ANTISICKLING ACTIVITIES OF CASSIA SIEBERIANA DC (LEGUMINOSAE)

BY

OMOLOLA TEMITOPE FATOKUN

Matric No. 202861

B. Pharm (Ife), M.Sc. Pharmacognosy (Ife)

A Dissertation Submitted to the Department of Pharmacognosy, Faculty of Pharmacy in partial fulfillment of the requirement for the Degree of

MASTER OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN

SEPTEMBER, 2019

ABSTRACT

Sickle Cell Disease (SCD) affects primarily black populations. There are few drugs available for the management of SCD with deleterious side effects complicating the condition. Although many plants including *Cassia sieberiana* have been documented in the management of SCD, there is paucity of scientific evidence for their effectiveness and bioactive constituents. This study was designed to investigate the antisickling activities of morphological parts of *C. sieberiana*, isolate and characterise their constituents.

The powdered samples of *C. sieberiana* (FHI- 112359) root, seed, pericarp and whole fruit were extracted into 70% ethanol by Soxhlet extraction and water by reflux. The extracts were used to either inhibit or reverse sodium metabisuphite-induced sickling of HbSS erythrocytes from SCD patients in steady state, *in vitro*. The ethanol extract of the most active plant part (whole fruit) was successively partitioned to give *n*-hexane, dichloromethane (DCM), ethyl acetate (EtOAc) and aqueous fractions. The fractions were screened for inhibition and reversal of sickling and inhibition of haemoglobin polymerisation. The percentage of inhibition, reversal and rate of decrease in HbSS polymerisation were calculated. The DCM and EtOAc fractions were purified using column and vacuum liquid chromatographic (VLC) techniques. Chromatographic fractions were screened for inhibitory and reversal activities and the active fractions were further purified using column and preparative thin layer chromatography to isolate compounds. Structures of isolated compounds were identified using 1D and 2D NMR (¹H and ¹³C). Data were analysed using one-way ANOVA followed by Student t-test at $\alpha_{0.05}$.

The ethanol extract of *C. sieberiana* whole fruit (CSF) at 180 minutes, exhibited the highest inhibitory activity $(83.7\pm1.3)\%$ compared to seed $(65.7\pm2.2)\%$, pericarp $(10.9\pm1.2)\%$ extracts and was significantly different from vanillic acid-reference standard $(50.4\pm0.4)\%$ and water whole fruit $(51.4\pm1.6)\%$ extract, while the root ethanol extract lysed the erythrocytes. The root ethanol extract exhibited a reversal activity of $(88.9\pm0.8)\%$, compared to whole fruit $(82.3\pm0.8)\%$, seed $(82.2\pm1.0)\%$ and pericarp extracts $(55.6\pm1.4)\%$; para hydroxy benzoic acid reference standard $(86.0\pm0.6)\%$ and water whole fruit extract $(84.4\pm1.9)\%$. The CSF exhibited both

inhibitory and reversal activities and also decreased the rate of HbSS polymerisation by (73.5 ± 0.06) %. The DCM and EtOAc fractions exhibited comparable inhibitory (77.9 ± 1.1) %; (77.3 ± 2.9) % and reversal (73.5 ± 1.4) %; (76.8 ± 3.8) % activities, respectively. The EtOAc and aqueous partitioned fractions decreased the rate of HbSS polymerisation by (80.6 ± 0.02) % and (84.2 ± 0.03) %, respectively, which were significantly lower than that of ascorbic acid (92.3 ± 0.002) %. The DCM column fractions B₃ and D₃ exhibited inhibitory activities of (87.9 ± 0.1) % and (91.7 ± 1.5) %, respectively, which were significantly higher than the activities of all other column fractions. Fractions B₃ (70.7±1.6)% and D₃ (86.2±1.4)% also exhibited reversal activities. Nine phenolic compounds were isolated from; EtOAc fraction (E2, E3 and E4) and DCM fraction (M2, M3, G2, G3 and G4). One of the compounds - E3 was characterised as 4'-methoxy-epiafzelechin.

The use of *Cassia sieberiana* in the management of sickle cell disease in ethnomedicine has been justified. The isolated compounds, especially 4'-methoxy-epiafzelechin could serve as potential templates for the development of therapeutic agents with anti-sickling properties.

DEDICATION

I dedicate this project to GOD ALMIGHTY, the all Knowing ONE, who is my strength, shield, pillar and fortress.

ACKNOWLEDGEMENT

All glory and thanks to God for being my help and guide all through the period this study was carried out.

