 

Pub 1.48± 0.10 1.30± 0.08 3.06 ± 0.20 2.62 ± 0.13 2.38 ± 0.47 0.79 ± 0.03 2.79 ± 0.03 0.70 ± 0.08 15.86±0.32

Adult 1.35± 0.12 1.23 ± 0.19  2.85 ± 0.24 2.46 ± 0.15 2.58 ± 0.19 0.53 ± 0.12 2.45 ± 0.16 0.57± 0.06  14.03± 1.00

Aged 1.41±0.06 1.08 ± 0.06 2.57 ± 0.06 2.30 ± 0.04 2.39 ± 0.12 0.68 ± 0.06 2.86 ± 0.06 1.40 ± 0.87 13.60± 0.32

p value 0.6627 0.4935 0.2372 0.2041 0.5786 0.1286 0.347 0.4894 0.0734

 
 
COR 

Pre - - - - - - - - - 

Pub 1.15± 0.08 1.49 ± 0.10 2.45 ± 0.04 2.56 ± 0.11 3.21 ± 0.19 0.53 ± 0.02 2.65 ± 0.08 0.45 ± 0.07 14.21 ±0.33

Adult 1.12± 0.13 1.09 ± 0.18 2.43 ± 0.08 2.49 ± 0.05 2.75 ± 0.21 0.64 ± 0.07 2.75 ± 0.14 0.51 ± 0.14 13.69 ±0.39

Aged 1.47±  0.04 1.15 ± 0.09 2.73 ± 0.10 2.45 ± 0.06 2.65 ± 0.13 0.68 ± 0.06 2.89 ± 0.29 0.53 ± 0.12  14.55± 0.36

p value 0.1101 0.1197 0.0682 0.5857 0.1135 0.2055 0.6849 0.8840 0.2849

 
 
CAU 

Pre - - - - - - - - - 

Pub 1.25±0.10 1.05 ± 0.12 2.48 ± 0.17 2.88 ± 0.15 2.29 ± 0.25 0.64 ± 0.06 2.46 ± 0.26 0.58 ± 0.11 13.90 ±0.88

Adult 1.32±0.06 1.14 ± 0.18 2.52 ± 0.07  2.39 ± 0.18 2.52 ± 0.14 0.82 ± 0.06 2.39 ± 0.11 0.32 ± 0.07 13.41 ± 0.46

Aged 1.09±0.11 1.23 ± 0.07 2.16 ± 0.16 2.62 ± 0.13 2.37 ± 0.12 0.81 ± 0.11 2.68 ± 0.35 0.58 ± 0.16 13.53 ± 0.94

p value 0.0733 0.6878 0.1913 0.1406 0.6695 0.2732 0.7212 0.2564 0.9026

Values with different superscript are significantly different 

TH – Tailless head, HT- Headless tail, RT- Rudimentary tail, BT- Bent tail, CT- Curved tail, 

CMP- Curved midpiece, BMP- Bent midpiece, LT- Looped tail, TAC- Total abnormal cell, 

TNC- Total normal cell, TES- Testis, CAP- Caput, COR- Corpus, CAU- Cauda, Pre- 

Prepubertal, Pub- Pubertal
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4.4 EXPERIMENT FOUR 

4.4.1 Age-related Changes in the Immunohistochemical Expressions of Structural  

Protein (Vimentin), Nerves (Neurofilament) and Glial Cells (Glial fibrillary acid 

protein) in the Testis and Epididymis as well as Histochemical Demonstrations of 

Nerves and Glial Cells Using Golgi-silver Technique 

4.4.1.1 Immunohistochemical Expressions of Structural Proteins (Vimentin) in the 

Testis and Epididymis 

Vimentin-positive areas in the testes of all AGCR groups as shown in Fig. 4.72 include the 

Sertoli cell especially the perinuclear region with intense staining situated along the base with 

strands of vimentin projecting to the tips of elongated spermatids as well as the testicular 

interstitium. However, in the various segments of the epididymal duct (Figs. 4.74-4.79), 

vimentin positive areas consisted of peritubular coat and interstitium (stroma and perivascular 

components). With respect to testicular vimentin staining intensity across the different groups 

of AGCR, significantly higher (p<0.05) intensity was displayed by the adult group relative to 

others and the intensity appeared to increase with age (Fig. 4.73). Conversely, vimentin 

expression intensities along the epididymal duct (initial segments, caput, corpus and cauda 

segments) in the different age-groups of the AGCR decreased with age with consistently 

strong intensity observed in the prepubertal AGCR when compared to others (Fig. 4.80 A-F).  

With the exception of the negative reaction observed in the prepubertal testis as well as in the 

seminiferous interstitium of all age group of AGCR, Sertoli cell nuclei and cytoplasm of 

pubertal onwards were positive to S-100 staining (Fig. 4.81). In addition, conspicuous S-100 

positive areas were exclusively evident in the perimuscular coats and perivascular tissue of 

the interstitium of the proximal and distal initial segments, corpus and cauda segments of the 

epididymal duct in the different age groups of AGCR (Figs. 4.83, 4.85, 4.87 and 4.88). On 

the intensity of S-100 in the testicular parenchyma of different ACGR, significantly higher 

(p<0.05) intensity was seen in the aged AGCR relative to others and the intensity increases 

with age (Fig. 87). S-100 intensity in the proximal initial segment was significantly higher in 

the aged AGCR compared to the adult rat (Fig. 4.89A).  Also, the intensities of the positive 

areas within the distal initial segment, corpus and cauda showed consistently significant 

increased values in pubertal rat when compared to others (Fig. 4.89 C, E and F). 
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Figure 4.72. Photomicrographs of Vimentin Expression in the Testis of Different Age Groups 

of the AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note that the vimentin staining 

(arrows) is expressed in the Sertoli cell with intense staining locatedin perinuclear areas of 

Sertoli cell and along the base with strands of vimentin reaching out to the tips of elongated 

spermatids in B, C and D. Scale bar: 20µm 
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Figure 4.73. Age-related Changes in the Intensity of Vimentin Expression in the Testicular 

Parenchyma of the AGCR. Bars bearing dissimilar alphabet superscripts (a,b, c) are 

significantly different. 
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Figure 4.74. Photomicrographs of Vimentin Expression in the Proximal Initial Segment (PIS) 

of the Epididymis in the AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note that 

the Vimentin staining (arrows) is expressed in the epididymal perimuscular coat (black 

arrow), peribasal cell region (arrow head) and interstitial vasculature(star). Intensity appears 

more in the pre-pubertal group. 

 

 

 

 

 



 
 

Figure 4.75. Photomicrographs of 

of the Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peri

cell region (arrow head) and interstitial vasculature (star). 

pubertal group. 
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. Photomicrographs of Vimentin Expression in the Middle Initial Segment

pididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peri

cell region (arrow head) and interstitial vasculature (star). Intensity appears more in the pre

 

Initial Segment(MIS) 

pididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peribasal 

Intensity appears more in the pre-



 
 

Figure 4.76. Photomicrographs of 

the Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peribasal 

cell region (arrow head) and interstitial vasculature (star). 

pubertal group. 

 

 

 

 

 

 

 

 

164 

. Photomicrographs of Vimentin Expression in the Distal Initial Segment 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peribasal 

cell region (arrow head) and interstitial vasculature (star). Intensity appears more in the p

 

he Distal Initial Segment (DIS) of 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note that the 

Vimentin staining is expressed in the epididymal perimuscular coat (black arrow), peribasal 

Intensity appears more in the pre-



 
 

Figure 4.77. Photomicrographs of 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: 

is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region (arrow 

head) and interstitial vasculature (star).   
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. Photomicrographs of Vimentin Expression in the CAPUT Segment

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the 

is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region (arrow 

sculature (star).   Intensity appears more in the pre-pubertal group. 

