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Abstract

The problems of pricing and hedging in �nancial market are fundamental because of

uncertainties in the market which are measured by the sensitivities of the underlying

assets. Ito calculus has been used to develop several models that deal with the

problems of pricing and hedging of options with smooth payo� functions. However,

Ito calculus becomes ine�ective when dealing with options with multiple underlying

assets, whose payo�s are non-smooth functions. Therefore, this study was designed

to consider the sensitivities of options with multiple underlying assets whose payo�

are non-smooth function.

The Malliavin integral calculus given by the Skorohod integral and the integra-

tion by part technique for stochastic variation were used to derive weight functions

of the Greeks for Best of Asset Option (BAO) and Asian Option (AO). The Clark-

Ocone formula was used to derive an extension of the Malliavin derivative chain

rule to �nite dimensional vector form. This, together with the weight functions

were used to derive expressions for the Greeks which represent the sensitivities of

the options with respect to the parameters; price of the underlying asset at initial

time S0, second derivative of the option with respect to S0, volatility σ, expiration

time T , interest rate µ, namely: δ, γ, ρ, θ and ν respectively. Randomly generated

data was used to compute the sensitivities.

The weight functions obtained were ω∆ = Wt

S0σT
, ωΓ = 1

(σT )2
1

2S2
0
(W 2

T − T −
WT

σT
), ωρ = WT

σ
, ωΘ = (

µ−σ
2

2

)
σT )WT and ων =

W 2
T−T−2WT

2σT
. The Malliavin

derivative chain rule obtained was D(g(F j
k )) =

∑n
j=1 g

′
(F j

k )DF j
k , k ≥ 1 and the

Greek expression were obtained as:

∆BAO =
e−rT

S0σT
EQ(max(Si −K)ISi>Sj , i 6= j, i, j = 1, 2...nWT ),

ΓBAO =
−e−rT

S2
0

EQ[max(Si −K)ISi>Sj , i 6= j, i, j = 1, 2...n
1

(σT )2

W 2
T − T
2

− WT
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],

ΘBAO = −e−rTEQ[max(Si −K)ISi>Sj , i 6= j, i, j = 1, 2...n(
µ− σ2

2

σT
)WT ],

ρBAO =
e−rT

σ
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νBAO =
e−rT

2σT
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T − T − 2WT )],

and
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1
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ρAO =
e−rT

σ
EQ[(

1

T

∫ T

0

Stdt− k)WT ],

ΘAO = −erTEQ[(
1
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T − T − 2WT )]

where EQ represent the expectation with respect to the equivalent martingale mea-

sure, WT is the standard Brownian motion at time T , ST is the price of the under-

lying asset at time T and K is the strike price. The computed sensitivities showed

that the risk associated with the model was minimal when there were more than

one underlying asset.

The sensitivities of options with multiple underlying assets with non-smooth

payo�s was obtained, and these can be applied in �nancial market to monitor and

minimise risk.

Keywords: Multiple underlying assets, Best of asset options, Asian options,

Greek expectation, Brownian motion.
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Chapter 1

INTRODUCTION

1.1 Introduction

We examine in this thesis, the pricing and hedging of two types of Rainbow

options namely; Asian option and Best of assets options. These types of option are

options whose payo�s are de�ned with respect to multiple underlying assets.

Rainbow Option is a particular kind of exotic option whose closed form formula

are not smooth. Rainbow options involves portfolio with more than one underlying

assets. This is most suitable for our study since our interest is pricing and hedging

in a multi- dimensional framework using Malliavin calculus.

This calculus involves the integration by part technique of the stochastic of

variation. We use this calculus to derive the expectation of the payo� function of

Rainbow Options. The study of Malliavin calculus and the applications in �nance

involve the use of integration by part formula to give a mathematical approach to

the computation of the price sensitivities.

Options whose formulas can be computed explicitly can be derived in the Ito

framework, but it is challenging to work in the Ito framework when the payo�

function are not regular. This type of payo� can be computed in Malliavin sense.