My gratitude goes to my supervisor, Prof. J.O. Moody and Prof. A.A Elujoba for their invaluable contributions, care, support and patience during the course of this research. They birthed and fanned to flame my passion for research especially in the field of sickle cell anaemia.

I give thanks to the entire staff of the Department of Pharmacognosy, especially Prof. Mubo Sonibare, Dr Taiwo Elufioye, Dr Omonike O. Ogbole and Prof. Edith O. Ajaiyeoba. Special thanks to Dr Ajayi, Mr Adeyemi, Dr Alfred and members of the Phytotherapy research group. Thanks to the Department of Chemistry and Central Science Laboratory staff, for their assistance in carrying out some laboratory activities. Special thanks to staff of Medicinal Plant Research and Traditional Medicine (NIPRD) especially Prof. Yemisi Kunle, Dr Jemilat Ibrahim and Dr Henry Egharevba and Dr Sam Okhale for their supervision and contributions.

My sincere gratitude goes to Yemi Fabusuyi and all my colleagues especially Esievo Kevwe Benefit, Mr Adamu Aliyu and Mr Nkumah Abraham. I am thankful for the care, help and moral support you gave me through the course of this project.

My sincere love and gratitude go to my sweet hearts Oladele, Oluwadunsi, Oluwadarasimi, and my family for all the love, care, prayers and support given to me.

I am thankful to you all and I love you all.

Fatokun Omolola Temitope

CERTIFICATION

I certify that this project was carried out under my supervision, by Mrs Omolola Temitope Fatokun of the Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo state, Nigeria.

.....

DATE

Professor J.O. MOODY

SUPERVISOR

Department of Pharmacognosy,

Faculty of Pharmacy,

University of Ibadan,

Ibadan, Nigeria.

TABLE OF CONTENTS

Page

Title		i
Abstra	act	ii
Dedic	ation	iii
Ackno	owledgement	iv
Certif	ication	v
Table	of Contents	xi
List of	f Tables	xiv
List of	f Plates	XV
List o	List of Figures	
Abbre	Abbreviations	
CHA	PTER ONE: INTRODUCTION	
1.0.	Introduction	1
1.0.1	Background to the Study	1
1.1.	Sickle Cell Anaemia	2
1.1.1	Genetic / Molecular Nature of Sickle Cell Anaemia	2
1.1.2	The sickling process	4
1.2.	Prevalence of Sickle Cell Anaemia	6
1.3.	Signs, Symptoms and Complications of Sickle Cell Anaemia	7
1.4.	Diagnosis of Sickle Cell Disease	8
1.5.	Management of Sickle Cell Anaemia	8

1.5.1.	Non Therapeutic Management	9
1.5.2.	Therapeutic management	10
1.5.2.1	. Chemotherapeutic management	10
1.5.2.2	2. Surgery and Transfusion	12
1.6. Et	hnomedicinal management of SCD`	12
1.7.	Compounds with anti-sickling activities	15
1.8.	Commercially-available herbal products for the management	
	of Sickle Cell Disease	18
1.9.	Models of Anti-sickling Assay	19
1.9.1	Methods of testing anti-sickling agent's in-vitro	19
1.9.1.1	Blood-agar plate test	19
1.9.1.2	2 Modified in vitro Anti-sickling Assay (Inhibitory/Reversal)	19
1.9.1.3	3. In vitro Antisickling Assay using Slide Technique	20
1.9.1.4	Inhibition of HbSS Polymerization	20
1.9.1.5	5 Membrane Stability Assay	21
1.9.2	Methods of testing anti-sickling agent's in-vivo	21
1.9.2.1	Transgenic Mice	22
1.9.2.2	2 Transgenic mouse models	22
1.9.2.3	3. The use of transgenic mouse in screening anti-sickling agents	23
1.10.	Justification of Study	23

1.11	Research Questions	24
1.12	Aim and Objectives of Study	24
CHA	PTER TWO: LITERATURE REVIEW	
2.0	Literature Review	25
2.1	Scientific Classification of Cassia sieberiana DC	25
2.2	Geographic Distribution of C. sieberiana	26
2.3	Botanical Distribution of C. sieberiana	26
2.4	Ethnomedicinal Uses of C. sieberiana	32
2.5	Pharmacological Properties of C. sieberiana	33
2.6	Toxicity of <i>C. sieberiana</i>	34
2.7	Chemical Constituents of C. sieberiana	35