Segment of the 

D. Aged. Note that the staining 

is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region (arrow 

pubertal group.  



 
 

Figure 4.78. Photomicrographs of 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the Vimentin 

staining is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region 

(arrow head) and interstitial vasculatur

group. 
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. Photomicrographs of Vimentin Expression in the CORPUS 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the Vimentin 

staining is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region 

terstitial vasculature (star). Higher intensity occurs in the pre

 

in the CORPUS Segment of 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged. Note that the Vimentin 

staining is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region 

e (star). Higher intensity occurs in the pre-pubertal 



 
 

167 
 

 

Figure 4.79. Photomicrographs of Vimentin Expression in the CAUDA Segment of the 

Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note that the Vimentin 

staining is expressed in the epididymal perimuscular coat (black arrow), peribasal cell region 

(arrow head) and interstitial vasculature (star). Highest intensity occurs in the pre-pubertal 

group. 
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Figure 4.80 A-F. Age-related Changes in Intensity of Vimentin Expression in the Epididymal 

Ducts of AGCR. A Proximal initial segment (PIS); B Middle initial segment (MIS); C Distal 

initial segment (DIS); D. Caput; E. Corpus; F Cauda. Bars bearing dissimilar alphabet 

superscripts (a,b, c) are significantly different. 

 

 

 

 

 

 

 

 

PIS MIS DIS 

CAPUT CORPUS CAUDA 
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Figure 4.81. Photomicrographs of S-100 Expression in the Testis of Different Age Groups of 

AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive S-100 staining in 

the Sertoli cells (inset; nuclei [black arrow head] and cytoplasm [red arrow head] (arrows), 

negative staining in the interstitial tissue (star) and slide A. Scale bar: 20µm (main) and 10µm 

(inset)  
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Figure 4.82. Age-related Changes in the Signal Intensity of S-100 Expression in the 

Testicular Parenchyma in AGCR. Bars bearing dissimilar alphabet superscripts (a,b, c) are 

significantly different. 

 

 

 

 

 

 



 
 

 

Figure 4.83. Photomicrographs of S

the Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S

100 staining in the perimuscular coat (arrow) of C and 
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aphs of S-100 Expression in the Proximal Initial Segment

in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S

100 staining in the perimuscular coat (arrow) of C and D.  Scale bar: 20µm  

 

Proximal Initial Segment (PIS) of 

in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S-



 
 

Figure 4.84. Photomicrographs of S

the Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S

100 staining in the perimuscular coat (arrow) as well as negative staining in A, B and D Scale 

bar: 20µm  
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. Photomicrographs of S-100 Expression in the Middle Initial Segment

pididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S

100 staining in the perimuscular coat (arrow) as well as negative staining in A, B and D Scale 

 

he Middle Initial Segment(MIS) of 

pididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the positive S-

100 staining in the perimuscular coat (arrow) as well as negative staining in A, B and D Scale 



 
 

Figure 4.85. Photomicrographs of S

Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged Note the positive S

staining in the perimuscular coat (arrow) and interstitial vessel (arrow head). Scale bar: 20µm 
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phs of S-100 Expression in the Distal Initial Segment

in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged Note the positive S

staining in the perimuscular coat (arrow) and interstitial vessel (arrow head). Scale bar: 20µm 

 

Initial Segment(DIS) of the 

in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged Note the positive S-100 

staining in the perimuscular coat (arrow) and interstitial vessel (arrow head). Scale bar: 20µm  



 
 

Figure 4.86. Photomicrographs of S

AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged  Note the positive S

perimuscular coat (arrow) as well as negative staining in A, B and D. Scale bar: 20µm 
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. Photomicrographs of S-100 Expression in the CAPUT Segment of Epididymis

AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged  Note the positive S-100 staining in the 

perimuscular coat (arrow) as well as negative staining in A, B and D. Scale bar: 20µm 

 

Epididymis in 

100 staining in the 

perimuscular coat (arrow) as well as negative staining in A, B and D. Scale bar: 20µm  



 
 

Figure 4.87. Photomicrographs of S

AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged:  Note the positive S

the perimuscular coats (arrows) and interstitial vessels (arrow heads) as well as negative

staining in C and D. Scale bar: 20µm 
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. Photomicrographs of S-100 Expression in the CORPUS Epididymal Segment

AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged:  Note the positive S-100 staining in 

the perimuscular coats (arrows) and interstitial vessels (arrow heads) as well as negative

staining in C and D. Scale bar: 20µm  

 

Epididymal Segment in 

100 staining in 

the perimuscular coats (arrows) and interstitial vessels (arrow heads) as well as negative 



 
 

Figure 4.88. Photomicrographs o

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive S

the perimuscular coats (arrows), inte

heads) .  Scale bar: 20µm  

 

 

 

 

 

 

 

 

176 

. Photomicrographs of S-100 Expression in the CAUDASegment of 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive S-100 staining in 

the perimuscular coats (arrows), interstitium proper (red arrow) and interstitial vessels (arrow 

 

of Epididymis 

100 staining in 

rstitium proper (red arrow) and interstitial vessels (arrow 



 
 

177 

 

 

 

Figure 4.89 A-D. Age-related Changes in Intensity of S-100 Expression in the Epididymal 

Segments in AGCR. A, B and C (Proximal, middle and distal initial segments); D (Caput); E 

(Corpus) and F (Cauda). Bars bearing dissimilar alphabet superscripts (a,b, c) are 

significantly different 

 

 

 

 

 

 

 

 

 

PIS MIS DIS 

CAPUT CORPUS CAUDA 



 
 

178 
 

4.4.1.2 Histochemical and Immunohistochemical Demonstrations of Nerves and Glial-

like  

Cells (Astrocyte-like) in the Testis and Epididymis using Golgi-silver Techniques, 

Anti NF 20 and Anti-GFAP 

With the use of Golgi-silver technique, both the neuronal and the astrocyte-like structures 

were demonstrated in the testicular tunica albuginea (Fig. 4.90), interstitium and along the 

seminiferous tubular boundary (Fig. 4.92) in all the AGCR groups. In nearly all the capsule 

of all AGCR, twigs of the two structures (neuronal fibres and glial-like cells) were given off 

to radiate into the testicular parenchyma (Fig. 4.92). Within the segments of the epididymal 

duct, neuronal and astrocyte-like structures were remarkably observed within the periductal 

muscle coat and in the epididymal interstitum of middle (MIS) and distal initial segment 

(DIS), caput, corpus and cauda segments (Figs. 4.95-4.99). Golgi intensity profile in both the 

testicular capsule (Fig. 4.91) and interstitium (Fig. 4.93) were significantly lower (p<0.05) in 

the prepubertal rat when compared to others. The intensity appeared to increase with age 

advancement though, an insignificant (p>0.05) decline value was displayed by aged AGCR 

relative to the pubertal and adult values. The intensities of the nerve and glial-like cells of the 

middle initial segment downwards consistently displayed significantly higher intensity 

(p<0.05) in the pubertal AGCR relative to others (Fig. 4.100 B-F).      