This is because one of the original ideas behind the development of Malliavin

calculus is the study of smoothness of solution of stochastic di�erential equations

with discontinuous coe�cients.

The real advantage of using Malliavin calculus by means of the integration by part

is that, it is applicable when dealing with random variables with unknown density

functions and when there are options with non smooth payo�s.

Malliavin, P (1978), introduced the theory of Malliavin calculus being an in-

tegration by part procedure that has in�nite dimension with the purpose of prov-

ing results concerning the smoothness of solution densities of stochastic di�erential

equations that are driven by Brownian motion. These solution densities were shown

by Oksendal, B (2003), using probability distribution of random variables de�ned

in D1,2 (the space of Malliavin di�erentiable random variables).

Options are derivative contracts which permit its holder to buy or to sell a
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given number of derivatives (which can be a �nancial stock, a currency e.t.c) at

a given and agreed price and at a particular time τ < T which are �xed in the

contract. Options are generally classi�ed into two main classes. They are either

Call or Put option. An option is known as a Call if the person holding the option

has the right to purchase it while we refer to the option as a Put if the person

holding it has right to dispose it by way of selling the option. If the person holding

the option decides to exercise the right, the other party, who is refered to as a writer

is expected to buy the asset(s) underlying the option at a speci�ed price which is

refered to as Strike price. The option holder, that is the buyer is expected to pay

a certain amount known as the premium fee to the other party who is known as

the writer, in exchange for holding the option.

The conditions and time to exercise di�er, it is a function of the style of option in

view.

• Options style which can be exercised at the end of the contract (maturity

time) is known as European option.

• An option style that can be exercised before or at maturity time T is known

as American option.

In what follows, we shall state relevant notations that relate to the de�nition of

Call options and Put options as follows;

Let Sτ represent the market price of the underlying asset at any time τ , K is

the agreed strike price of the option, Cτ represent the Call option value at time τ

and Pτ represent the Put option value at any time τ , where τ satis�es the condition

0 ≤ τ ≤ T , then the values of the Call and Put options can be de�ned respectively

at the time of exercise as

CT = max((ST −K), 0), (1.1.1)

and

PT = max((K− ST ), 0). (1.1.2)

These types of options that is, Call and Put options are known as Vanilla options.

Apart from the Vanilla type of Options, there are other complicated types which

are generally called exotic options.

This type of option is completely di�erent from the main Vanilla in terms of the

contract payment plans, strike price and the nature of the underlying assets. Due

to the variations associated with the underlying assets, investors have opportunity

to several investment plans and strategies. One important feature of this type of
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option contract is the possibility to customize it to meet up with the investor risk

tolerance. This will enable the investor to achieve a set desired pro�t. Exotic op-

tion is a mixture of European and American options in terms of the time to exercise.

There are several examples of exotic option. This include but not limited to the

following;

Compound option: This option allows the holder the right to buy another option

at a speci�c time and at a speci�c price.

Barrier option: This type is exercised when the underlying assets attained a pre-

determine price.

Binary option: This is also referred to as digital option. e.t.c.

In this work, we speci�cally considered Asian option and Best of assets options.

These two options are also examples of exotic option. We considered these two

because, they are suitable for our study since they are option styles with more

than one underlying assets.

Asian option considered the average of the assets underlying the contract over

a certain period of time to determine if there is pro�t when compared with the

strike price.

Best of Asset option is the type that considered the maximum of the underlying

assets prices in comparison with the strike price to determine the pro�tability of

the contract.

There are two questions that often arise when dealing with options:

(1) How do we �nd a premium price at initial time τ = 0 for the option, that is, the

contract price that is acceptable to the buyer and that is acceptable to the writer?.

(2) How do we determine, at maturity time, the option value given that a premium

has been paid at initial time?. This is known as hedging problem. In other to deal

with these problems, we assume the absence of arbitrage opportunities that is, it

is impossible to obtain bene�t without taking risk.

The dynamics of pricing and hedging of options is such that at maturity time, a

�ow of the payo� h(ST ) can be guaranteed by the option owner. Then the option

owner can purchase with the premium, a portfolio that has equal �ow of price with

one of the options. This process is known as the portfolio hedging or dynamic

strategy of buying and selling of options.