CHAPTER THREE: MATERIALS AND METHODS

3.0	Materials	38
3.1	Apparatus and Equipment	38
3.2	Chemicals and Reagents	38
3.3	Methods	39
3.3.1	Plant Collection, Identification and processing.	39
3.3.2	Methods of Extraction	39
3.3.3	Ethanol (70 % (v/v)) soxhlet extraction	39
3.3.4	Bulk extraction of Cassia sieberiana whole fruit	39

3.3.5 Aqueous Extraction	39
3.3.6 Preparation of extract solutions for anti-sickling experiments	40
3.3.7 Preparation of Reagents	40
3.3.7.1 Sodium metabisulphite solution (2% w/v)	40
3.3.7.2 Phosphate buffered saline solution	40
3.3.7.3 Preparation of Reference Standards (experimental controls)	40
3.3.7.4 Potassium hydroxide 5% (w/v)	40
3.3.7.5 Ferric chloride 2% (w/v)	40
3.4. Anti-sickling experiments	41
3.4.1 In vitro Anti-sickling (inhibitory) assay	41
3.4.1.1 Preliminary inhibitory assay	41
3.4.1.2 Inhibitory assay	42
3.4.2. In vitro Anti-sickling (reversal) assay	42
3.4.2.1 Preliminary reversal assay	42
3.4.2.2 Reversal Assay	43
3.4.3 Inhibition of HbSS Polymerization	43
3.4.4 Method of calculation and Statistical Analysis	44
3.5 Chromatographic Analysis	44
3.5.1 Partitioning	44
3.5.2 Column Chromatography	44
3.5.3 Vacuum Liquid Chromatographic (VLC) Procedure	45
3.5.4 Thin Layer Chromatography (TLC)	46

3.5.5	Isolation of compounds	50
3.5.6	Spectroscopic Analysis	50
3.5.7	Preparation of fractions for anti-sickling activities	50
CHAI	PTER FOUR: RESULTS	
4.0.	Results	51
4.1	Extraction	51
4.2	Results of anti-sickling assays of C. sieberiana extracts	51
4.2.1.	Anti-sickling activities (inhibitory) of C. sieberiana extracts	51
4.2.2.	Anti-sickling activities (reversal) of C. sieberiana extracts	51
4.3.	Partitioning of C. sieberiana 70 % ethanol whole fruit extract	58
4.4.	Anti-Sickling activities of partitioned fractions	58
4.4.1.	Anti-sickling activities (inhibitory) of partitioned fractions	58
4.4.2.	Anti-sickling activities (reversal) of partitioned fractions	58
4.4.3.	Sickling Index	63
4.4.4.	Polymerization studies of partitioned fractions of C. sieberiana	
	70 % ethanol whole fruit extract (CSF).	65
4.5.	Column fractionation of Dichloromethane (DCM) Partitioned fraction	69
4.6.	Anti-sickling activities of column fractions	69
4.6.1.	Anti-sickling (Inhibitory) activities of column fractions	69
4.6.2.	Anti-sickling (Reversal) activities of column fractions	69
4.7.	VLC fractionation of Ethylacetate (EtOAc) Partitioned fraction	76
4.8.	Anti-Sickling Activities of VLC fractions	77
4.9.	Isolation of compounds	81

CHAPTER FIVE: DISCUSSION

5.0.	Discussion	87
5.1.	Extraction and Yield	87
5.2.	Anti-sickling assays.	87
5.2.1.	Sickling Index	88
5.2.2.	Anti-sickling activities of extracts (Inhibition)	89
5.2.3.	Anti-sickling activities of extracts (Reversal)	90
5.3.	Chromatographic analysis of C. sieberiana whole fruit extracts	91
5.3.1	Partitioning of Cassia sieberiana 70 % ethanol whole fruit extract	91
5.3.2	Column chromatography of Dichloromethane (DCM) partitioned fraction	93
5.3.3	Vacuum Liquid chromatography (VLC) of ethylacetate partitioned fraction	194
5.3.4	Spectral Assignment of EA _{2fla}	97
5.4.	Conclusion	103
5.5.	Contribution to knowledge	103
5.6.	Recommendation and Future direction	103
REFERENCES		104
APPE	APPENDICES	