Neurofilament (NF)-positive areas for nerve fibre presence in the testes of different age 

groups of AGCR were localised in the tunica albuginea and peri-albuginea interstitium of the 

capsule (Fig. 4.101) as well as in the seminiferous tubular interstitium (Fig. 4.103). For the 

segments of epididymal duct, conspicuous NF positive areas were restricted to the the 

periductal muscle coat and epididymal ductal interstitium most especially in the perivascular 

part of the distal initial segment (DIS), caput, corpus and cauda  segments of the epididymis 

in all AGCR groups (Figs. 4.107-110).  The intensity of NF expression in the testicular 

capsules (Fig. 4.102) and interstitium (Fig. 4.104) was observed to be significantly higher in 

the pubertal and adult AGCR when compared to others and the intensity increases with age 

with peak shown in pubertal and a subsequent decline. The profile of NF intensity in distal 

initial segment (DIS) downwards consistently revealed significantly higher intensities in the 

pubertal and adult rats relative to others (Fig. 4.111 C-F). In general, the trend of NF 

expression intensity from the distal initial segment to the caudal segment appeared to increase 

with age.  
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Positive areas for the presence of astrocyte-like cells on using anti glial fibrillary acid protein 

(anti GFAP) marker in the testes and epididymis of all AGCR include; the interstitium 

between seminiferous tubules (Fig. 4.112) and the perivascular part of the epididymal ductal 

interstitium (Figs. 4.114-119). Regarding the profile of testicular GFAP intensity (Fig. 

4.113), significantly higher (p<0.05) intensity was noticed in the aged AGCR relative to 

others. The intensity seems to increase with advancement in age with both pubertal and adult 

AGCR displaying a non significant difference (p>0.05) in the value of their intensities. In the 

epididymis, similar trend described for the testicular GFAP intensity (Fig. 4.120 C-F) was 

remarkably observed in the distal initial epididymal segment downwards.  
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Figure 4.90. Golgi Staining of the Testis of Different Age-Groups of the AGCR. A. 

Prepubertal B. Pubertal C. Adult and D. Aged. Note the display of nerve fibre in the tunica 

albuginea (arrow) and twigs radiating from it to parenchyma (arrow head). Scale bar: 20µm    
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Figure 4.91. Age-related changes in intensity of Golgi-silver staining of the testicular capsule 

in AGCR. Bars bearing dissimilar alphabet superscripts (a,b) are significantly different. 
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Figure 4.92. Golgi Staining of the Testis of Different Age Groups of AGCR. A. Prepubertal 

B. Pubertal C. Adult and D. Aged. Note the display of fine nerve fibre (long arrow) between 

seminiferous tubular (ST) boundary and thick nerve fibre in the ST interstitium (arrow head). 

Scale bar: 20µm  
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Figure 4.93. Age-related Changes in the Intensity of Golgi-Silver Staining of the Testicular 

Parenchyma in AGCR. Bars bearing disimilar alphabet superscripts (a,b,c) are significantly 

different. 
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Figure 4.94. Golgi Staining of the Proximal Initial Segment (PIS) of the Epididymis in the 

Different Age Groups of AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged: No visible 

nerve fibre across all AGCR group. Stain: Golgi-Silver impregnation. 
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Figure 4.95. Golgi Staining of the Middle Initial Segment(MIS) of the Epididymis in the 

DifferentAge Groups of AGCR. A. Pre-pubertal: No visible nerve fibre B. Pubertal: C. 

Adult:D. Aged: presence of nerve fibre (arrow) within periductal muscle coat. Scale bar: 

20µm  
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Figure 4.96. Golgi Staining of the Distal Initial Segment (DIS) of the Epididymis in the 

Different Age Groups of AGCR. A. Prepubertal: No visible NFB. Pubertal: displays thick NF 

in the interstitium (arrow head) and PMC (long arrow) C. Adult and D. Aged: bear scanty 

thin NF in the interstitium (arrow head) and periductal muscle coat (long arrow). Scale bar: 

20µm  

 



 
 

187 
 

 

Figure 4.97. Golgi Stainingof the CAPUT Epididymis in the Different Age Groups of AGCR. 

A. Prepubertal B. Pubertal C. Adult D. Aged. Note the display of nerve fibres within the 

PMC (long arrow) and the interstitium (arrow head) in all groups. 
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      Figure 4.98. Golgi Staining of the CORPUS Epididymis in the Different Age Groups of       

AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note the display of dense nerve fibres  

      within the PMC (long arrow), the epididymal sheath (short arrow), and the interstitium    

     (arrow head). Scale bar: 20µm  
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Figure 4.99. Golgi Staining of the CAUDA of the Epididymis in the Different Age Groups of 

the AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the display of thick nerve 

bundles (long arrow) and solitary nerve fibres (arrow head) along the PMC and the 

epididymal interstitium. Scale bar: 20µm  
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Figure 4.100 A-F. Age-related Changes in Intensity of Golgi-Silver Impregnation Staining of 

the Epididymal Segments in AGCR. A Proximal initial segment (PIS); B Middle initial 

segment (MIS); C Distal initial segment (DIS); D. Caput; E. Corpus; F Cauda. Bars bearing 

dissimilar alphabet superscripts (a,b, c) are significantly different. 
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Figure 4.101.  Photomicrographs of Neurofilament (NF)Expression in the Testicular Capsule 

of Different Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the 

positive NF staining of nerve structures in the tunica albuginea (arrows) and peri-albuginea 

interstitium (star). Immunostain: Neurofilament; Scale bar: 20µm  
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Figure 4.102. Age-related Changes in the Intensity of Neurofilament (NF) Expression in the 

Testicular Capsule in AGCR. Bars bearing dissimilar alphabet superscripts (a,b,c) are 

significantly different. 
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Figure 4.103.  Photomicrographs of Neurofilament(NF) Expression in the Testis of Different 

Age Groups of AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive NF 

staining of nerve structures in the seminiferous tubular interstitium (arrows). Immunostain: 

Neurofilament. Scale bar: 20µm  
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Figure 4.104. Age-related Changes in the Signal Intensity of Neurofilament (NF) Expression 

in the Testicular Parenchyma in AGCR. Bars bearing dissimilar alphabet superscripts (a,b,c) 

are significantly different. 
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Figure 4.105. Photomicrographs of Neurofilament (NF) Expression in the Proximal Initial 

Segment (PIS) of Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. Note 

the negative staining of the epididymal structures.  Scale bar: 20µm  
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Figure 4.106. Photomicrographs of Neurofilament(NF) Expression in the Middle Initial 

Segment (MIS) of the Epididymis in AGCR. A. Prepubertal B. Pubertal C. Adult D. Aged. 

Note the negative staining of the epididymal structures in all groups.   

 



 
 

Figure 4.107. Photomicrographs of 

Segment (DIS) of the Epididymis

Note the positive NF staining of nerve structures in the epididymal ductal interstitium 

(arrow).  
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. Photomicrographs of Neurofilament (NF) Expression in the 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: 

Note the positive NF staining of nerve structures in the epididymal ductal interstitium 

 

in the Distal Initial 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: 

Note the positive NF staining of nerve structures in the epididymal ductal interstitium 
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Figure 4.108. Photomicrographs of Neurofilament(NF) Expression in the CAPUT 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive NF 

staining of nerve structures in the epididymal ductal interstitium (arrow) and in perivascular 

area (arrow head). 
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Figure 4.109. Photomicrographs of Neurofilament(NF) Expression in the CORPUS 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive NF 

staining of nerve structures in the epididymal ductal interstitium (long arrow), perivascular 

area (arrow head) and periductal muscle coat (short arrow).  
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Figure 4.110. Photomicrographs of Neurofilament Expression (NF) in the CAUDASegment 

of Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive 

NF staining of nerve structures in the epididymal ductal interstitium (long arrow), 

perivascular area (arrow head) and periductal muscle coat (short arrow).  Scale bar: 20µm  
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Figure 4.111 A-F Age-related Changes in the Intensity of Neurofilament (NF) Expression in 

the Epididymal Segments in AGCR. A Proximal initial segment (PIS); B Middle initial 

segment (MIS); C Distal initial segment (DIS); D. Caput; E. Corpus; F Caudal. Bars bearing 

dissimilar alphabet superscripts (a,b,c) are significantly different. 
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Figure 4.112. Photomicrographs of Glial Fibrillary Acid Protein (GFAP) Expression in the 

Testis of different Age Groups of the AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: 

Note the positive GFAP staining of astrocyte-like cells in seminiferous tubular interstitium 

(arrow).  Scale bar: 20µm. 
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Figure 4.113. Age-related Changes in Intensity of Glial Fibrillary Acid Protein (GFAP) 

Expression in the Testicular Parenchyma in AGCR. Bars bearing dissimilar alphabet 

superscripts (a,b, c) are significantly different. 