We shall denote, at any time τ the value of the hedged portfolio simply as gτ ,

0 ≤ τ ≤ T and the possibility of not having arbitrage is such that

P (gT > 0) > 0 g0 = 0

3



This means that, the possibility that the portfolio will always be replicated is

positive at every time τ .

1.2 Research Question / Statement of The Prob-

lem

The problem of pricing and hedging is fundamental because of uncertainties in

the �nancial market. These uncertainties are measured by the sensitivities of the

underlying assets which can also be referred to as the derivative security.

Derivatives securities are important assets in �nancial markets. However the prices

of derivative securities are subject to �uctuation, this �uctuation is the reason

decision to invest in �nancial market becomes uncertain and highly volatile.

Hence, the question is, if there is a portfolio or a contract that has more than one

underlying assets, is it possible to use this portfolio to hedge and mitigate the risk

associated with the market uncertainties?.

1.3 Motivation of Study

This study is focused on options with multiple underlying assets geared towards

the formulation and development of e�ective hedging strategy that mitigate risks

in �nancial market. However, Ito calculus has been used to developed several

models that deal with the problem of pricing and hedging of options with smooth

payo� functions. This becomes ine�ective when dealing with options with multiple

underlying assets whose payo� are non smooth. Hence the reason for considering

Malliavin calculus, since it can handle non smooth payo� functions.

1.4 The Theoretical Framework

This study will rely on the theory of Malliavin calculus which is essential in dealing

with non smooth payo� functions.

In this regard, we shall use the fundamental theories of Skorohod integral, inte-

gration by part formula for handling Malliavin derivative of Clark Ocone formula,

divergence operator and some of the features of stochastic di�erential equations.
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1.5 Research Objectives

The objectives of this research are;

i To form an expression for pricing and hedging of Rainbow Option using the

integration by part technique of Malliavin Calculus,

ii To compute the numerical approximate results of the greeks by means of

Excel and Matlab softwares,

iii To compare the results obtained in (ii) above with the result obtained with

Black-Schole model.

1.6 De�nitions and Basic Results

In this section, we shall state some basic concepts and fundamental de�nitions that

are used in this work.

De�nition 1.1 (Stochastic Process):

A random variable X is said to be a stochastic process if X = {X(t), t ∈ [0, T ]}

is a collection of random variables on a common probability space indexed by pa-

rameter t ∈ T ⊂ R+. Stochastic process can be formulated as a function that is,

X : T × Ω −→ R, such that X(t, .) is A- measurable for each t ∈ T where Ω is a

non empty set, A is σ-algebra generated by Ω. X(t) can be written also as Xt.

De�nition 1.2 (Brownian Motion):

A stochastic process B(τ)τ∈[0,T ] is said to be a Brownian motion if the following

properties are satisfy;

• B(0) = 0 almost surely

• (B(τ)−B(s)), τ > s is independent of the past (Independent Increment)

• (B(τ)−B(s)) has normal distribution with mean 0 and variance τ − s. This
implied that, for s = 0, (B(τ)− B(0)) has normal distribution with mean 0

and variance t, that is (B(τ)−B(s)) ∼ N(0, t) (Normal increment).

• B(τ), τ > s is a continuous function of τ (Continuity of path)

Remark:

Brownian motion can be described in the setting of isonormal Gaussian processes

as we shall discuss in section 3.2

5



De�nition 1.3 (Measurable Space):

Let Ω be a non empty set, and let A, a σ-algebra, be the collection of subsets of

Ω, then the pair (Ω,A) is called a measurable space.

De�nition 1.4 (Probabiltity Space):

Let Ω be a non empty set, let A, a σ-algebra, be the collection of subsets of Ω,

and let P be probability measure such that P (Ω) = 1 and 0 ≤ P (A) ≤ 1 for every

A ∈ A, then the triple (Ω,A, P ) is refered to as a probability space.