84

LIST OF TABLES

Table 1.1: Some plants with reported anti-sickling activities	12
Table 3.1: Column chromatography of DCM partitioned fraction	48
Table 3.2: VLC chromatography of EtOAc partitioned fraction	49
Table 4.1: Percentage yield of C. sieberiana Extracts	52
Table 4.2: Preliminary antisickling properties of <i>C. sieberiana</i>	53
Table 4.3: Yield of Partitioned fractions of Cassia sieberiana 70 % ethanolwhole fruit extract	59
Table 4.4: Rate of Decrease in Polymerization (RDP) by partitioned	
fractions of C. sieberiana 70 % ethanol whole fruit extract	64
Table 4.5: Weights of column fractions from Dichloromethane (DCM)	
partitioned fraction	70
Table 4.6: Inhibitory activities of column fractions from Dichloromethane	
(DCM) partitioned fraction	71
Table 4.7: Weight of VLC fractions from Ethylacetate (EtOAc) partitioned	
fraction	78
Table 4.8: Phytochemical profiling of isolated compounds	81
Table 4.9: Retardation factors of isolated compounds	83
Table 5.1: Spectra Assignments (¹ H) for EA _{2fla}	100
Table 5.2: Spectra Assignments (¹³ H) for EA _{2fla}	101

LIST OF PLATES

5

Plate 1: Capillary Flow of Normal and Sickled red blood cells

LIST OF FIGURES

Figure 1.1: Some example of Inheritance Patterns for Sickle Cell Anaemia Genoty	/pe3
Figure 1.2: Structures of phyto-compounds with anti-sickling activities	17
Figure 2.1: Whole plant of Cassia sieberiana DC	27
Figure 2.2: Leaves of Cassia sieberiana	28
Figure 2.3: Fruit pods (unripe and ripe) Cassia sieberiana	29
Figure 2.4: Seeds of Cassia sieberiana	30
Figure 2.5: Flowers of Cassia sieberiana	31
Figure 2.6: Structures of compounds present in Cassia sieberiana DC	37
Figure 4.1: Antisickling Activities (inhibitory) of crude extracts of various morphological parts of <i>C. sieberiana</i>	54
Figure 4.2: Antisickling Activities (reversal) of crude extracts of various morphological parts of <i>C. sieberiana</i>	55
Figure 4.3: Photomicrographs showing inhibitory activities of <i>C. sieberiana</i> 70 % ethanol extracts at 90 minutes	56
Figure 4.4: Photomicrographs showing antisickling activities of controls	57
Figure 4.5: Anti-sickling activities (inhibitory) of partitioned fractions	60
Figure 4.6: Anti-sickling activities (reversal) of partitioned fractions	61
Figure 4.7: Rate of sickling in HbSS blood samples (Inhibitory assay)	62
Figure 4.8: Rate of sickling in HbSS blood samples (Reversal assay)	63
Figure 4.9: Antisickling activities (Inhibitory) activities of column fractions	
from DCM partitioned fractions of CSF at 2mg/mL	72

Figure 4.10: Antisickling activities (Inhibitory) activities of column fractions from

DCM partitioned fractions of CSF at 1mg/mL	73
Figure 4.11: Antisickling activities (Reversal) of column fractions from	
DCM partitioned fractions of CSF at 2mg/mL	74
Figure 4.12: Antisickling activities (Reversal) of column fractions from	
DCM partitioned fractions of CSF at 1mg/mL	75
Figure 4.13: Photomicrographs showing inhibitory activities of DCM column	
fractions B_3 and D_3 (1mg/mL) at 180 minutes	76
Figure 4.14: Photomicrographs showing reversal activities of column fractions	
B ₃ and D ₃ (2mg/mL) at 90 minutes	77
Figure 4.15: Antisickling activities (Inhibitory) of VLC fractions from	
Ethylacetate partitioned fractions of CSF at 1mg/mL	79
Figure 4.16: Antisickling activities (Reversal) of VLC fractions from ethyl	
Acetate partitioned fractions of CSF at 1mg/mL	80
Figure 4.17: Assignment of Chemical shift for EA _{2fla}	85
Figure 4.18: Lyses of red blood cells	8

LIST OF ABBREVIATIONS

- SCA: Sickle Cell Anaemia
- SCD: Sickle Cell Disease
- HbSS: Haemoglobin S
- **RBCs: Red Blood Cells**
- pTLC: preparative Thin Layer Chromatography
- VLC: Vacuum Liquid Chromatography
- MeOH: Methanol
- NMR: Nuclear Magnetic Resonance spectroscopy
- ¹H: Proton NMR
- ¹³C: Carbon 13 NMR
- DEPT: Distortionless Enhancement by Polarization Transfer
- COSY: ¹H-¹H Correlation Spectroscopy
- HSQC: Heteronuclear Single Quantum Coherence Spectra
- HMBC: Heteronuclear Multiple Bond Correlation