 

 

 

 

 

 

 



 
 

204 
 

 

Figure 4.114. Photomicrographs of GFAP Expression in the Proximal Initial Segment (PIS) 

of theEpididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the 

negative GFAP staining of epididymal structures across all age groups.  
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Figure 4.115. Photomicrographs of GFAP Expression in the Middle Initial Segment (MIS) of 

theEpididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the negative 

GFAP staining of epididymal structures across all age groups.  
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Figure 4.116. Photomicrographs of GFAP Expression in the Distal Initial Segment(DIS) of 

the Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive 

GFAP staining of astrocyte-like cells in the perivascular area of ductal interstitium of B and 

C (arrow).  Scale bar: 20µm  
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Figure 4.117. Photomicrographs of GFAP Expression in the CAPUT Segment of Epididymis 

in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive GFAP staining 

of astrocyte-like cells in the perivascular area of ductal interstitium (arrow), in all groups. 
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Figure 4.118. Photomicrographs of GFAP Expression in the CORPUS Segment of 

Epididymis in AGCR. A. Prepubertal: B. Pubertal: C. Adult: D. Aged: Note the positive 

GFAP staining of astrocyte-like cells in the perivascular area of ductal interstitium (arrow), in 

all groups.   

 

 

 

 

 

 

 

 



 
 

Figure 4.119. Photomicrographs o

A. Prepubertal: B. Pubertal: C. Adult: D. Aged:Note the positive GFAP staining of astrocyte

like cells in the perivascular area of ductal interstitium (arrow)

20µm. 
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. Photomicrographs of GFAP Expression in the CAUDAEpididymis

A. Prepubertal: B. Pubertal: C. Adult: D. Aged:Note the positive GFAP staining of astrocyte

like cells in the perivascular area of ductal interstitium (arrow), in all groups. 

 

Epididymis in AGCR. 

A. Prepubertal: B. Pubertal: C. Adult: D. Aged:Note the positive GFAP staining of astrocyte-

, in all groups. Scale bar: 
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 Figure 4.120 A-F. Age-related Changes in Intensity of GFAP Expression in the Epididymal 

Segments in the AGCR.A Proximal initial segment (PIS); B Middle initial segment (MIS); C 

Distal initial segment (DIS); D. Caput; E. Corpus; F Cauda. Bars bearing dissimilar alphabet 

superscripts (a,b,c) are significantly different. 

 

 

 

 

 

 

 

4.5 EXPERIMENT FIVE 

4.5.1  Age-related Changes in the Serum Hormonal Profiles of the African Greater 

Cane Rat 
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4.5.1.1 Serum Testosterone Level 

There was a significant elevation in the serum testosterone level of the adult AGCR when 

compared to others (Fig. 4.121; Table 4.6). Conversely, serum testosterone level was 

markedly lower in the prepubertal AGCR relative to other groups (Fig. 4.121;Table 4.6). In 

this study, serum testosterone profile across the different age group of AGCR appears to 

progressively increase with age advancement with peak level observed in the adult rat and 

later followed by an insignificant (p>0.05) decline level inthe aged rats.  

4.5.1.2 Serum Luteinising Hormone Level 

Serum luteinising hormone level was significantly higher (p<0.05) in the pre-pubertal AGCR 

relative other groups (Fig. 4.122;Table 4.6). However, there was no significant difference 

(p>0.05) in the LH levels in both adult and aged AGCR. (Fig. 4.122;Table 4.6). With the 

exception of the peak level of LH seen in the pre-pubertal AGCR, the profile of LH produced 

across all AGCR groups seems to decrease with advancing age.   

4.5.1.3 Serum Follicle Stimulating Hormone Level 

Serum follicle stimulating hormone level was significantly elevated (p<0.05) in the pre-

pubertal AGCR when compared to other groups (Fig. 4.123;Table 4.6). On the contrary, there 

was no significant difference (p>0.05) in the FSH levels of pubertal, adult and aged AGCR 

(Fig. 4.123;Table 4.6). The trend of FSH levels across the different AGCR groups appeared 

to decrease with age variation except for the peak observed in the pre-pubertal AGCR. 

4.5.1.4 Serum Estrogen Level 

There was a significant increase in the serum estrogen level of the aged AGCR relative to 

other groups (Fig. 4.124;Table 4.6). In addition, there was no significant difference in the 

estrogen levels of prepubertal and pubertal AGCR, though; a slight insignificant increase was 

seen in the estrogen value of the pubertal AGCR (Fig. 4.124;Table 4.6). Interestingly, 

estrogen hormone level observed in this study progressively increases with age. 

4.5.1.5 Serum Progesterone Level 

Serum progesterone level was significantly elevated in the pubertal AGCR compared to other 

groups (Fig. 4.125;Table 4.6). With the exception of the remarkable climax seen in the level 

of progesterone of pubertal, there was no significant difference in estrogen level of others, 
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though, an insignificant increase exists in the values of adult and aged over prepubertal (Fig. 

4.125;Table 4.6). Thus, a trend of fairly stable level was seen with age advancement.  
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Figure 4.121. Age-related Changes in the Testosterone Level in AGCR. Bars bearing 

dissimilar superscripts (a,b, c) are significantly different.  
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Figure 4.122. Age-related Changes in the Luteinising Hormone Level in AGCR.  Bars 

bearing dissimilar superscripts (a,b, c) are significantly different.  
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Figure 4.123. Age-related Changes in the Follicle Stimulating Hormone Level in AGCR. 

Bars bearing dissimilar superscripts (a,b, c) are significantly different.  
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Figure 4.124.  Age-related Changes in the Estrogen Level in AGCR.  Bars bearing dissimilar 

superscripts (a,b, c) are significantly different.  
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Figure 4.125. Age-related Changes in the Progesterone Level in AGCR.  Bars bearing 

dissimilar superscripts (a,b, c) are significantly different.  
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Table4.6. Age-related Changes in the Serum Sex Hormone Levels of the African Greater 
Cane Rat. 

AGCR GROUPS 

HORMONE  PP PB AD AG 

TESTOSTERONE (ng/ML) 2.02±0.19a 3.85±0.29b 4.12±0.15b 4.07±0.26b 

PROGESTERONE (ng/ML)  1.10 ± 0.30a 1.49±0.49b 0.97±0.19a 0.99± 0.22a 

FSH (mIU/ml) 12.33±0.83a 10.58±0.95b 9.50±0.6b 9.25±0.70b 

LH (mIU/ml) 15.50±0.88a 12.83±1.20b 10.17±0.83c 9.83±0.60c 

ESTROGEN (pg/ML) 0.94±0.00a 1.48±0.40a 4.33±0.82b 4.85±0.41b 

 

Values with different alphabet superscripts (a, b, c) in the same row are significantly different 
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CHAPTER FIVE 

5.0         DISCUSSION 

The characteristic cream to milky-white colouration and ellipsoidal shape of the testes 

observed in the different age groups of the African greater cane rat is consistent with the 

reports of Olukole et al. (2009) on the testicular gross morphologic appearance in the mature 

adult cane rat. The progressive age-related increase in the testicular weight and the relative 

testicular weight with maximum testiculo-somatic weight value displayed by the adult group 

of cane rat implies that with advancement in age, testicular weights increase with increase 

body weight. The rise in the values of these indices could probably be related to the 

functional reproductive status of the testicular parenchymal tissue from pubertal age to the 

aged. The range of the extremes of the relative weights in adult) further tallies with the earlier 

report of Olukole et al. (2009) on the smaller nature of cane rat testes relative to their body 

size. The measurement of testicular biometric parameters (length, width and circumference) 

most especially the scrotal circumference has been found to provide an indirect measurement 

of testicular size, volume and onset of active spermatogenesis (Bongso et al., 1982). 