De�nition 1.5 (Filtered Probabiltity Space):

Let Ω be a non empty set, let A, a σ-algebra, be the collection of subsets of Ω, let

P be a probability measure, if there exists (At, t ∈ [0, T ]), a family of sub σ-algebra

of A, then (Ω,A, P,At) is refered to as a �ltered probability space.

Remark:

1. A sequence (fn, n ∈ N) of σ-algebra is called �ltration if fn ⊂ fn−1 ⊂ A for

every n ∈ N where A ⊂ Ω

2. (Ft, t ∈ [0, T ]) is called �ltration of the probability space (Ω,F , P ) if and only if

(i) F0 contains all subsets of any P - null set.

(ii) Fs is a sub σ-algebra of Ft, t ≥ s

Filtration can always be used with the property P (Ω) which represents the power

set of Ω such that;

(1) F0 = (∅,Ω): At the beginning, there is no information.

(2) FT = P (Ω): At the end , there is full information.

(3) F0 ⊂ F1 ⊂ ... ⊂ FT : The information available increases over time.

Filtration are used to model the �ow of information over time. At time t, we can

decide if the event A ∈ Ft has occurred or not.

De�nition 1.6 (Adapted Processes):

A sequence (Xt, t ≥ 0) of random variables is said to be adapted to a �ltration

Ft if for each t, the random variable (Xt is Ft- measurable, that is, for any t, Ft
contains all the information about Xt.
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De�nition 1.7 (Martingale):

A stochastic process M(t) (if t is continuous, then, 0 ≤ t ≤ T , or if t is discrete,

then t = 0, 1, ..., T ), adapted to a �ltration Ft, is a martingale if for any t, M(t)

is integrable, that is E|M(t)| < ∞ and for any t and s, such that 0 ≤ s ≤ t ≤ T ,

then E(M(t)/Fs) = M(s)

De�nition 1.8 (Super Martingale):

A stochastic process M(t), t ≥ 0, adapted to a �ltration Ft, is a super martingale

if for any t, M(t) is integrable, that is E|M(t)| <∞ and for any t and s, such that

0 ≤ s ≤ t ≤ T , E(M(t)/Fs) ≤M(s)

De�nition 1.9 (Sub Martingale):

A stochastic process M(t), t ≥ 0, adapted to a �ltration Ft, is a sub martingale if

for any t, M(t) is integrable, that is E|M(t)| < ∞ and for any t and s, such that

0 ≤ s ≤ t ≤ T , E(M(t)/Fs) ≥M(s)

Remark:

A stochastic process that is both super martingale and sub martingale is a martin-

gale.

De�nition 1.10 (Black Schole Financial Market):

A market, in the Black-Schole sense is made up of an asset that is risk free A and

an asset that is risky S.

The price of the risk free asset A is expected to satisfy the di�erential equation

dA(τ) = rA(τ)dτ A(0) = 1 (1.6.1)

which is an ordinary di�erential equation, provided the interest rate r is constant.

The solution of equation (1.6.1) is

A(τ) = Aτ = erτ

satis�es the price process of the risk free asset.

If the interest rate r is a non-negative adapted process, then r will satisfy the

condition that ∫ T

0

rτdτ <∞
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The price of the asset that is risky S is expected to have the dynamics

dS(τ) = κS(τ)dτ + σS(τ)dB(τ) S(0) = S0, S(τ) = Sτ , τ ∈ [0, T ] (1.6.2)

a stochastic di�erential equation (SDE).

The solution

S(τ) = S0 exp((κ− σ2

2
)τ + σB(τ))

of the stochastic di�erential equation (1.6.2) shown by Kloeden P.E and Platen.E

(1999) satisfy the price process of the risky asset S where S0 represents the initial

price of the asset S, κ is the drift term which is taken to be constant, σ represents

the volatility of the process which is also known as the noise term, this volatility is

also assumed to be constant, B = {B(τ), τ ∈ [0, T ]} represents a Brownian motion

de�ned on a �ltered probability space (Ω,A, P,Aτ ), and {Aτ , τ ∈ [0, T ]} is a �ltra-
tion, that is the �ow of available information determined by the Brownian motion.