Therefore, the significant age-dependent increase in testicular biometric parameters could 

also be attributed to morphological compensation required to meet up with the varying 

reproductive functional activities with advancing age. The findings on the weight and 

biometric parameters concur with reports from similar age-related studies on the goat by 

Nishimura et al. (2000) and Dhabale (2007).  

The inverted S-shaped appearance of the epididymis, the visible numerous 

convolutions of the caput and corpus epididymal segments as well as the slight variations in 

the colouration of the segments observed in all the different age groups of Thryonomis 

swinderianus is in agreement with the features of epididymis documented by Adebayo et al. 

(2010) in the matured adult greater cane rat. The age-dependent increase in the epididymal 

weight together with the uniform epididymal somatic weight (0.01 percentage body weight) 

seen across the different age groups of the cane rat could substantiate the probable 

compensatory weight gain with advancement in age. However, the postulated theory could 

not explain the reason for the non significant difference in the relative epididymal weights 

across the studied animal. The epididymal length and width were also observed to increase 

with age thereby conforming to the pattern earlier described for the testicular biometric 

parameters. It is important to mention that the width of the caput segment relative to other 
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segments was markedly longer in all the groups and this could be connected to the massive 

convolution of the caput segment. The biometric parameters in this study corroborate the 

finding of Gupta and Singh (1988a). 

The observed testicular capsule composition in the different age groups of the cane rat 

is consistent with earlier findings on testicular capsule divisions and constituents in mammals 

(Dyce et al., 2002; Konich and Liebich, 2014). In addition, the progressive age-related 

increase in testicular capsule thickness and the increased percentage tunica albuginea in all 

AGCR groups corroborate the earlier reports of Sarma et al. (2011) in the buck and rat 

(Lasheen et al., 2015). It however disagrees with the report on goat by Kumari (2013) in age-

related decrease in capsular thickness in the black Bengal goat. The increase in capsular 

thickness with age advancement could be linked to the varying functional activity across the 

groups. Morphologically, the tunica albuginea remains the fibrous component of the 

testicular capsule while the tunica vaginalis constitutes the serous part that is responsible for 

the smooth appearance of the testis (Konich and Liebich, 2014). It suffices to suggest that the 

marked increase in percentage tunica albuginea contribution to capsular thickness in 

prepubertal rats when compared to others could be due to the significant fortification role of 

the former in the developmental event of testicular parenchyma in this age group of AGCR. 

The absence of patent testicular parenchymal lumen coupled with the reduced 

interstitial cell components in the testis of the pre-pubertal rat appear to be suggestive of 

structural proof of the quiescent reproductive status of this age group. Unlike in prepubertal,  

morphological presence of lumen in seminiferous tubules was evident from pubertal onwards 

and could be linked to the possible spermiogenetic activities occurring in their seminiferous 

epithelium  The testicular histology observed in pre-pubertal rat in this study is similar to 

those reported for immature rat (Lasheen et al., 2015) and some young avian species (Kannan 

et al., 2015). 

The restriction of PAS positive staining to the testicular capsule, basement membrane, 

interstitum and seminiferous tubular lumen is in agreement with previously recognised 

glycogen rich regions in the testes (Rajani et al., 2008; Sarma et al., 2011; Shagufta et al., 

2012). The marked parenchymal PAS staining intensity in the pubertal cane rat relative to 

others could be attributed to increase in demands for glycogen to meet up with the energy 

requirement for reproductive climax and the intiation of spermatogenic activities. This 
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finding corroborates the report of age-related changes in testicular parenchymal staining in 

ram by Kishore et al. (2012).  

The Masson’s trichome-positive staining observed in the testicular capsules and 

interstices of seminiferous tubules suggests that collagen fibres are abundantly present in the 

highlighted parts of the testes. This finding attests to the earlier reports of collagen expression 

in the testes of mammals (Shagufta et al., 2012; Kumari, 2013). In the same vein, the age-

related increase in capsular Masson’s trichome staining intensity could be presumed to be due 

to collagen fibre amplification with advancement in age. While the non-significant difference 

in the MT staining of seminiferous tubular parenchyma could be ascribed to the uniform 

distribution of collagen fibres across age groups.  

The observed progressive decrease in germinal epithelial heights with concomitant 

increase in luminal diameter as age advances can be assumed to coincide with decrease in 

functional activity with ageing. These findings partly agree with the report of Sarma et al. 

(2012) in the goat. The seemingly uniform tubular diameter in the pubertal cane rat onwards 

in this study corroborates the earlier reports on tubular diameter profile in mammals 

(Nishimura et al., 2000). However, it is at variance with age-related increase in tubular 

diameter reported by Sarma et al. (2012) and Kumari (2013) in goats. 

The presence of similar testicular boundary tissue components in all the age 

categories of cane rat is suggestive of morphophysiological roles of mechanical support, 

spermatozoa discharge and as barrier for regulating material movements across the 

parenchyma (Desjardins, 1993; Marettová et al., 2010).  The ultrastructural components of 

testicular boundary tissue observed across all age categories of the cane rat agree with the 

boundary tissue composition in rodents (Maekawa et al., 1996; Rezigalla et al., 2012). 

However, it is incongruent with reports of numerous myoid cell layerspresent in the boundary 

tissue described in large animals (Virtanen et al., 1986; Maekawa et al., 1996) and in avian 

spps (van Nassauw et al. 1993; Aire, 1997; Aire and Ozegbe, 2007). 

The roundish shape of the Sertoli cell nucleus observed in the pre-pubertal testes of 

the cane rat unlike the typical triangular shape in the other groups is supported by the fact that 

Sertoli cell can assume several different shapes depending on the stage of the seminiferous 

cycle and the age of development (Russell et al., 1990a; Hess and Franca, 2005). Regarding 

Sertoli cell nuclear location, the presence of nucleus close to the basal lamina even with aging 

in different groups of the AGCR is comparable to the Sertoli cell nuclear position in the 
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Agoutis rodent (Arroyo et al., 2015) but is at variance with distant location in Spix’s yellow 

toothed cavyrodent reported by Santos et al. (2014). Besides the nuclear profile, the Sertoli 

cell cytoplasm especially in the adult AGCR was remarkably observed to contain abundant 

SER which has been previously postulated by Hess and Franca (2005) to have functional 

correlation with lipid or steroid metabolism.  

The consistent flanking of the Sertoli cells by other spermatogenic lineage cells in the 

entire rat groups forms interactive contacts and such interactions have been suggested to 

provide enabling physical and functional support for spermatogenesis (Kerr, 2000). The 

presence of tight junctions between Sertoli cells in all age groups has been suggested to be 

necessary for forming haematotesticular barrier (Byers et al. 1993). 

The identification of three distinct spermatogonia types (Type A, Intermediate and B) 

in proliferative phase of spermatogenesis close to the basal lamina in the prepubertal group 

onwards could be linked to the essential role of spermatogonia in reproduction. 

Spermatogonia are recognised stem cells that are important in the preservation of 

spermatogenetic process through its proliferative potential that culminate in the production of 

numerous spermatozoa (Phillips et al., 2010). Hence, the occurrence of spermatogonia across 

all age groups underscores the above highlighted function. This finding is in agreement with 

reports from similar age- related studies (Assis-Neto et al., 2003; Arroyo et al., 2015). The 

consistent observation of euchromatic nuclear type in the spermatogonia of pre-pubertal rat 

could be indicative of active transcription activity (Feher, 2012). In addition, the presence of 

numerous mitochondria in the cytoplasm of different spermatogonia types of the pre-pubertal 

rat could be suggestive of high metabolic activities.   

The identification of five spermatocyte types; Pre-leptotene, leptotene, zygotene, 

pachytene and diplotene characterized by progressive increase in nuclear size, synaptonemal 

formation and chromatin condensation in the meiotic phase of spermatogenesis in different 

cane rat groups is consistent with spermatocyte types described in mammals (Hunter, 2003; 

Page and Hawley, 2004; Beguelini et al., 2011) and in age-related study by Arroyo et al. 

(2015). The irregular nuclear and cytoplasmic shapes that typify the prepubertal 

spermatocytes could be associated with rapid meiotic cellular activity in this age group. The 

observed ultrastructural alteration in the prepubertal spermatocyte morphology concurs with 

the report of Bellve et al. (1977) on prepubertal mouse.  
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The observed lower Leydig cell population and fewer mitochondria in the pre-

pubertal rat compared to others are suggestive of less reproductive activity in this age group 

and with advancement in age remarkable features of active reproduction would be evident. 

These findings are similar to the reports of Tripepi et al. (2000) in pigs and Lasheen et al. 

(2015) in rats. The remarkable increase in the amount of lipid droplets and SER observed in 

the Leydig cell cytoplasm of adult AGCR could be associated and consistent with the 

expected high steroidogenic activity. These findings corroborate the morphological features 

reported for ground squirrel at full spermatogenesis (Pudney et al., 1985; Pudney, 1986). 

The epididymis in the different age groups AGCR is divided into four segments of six 

distinct zones; zone I, zone II, zone III (initial segment), zone IV (caput), zone V (corpus) 

and zone VI (cauda) based on histological, histomorphometrical and histochemical 

characteristics that include epithelial height, distribution pattern of different types of 

epithelial lining cells, luminal diameter and shape, stereocilia height and peritubular muscle 

coat thickness. This observed epididymal division is in agreement with the reports of 4 

segment and six zones by Adebayo et al. (2016) in adult cane rat as well as in boar (Wrobel 

and Fallenbacher, 1974).  It however, contrasted the observations of; 3 segments in dog and 

camel (Chandler et al., 1981; Ruhl, 2001), 4 segments in other mammals such as rat and cat 

(Hamilton, 1975; Sanchez, 1998) and 5 segments in hamster, mouse, African giant rat and 

buck (Flickinger et al., 1978; Takano, 1980; Oke et al., 1989; Goyal and Williams, 1991).  

The simple cuboidal to columnar epididymal epithelial lining of the pre-pubertal 

unlike the classical pseudostratified stereociliated columnar epithelium observed in other 

groups is in conformity with earlier reports on epididymal epithelial lining in immature and 

mature mammals (Oke, 1982; Adebayo and Olurode, 2010; Olukole et al., 2010).   

The observed progressive age-related increment in epididymal histomorphometric 

parameters in the different age groups of cane rat as well as cranio-caudal alterations 

(increase or decrease) to some of the parameters along epididymal duct in this study partly 

agree with the trend of the histomorphometric parameters reported by Olukole et al. (2010) in 

adult cane rat and wholly concur with the pattern reported by Kishore et al. (2012) on similar 

age-related study in goat. The variations noticed in the histomorphometric parameters 

between the segments and within cane rat groups might be to accommodate the varied 

physiological activities of the different segment of the epididymis across age groups. For 

instance, the increase in stereocilia height of the initial segment functionally has been 
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attributed to an additional resorptive ability of the epithelium in this segment (Alkafafy, 

2005). 

The increase in periductal muscle coat thickness towards the caudal segment in each 

group of cane rat is in accord with the pattern previously reported for the epididymal 

segments in most mammals (Delhon and Lawzewitsch, 1994; Sanchez et al., 1998, Ruhl, 

2001; Calvo et al., 1999). The functional implication of periductal smooth muscular coat 

presence along the epididymal segments has been suggested to be essential in the movement 

of the sperm toward the terminal segment (Goyal, 1985; Zayed et al., 2012). The pronounced 

thickness of the PMC in the cauda epididymis could be linked to ejaculation. In addition, the 

presence of age-dependent increase in the thickness of epididymal coat of the different 

groups of the cane rat more particularly in the cauda segment of the pubertal group could be 

suggestive of morphological compensation needed for the initiation of ejaculatory activity of 

the rats in this group.  

The observation of round ductal luminal shape in all the epididymal segments of 

prepubertal rat as well as the display of  variable luminal shape (stellate to roundish) in other 

rat groups partly agree with the numerous reports of round luminal shape in the lower 

segments of the epididymal duct of most mammals (Sanchez et al., 1998; Alkafafy, 2005; 

Kumari, 2013). The roundish shape has been attributed to the regular nature of the epithelium 

in lower segments especially the cauda segment where epithelium is uniformly low and 

luminal diameter is at maximum thereby favouring adaptation for sperm storage and 

maturation (Goyal, 1985; Alkafafy, 2005). However, the irregularly long nature of the 

epithelium in the initial segments has been suggested to contribute to the stellate shape of 

their lumen (Sanchez et al., 1998; Alkafafy, 2005). Based on the above morpho-functional 

assumptions regarding the ductal luminal shape, it is understandable to attribute the fairly 

uniform epididymal epithelium height in prepubertal rat to their roundish ductal luminal 

shape. 

The presence of positive PAS staining in the epidididymal interstitium, lamina 

propria, peri-nuclear region of the epithelium, ductal stereocilia and lumen of different age 

groups of cane rat is consistent with glycogen rich parts of the epididymis previously reported 

in most mammals (Goswami and Singh,1988; Oke et al., 1988; Kishore, 2012; Kumari, 

2013). The significantly higher PAS staining intensity observed in all the epididymal 

segments of pubertal cane rat relative to others imply the active functional status of this age 
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group. The demonstration of intense PAS staining in pubertal rat is consistent with the reports 

of Kishore (2012) and Kumari (2013) on similar age-related studies in goats. 

The demonstration of positive MT staining in the epididymal duct interstices and in 

the smooth muscles surrounding the epididymal ducts is consistent with the reported sites of 

collagen fibre in the epididymis (Shagufta et al., 2012). Owing to the resilience of collagen 

fibres (Bacha and Bacha, 2000), it suffices to assume that its presence in the epididymal 

interstices and periductal muscle coat correlates with its functional roles of maintaining 

ductal architecture. The demonstration of exceptionally high MT intensity in nearly all the 

epididymal segments of the pubertal rat further confirms the reproductive activeness of this 

age group. 

The numerous mitochondria displayed in the basal and the perinuclear part of 

principal cells of caput epididymis in pre-pubertal rat is suggestive of increased metabolic 

activities within the caput of this age group. Increased mitochondria have been suggested to 

be part of cellular provision needed for marked absorptive function that is peculiar to caput 

epididymis (Adebayo et al., 2016). In addition, the abundant long rough endoplasmic 

reticulum (RER) and Golgi apparatus seen in the adult and aged rats are presumed to be 

morphological indicators of protein synthesis. This finding especially in the adult group 

concurs with report of Adebayo et al. (2016). 