If an investor invested the sum χ > 0 in an asset described in line with Black-

scholes market, assumed N(τ) represents the quantity of the risk-free assets while

N (τ) represents the quantity of risky assets that an investor owned at time τ , then

we can de�ne the following terms;

De�nition 1.11 (Trading Strategy):

Trading strategy is also known as dynamic portfolio. A strategy described the

investment of an investor in each asset at any time τ ∈ [0, T ], that is, the ratio of

amount of money invested in each asset in a portfolio. Meanwhile, a trading strat-

egy or dynamic portfolio process %(τ) described how the investment were combined

and its de�ned as

%(τ) = (N(τ),N (τ)), τ ∈ [0, T ]

so ∫ T

0

|Nτκτ |dτ <∞,
∫ T

0

Nτrτdτ <∞

and x = N0 +N0S0 a.s

De�nition 1.12 (Self Financing Portfolio):

A self �nancing portfolio is also known as a self �nancing stategy. A portfolio or

a stategy is said to be self �nancing if all the changes in the portfolio are due to

gains realized on investment, that is no fund are borrowed or withdrawn from the

portfolio at any time.
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De�nition 1.13 (Wealth Process):

The wealth at time τ which represents the portfolio value is given by

W(τ) =Wτ (%)

= NτAτ +NτSτ
= Nτe

rτ +NτSτ

The investor gain(the gain process) Gτ (%) will satisfy

Gτ (%) =

∫ τ

0

NsdAs +

∫ τ

0

NsdSs

The process % is self-�nancing provided that we cannot have an inward and outward

movement of money into the market so that the wealth process satis�es,

Wτ (%) =W0(%) + Gτ (%), τ ∈ [0, T ]

= x +

∫ τ

0

NsdAs +

∫ τ

0

NsdSs

Let the discounted process be given by

S̃τ = A−1
τ Sτ

= e−rτSτ

S̃τ = S0 exp

(∫ τ

0

(
κs − rs −

σ2
s

2

)
ds+

∫ τ

0

σsdBs

)
then we can write the discounted portfolio as

W̃τ (%) = A−1
τ Wτ (%)

= e−rτ (Nτe
rτ +NτSτ)

= Nτ +Nτe−rτSτ

= Nτ +Nτ S̃τ

Di�erentiating W̃τ we get

dW̃τ (%) = NτdS̃τ
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Integrating, we get

W̃τ (%) = x +

∫ τ

0

NsdS̃s

= x +

∫ τ

0

(κs − rs)NsS̃sds+

∫ τ

0

σsNsS̃sdBs (1.6.3)

Therefore, for a self �nancing portfolio,

α = W̃τ (%)−NτSτ

= x +

∫ τ

0

NsdS̃s −NτSτ

Note: (1.6.3) becomes a local martingale if κs = rτ .

De�nition 1.14 (Tamed Trading Strategy):

A trading strategy denoted as % is said to be tamed if its associated wealth process

is always non-negative i.e Wτ (%) ≥ 0, τ ∈ [0, T ].

De�nition 1.15 (Arbitrage):

Arbitrage is de�ned as a stategy that gives opportunity to make a pro�t out of

nothing without taking any risk.

A self-�nancing strategy which satis�es the conditions

(1) W0(%) = 0

(2) P (WT (%) ≥ 0) = 1

(3) P (WT (%) > 0) > 0

is called an arbitrage.

If we have a self �nancing portfolio, and the manager fail to consider in his decision

when the value of the portfolio is renegotiated, with respect to the underlying asset

value, then the di�erence at time ∆τ in the portfolio value is subject to the dif-

ference in the option value and in the interest on the inverted cash at hand given as,

Wτ −NτSτ = Nτe
rτ

Wτ = NτSτ +Nτe
rτ

dWτ = NτdSτ + (Wτ −NτSτ )rdτ

= rWτdτ +Nτ (dSτ − rSτdτ

10



The problem of pricing and hedging involves looking for a portfolio strategy which

is self �nancing and that can replicate the terminal �ow h(ST ), that is W(T, ST ) =

h(ST )