The progressive accumulation of lysosomal and lipofuschin granules as well as 

mitochondria degeneration in the principal cell of both corpus and cauda epididymis of aged 

rat could be attributed to the aging process (Hart and Schoning, 1984; Serre and Robaire, 

1998; Calvo et al., 1999). As lysosome is known for housing hydrolytic enzymes which are 

important in phagocytosis of both damaged cellular organelles and extracellular products as 

well as storage of lipofuscin, the major undigested material (Ivy et al., 1996). Therefore, the 

progressive accumulation of lipofuschin in the principal cell of aged rat could functionally 

impair the intracellular trafficking through combined oxidative damage and decline of the 

degradative pathways which are reputed causative factors in aging (Sohal and Brunk, 1990; 

Tabatabaie and Floyd, 1996).  

The age-dependent nuclear indentation observed in the principal cell of corpus and 

cauda epididymis in pubertal to aged cane rats might be correlated with increased metabolic 

and synthetic activities (Ramos and Dym, 1977). This finding is consistent with indented 

nuclear shape reported in the Macaque monkey (Ramos and Dym, 1977), brown rat (Serre 
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and Robaire (1998), ram (Elzoghby et al., 2014) and in adult AGCR (Adebayo et al., 2016). 

The consistent observation of spermatozoa in both corpus and cauda epididymal lumen in 

pubertal AGCR onwards and the filling of the epididymal lumen of prepubertal rat with 

cellular debris provide structural evidences of reproductive activeness and quiescence 

respectively.  

Sperm morphological characteristics are essential parameters that reveal the extent of 

normality and maturity of the sperm population in the ejaculate and could as well correlate 

with fertility status of a mammalian spp (Memon et al., 1986). The shape of spermatozoon 

head in the different age groups of African greater cane rat observed in this study is in 

agreement with the report of Olukole etal. (2014) and also concurs with spermatozoa head of 

mammals (Villalpando et al., 2000; Breed, 2005; Oyeyemi and Babalola, 2006). The absence 

of acrosomal hook on the sperm head in all the age groups also confirms the earlier report of 

Olukole et al. (2014). This observation distinguished it from the other rodents in which sperm 

head folds back onto itself to give a “hook”-like appearance (Blandau, 1951; Breed et al., 

2005).  

The non significant difference in the linear dimensions; sperm head length and width, 

mid-piece length, tail length and the complete spermatozoa lengths observed in the pubertal 

to aged rats is similar to the sperm morphometric data reported in age-related study 

conducted in boar (Quintero-Moreno et al., 2009; Banaszewska et al., 2011). Although 

insignificant increment occurred in the sperm dimensions with increasing age it was not 

enough to conclude that there was an age-related alteration in sperm morphometrics. The age 

of a male animal has been identified as an important cause of variation in spermatozoa 

morphometric dimensions (Gregor and Hardge, 1995, Kondracki et al. 2005, Quintero-

Moreno et al. 2009). 

The observed uniformly low percentage (roughly 15%) of abnormal sperm cells in both testes 

and epididymis of the different age groups of cane rat concurs with the normal acceptable 

range reported for mammals (Moss et al., 1979; Wilde et al., 1999). Bearing this in mind, the 

level of these abnormalities might not affect the breeding soundness of pubertal to aged 

AGCR. Also, the higher proportions of the curve and bent mid-pieces as well as bent tail 

defects displayed across all age groups has been suggested to be due to the disorganisation of 

structural components of the tail with resultant weakness of the structure and folding of the 

flagellum (Briz et al., 1996). The finding on the percentage abnormal spermatozoa is similar 
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to the report of Olukole et al. (2014) on matured adult of this rodent species and also agrees 

partially with the report of Varesi et al.  (2013) on canine spermatozoa. 

The percentage motility of live spermatozoa has been reported to positively correlate 

with the fertilizing capability of sperm cells (Oyeyemi and Ubiogoro, 2005). Therefore, the 

significantly increased motility observed in the epididymis of the pubertal and adult cane rats 

more remarkably in the adult could be suggested to reflect the excellent fertilizing ability of 

this age group. Conversely, the reduced percentage sperm motility displayed by the aged cane 

rat could be linked to the progressive ageing process within the epididymal segments more 

particularly the cauda segment and could as well account for most of the reduction in the 

fertility potential of most aged animals. The profile of sperm motility seen in this study 

corroborates the pattern documented in similar age-related study in hamster rat (Calvo et al., 

1999) and in man (Kidd et al., 2001; Jung et al., 2002).   

The non-significant difference in the testicular and epididymal percentage sperm 

livability from the pubertal to aged rats implies that the ratio of the live spermatozoa to dead 

counterparts in the ejaculate of each group was uniformly higher across the groups. The 

picture above is expected because the groups of the cane rat studied were not exposed to 

toxicant that could have markedly disrupted the balance in the livability ratio.  

Furthermore, the marked increased testicular and epididymal sperm concentrations 

observed in the pubertal and adult cane rat, more particularly in the latter age group, could be 

attributed to the morpho-physiological activeness of this group. However, the markedly 

decreased gonadal and extragonadal sperm concentrations shown by aged AGCR is 

consistent with the widely documented decline profile of sperm concentration in aged animal 

(Humphrey and Ladds, 1975; Lamano-Carvalho et al., 1988; Calvo et al., 1999) and in man 

(Neaves et al., 1985). 

The expression of vimentin in the testicular Sertoli and Leydig cells as well as in the 

peritubular coat and interstitium (stroma and perivascular) in all the epididymal segments of 

the different cane rat groups further substantiates the earlier reported vimentin enriched 

regions in the mammalian testis and epididymis (Bilinska, 1989; Sasaki et al., 2010; 

Moustafa, 2012). The structural support and functions of vimentin in the testis are believed to 

include; the anchorage and translocation of spermatids in preparation for spermiation (He et 

al., 2007; Lie et al., 2010; Sasaki et al., 2010).  Therefore, the increased testicular vimentin 

intensity in the adult rat could reflect its reproductive activeness. Vimentin has also been 
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found to be widely distributed in cells of mesenchymal origin (Kameda, 1995). Thus, it 

suffices to attribute the increased intensity observed in all the epididymal segments of 

prepubertal rats to the presence of higher population of relatively undifferentiated cells when 

compared to other groups of cane rat. 

Saturated (S)-100 is a structural protein with unclear biological function though 

available reports have shown that it may be involved in establishing the blood-testis barrier 

(Czykier et al., 2000; Cruzana  et al., 2000; Cruzana  et al., 2003; Abd-Elmaksoud  et al., 

2014). Considering the age-related increase in the intensity of S-100 expression in the testes 

of cane rat from pubertal to aged, it could be suggested that the intensity seems to correlate 

with maturity.  Also, it could be deduced that the intensity is indicative of striking secretory 

and absorptive processes as well as blood- testis barrier strengthening which are peculiar to 

these age groups. However, the negative immunolocalisation of S-100 in prepubertal testis is 

difficult to explain for now. Subsequent study that will incorporate prenatal testis along with 

the present prepubertal data is recommended to further unravel the S-100 profile in immature 

testes of African greater cane rat.  

The observed positive immunoreactivity to S-100 proteins in the periductal muscle 

coat, interstitial stroma and perivascular part of the epididymal segments in all AGCR is 

consistent with reports of the distribution of S-100 in mammalian epididymis (Czykier et al., 

1999; Czykier et al., 2000). The strong intensity found in the corpus and cauda epididymal 

segments of pubertal AGCR especially in the interstitial vascular endothelium can be linked 

to S-100 involvement in transcytotic movement of materials within the interstitium (Czykier 

et al., 1999; Czykier et al., 2000).  

The nervous system has been implicated in the extrusion of spermatozoa from the 

seminiferous tubules of some mammalian spps (rat, dog and rabbit) that possess smooth 

muscle cells in their capsules (Davies et al., 1970). Therefore, the age-related increase in the 

intensities of neurofilament and Golgi expressed capsular nerve fibres in cane rats seem to 

justify the functional need of innervation with age advancement. In addition, the strong 

neurofilament and golgi intensities expressed in the testicular interstitum of both pubertal and 

adult groups moderately correlate well with the marked testosterone secretions and sperm 

parameters values obtained in this study. In the same vein, it is logical to assume that the 

conspicuous reduction in the intensities of expression of both in prepubertal rat could be 

connected to the low reproductive activity. These findings agree with the report of Falade et 
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al. (2017) in the African giant rat but contrast the reports of Prince (1996) in man and Wrobel 

and Brandl (1998) in pig.  

The intense NF and Golgi expressions in the interstitium and periductal muscle coat 

aspects of the caput and corpus epididymal segments in pubertal and adult cane rats could be 

suggested to correlate with the developmental and functional states of the epididymal ducts 

more particularly the adult group with active reproductive activity. The progressive segment-

related increased neuronal fibre expressions observed along the epididymal segments in all 

the age groups  corroborates the pattern documented in rats (Kempinas et al., 1998), rabbits 

(Sienkiewicz et al., 2015) and camel (Liguoriet al., 2013). In addition, the marked NF 

expression in the cauda epididymis of the adult rat relative to others could be presumed to 

mediate the neuromuscular events needed to transport spermatozoa through the duct. Several 

studies have equally associated the presence of certain neurotrasmitters in the nerve fibres 

supply to the epididymis in regulating certain epithelial cell functions which include 

electrolyte transport (Chan et al, 1994) and protein processing (Ricker et al, 1996). 

The positive immunolocalisation of glial fibrillary acid protein (GFAP) in the 

interstitium of seminiferous tubules of all cane rat groups is in agreement with previous 

reports of interstitial Leydig cell being immunopositive for astrocyte marker (GFAP) 

(Maunoury et al., 1991; Holash et al., 1993; Davidoff et al., 2002; Falade et al., 2017). The 

functional implication of the localisation of astrocyte-like cells in the interstium has been 

suggested to be involved in blood- testis barrier (BTB) formation, a prototype of the blood-

brain barrier formed by astrocytes in the brain (Holash et al., 1993). In respect of the 

highlighted function, the increased testicular GFAP expression intensity with age 

advancement might be  correlated with the strengthening of BTB. This finding concurs with 

the increased testicular GFAP intensity reported by Falade et al., (2017) in the African giant 

rat but contrasts the reports of decrease GFAP profile especially in CNS tissues of man 

(Davidoff et al., 2002) and African greater cane rat (Olude et al., 2015).  

GFAP localisation in perivascular regions has been assumed to regulate blood 

pressure and permeability of vascular walls (Buniatan et al., 1998). Therefore, the consistent 

demonstration of a varying levels of strong positive GFAP immunulocalisation arround the 

vascular components of the epididymal ductal interstitium in all segments of all rat groups 

could be connected to the marked exchange of materials between interstitial vessels and the 

epithelial components in these segments. In addition, the observed age-dependent increase in 
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intensity of GFAP expression in the epididymal segments (caput, corpus and cauda) of the 

cane rat further substantiates the need for the proportionate increase in the permeability 

regulation with ageing. 

The peak serum testosterone level observed in adult rat with subsequent decline with 

age advancement suggests the age maximum active reproductive activity. In addition, it has 

been speculated that testosterone peak may be triggered by a complementaryLeydig cell 

hypertrophy and proliferative germ cell activity (Choi and Smitz, 2014). The trend of serum 

testosterone in this study concurs with the reports of Wang et al. (1993) and Vom Saal et al. 

(1994).  It however contradicts the decrease and stable levels reported by Horn et al. (1996), 

Calvo et al. (1999) and Travison et al. (2007). 

The reduced LH level observed in the older rats especially in the adult group relative 

to others provides a remarkable suggestive evidence of functional pituitary-gonadal 

relationship. The peak testosterone level is presumed to provide a consequential triggering of 

luteinising hormone release which is on decline in this group. Interestingly, studies have 

shown that moderate or extreme testosterone decline in a male subject with intact 

hypothalamic-pituitary relationship may or may not be compensated with LH climax 

(Bagatell and Bremnar, 1996; Feldman et al., 2002; Woerdeman et al., 2010). 

Follicle stimulating hormone is important in the regulation of spermatogenesis 

(Kumar, 2009; Peltoketo et al., 2010; Araujo and Wittert, 2011). Thus, the increasedFSH 

level observed in pre-pubertal rats could be attributed to the initiation of the seminiferous 

epithelium maturation in this group while the decline in the other groups of cane rats suggests 

an already intact, matured seminiferous epithelium ready to exert a feedback influence on 

FSH secretion. 

The observed estrogen level increase with advancement in age could be associated 

with increased body fat as well as increase in aromatase activity that usually accompanies 

ageing (Leder et al., 2004). In addition, the suggested elevated level of the aromatase activity 

could affect the feedback for testosterone synthesis which might result in a consequential 

decline in its level. Contrary to the age-related elevation observed in this study,  trends of 

estrogen levels with advancing age have been variously reported to either decline or remain 

steady (Orwoll et al., 2006; Araujo et al., 2008; Araujo and Witter, 2011). 



 
 

231 
 

Progesterone is believed to play a role in activating sperm in the female reproductive 

tract and as a modulator of male sexual response and behaviour (Oettel and Mukhopadhyay, 

2004). Hence, the progesterone peak observed in pubertal rat suggests that maximum sexual 

response and behaviour is attainable at this age. 
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5.1 CONCLUSION 

This study has demonstrated the presence of; 

i. Similar gross testicular and epididymal features in all the age-groups of AGCR, while, 

morphometric parameters (testicular and epididymal weights, lengths and 

circumferences) were conspicuously reduced in prepubertal AGCR. 

ii. Patent Seminiferous tubular lumen in the testes of the late pre-pubertal age (4 months) 

to aged AGCR and presence of simple cuboidal to columnar epithelial lining in pre-

pubertal epididymal duct relative to the classical pseudostratified ciliated columnar 

epithelium in pubertal to aged AGCR. 

iii. Sperm motility and concentration were markedly increased in the caudal epididymis 

of the adult cane rat. 

iv. Vimentin and S-100 (Structural protein markers), neurofilament (neuronal element 

marker) and GFAP (glial or astrocyte-like marker) were intensily expressed in the 

testis and epididymis of the adult AGCR. 

v. The principal male androgen (testosterone) was remarkably elevated in the adult 

AGCR 

5.2 CONTRIBUTION TO KNOWLEDGE 

1. The results from the histology, histochemistry, ultrastructure, hormonal  profiles and 

sperm parameters showed that maximum functional reproductive activeness is in adult 

cane rat (12-30 months) which favourably positioned it as a good candidate for 

breeding programme  

2. The first report of seminiferous tubular lumen canalization, a pointer to initiation of 

spermatogenic activities during post natal development in AGCR with the first 

evidence at late pre-pubertal (4months). 

3. The presence of abundant lysosomal and lipofuschin granules found only in aged 

AGCR which is indicative of ageing 

4. The abundance of nerve fibres in the testes and epididymis of the adult AGCR can be 

associated with increased reproductive activities 

5. The marked expression of Vimentin in the testes of adult AGCR can be attributed to 

optimum anchorage of spermatids an important factor in spermiation  



 
 

233 
 

5.3 Further Research 

As part of my future research plan, I hope to unravel age-related changes in the 

morphophysiology of the accessory sex glands (prostate, seminal vesicle, bulbourethral and 

coagulating glands), pituitary gland and brain centres involved in the regulation of 

reproduction in African greater cane rats. 
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