This problem can be interpreted as �nding two kinds of su�ciently regular func-

tions, that is functions that are continuously di�erentiable along it sample path,

denoted as v(τ, x ) and N (τ, x ) which are described as

dv(τ, Sτ ) = v(τSτ )rdτ +N (τ, Sτ )(dSτ − rSτdτ)

W(T, ST ) = h(ST )

N (τ, Sτ ) is the hedging portfolio of the derivative with payo� function h(ST )

The investors that engage in the trading of derivative securities are of three types;

they are refered to as Hedgers, Speculators and the Arbitrageurs. These are de�ned

as follows;

De�nition 1.16 (Hedgers):

This group uses options and other derivatives to reduce the risk that they face from

potential future movement in market variables such as underlying asset price, in-

terest rate, volatility e.t.c. Hedgers prefer to forgo the chance to make exceptional

pro�ts, even if future uncertainty appears to work to their advantage by protecting

themselves against exceptional loss.

De�nition 1.17 (Speculators):

This group uses options and other derivatives to bet on the future direction of a

market. They take the opposite position to hedgers in the sense that, they are

always out to make opportunistically high pro�ts. Speculators are needed in �nan-

cial markets to make hedging possible, since a hedger wishing to lay o� risk cannot

do so unless someone is willing to take it on.

De�nition 1.18 (Arbitrageurs):

This group like to lock in riskless pro�t by simultaneously entering into transac-

tions in two or more markets. An arbitrage opportunity exists if for example, a

security can be bought in south at one price and sold at a slightly higher price in

the north at the same time.

Remark:

In this work, we shall assume that there are no arbitrage opportunities. This elim-

inates the presence of arbitrageurs.
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De�nition 1.19 (Predictable Process):

A stochastic process X(t), t ∈ [0, T ] is said to be predictable if it is measurable

with respect to the σ-�eld on (Ω× R+) generated by an adapted processes.

De�nition 1.20 (Local Martingale):

A local martingale M(t), t ≥ 0 is an adapted process such that there exists a

sequence of stopping time Tn satisfying the condition that

Tn ≤ Tn+1;Tn −→ +∞

as

n −→ +∞,

and for any n ∈ N, (Mt ∨ Tn)t≥0 is a martingale.

A stopping time is a random variable T : Ω −→ R−+ such that (T ≤ t) ∈ Ft, t ∈
R+. When working with local martingale, we can revert to the study of martingale

by introducing the sequence Tn. Rose-Anne. D and Monique. J (2007)

De�nition 1.21:

Assume P and Q are equivalent probability measure de�ned on (Ω,A), the measur-

able space, then Q is a risk-less measure that is, an equivalent martingale measure

(EMM) provided the process

S̃τ = A−1
τ Sτ

= e−rτSτ

is a discounted process and it is a local martingale with respect to the probability

measure Q.

Remark:

A stochastic process χτ is a sub-martingale respectively(a super-martingale) if and

only if χτ = Mτ + Ãτ respectively (χτ = Mτ − Ãτ ). Ã represent an increasing

predictable process andM represent the local martingale.

If we let στ > 0 ∀τ ∈ [0, T ] and
∫ T

0
‖ϑs‖2ds <∞ a.s where

ϑ =
κτ − rτ
στ
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then a local (positive) martingale process is de�ned as

Jτ = exp

(
−
∫ τ

0

ϑsdBs −
1

2

∫ τ

0

‖ϑs‖2ds

)
provided

E
(

exp

(
−
∫ T

0

ϑsdBs −
1

2

∫ T

0

‖ϑs‖2dτ

))
= 1

then the process Jτ is refered to as martingale where the measure Q and it equiv-

alent measure P are related as dQ
dP

= JT such that

W̃τ =Wτ +

∫ τ

0

ϑsds

under Q represents a Brownian motion, Eric Fournie et al (1999).

Therefore under probability measure Q, the price process will be de�ned as

Sτ = S0 exp

(∫ τ

0

(rs −
σ2

2
)ds+

∫ τ

0

σsdB̃s

)

and the discounted price process forms a local martingale, Steven,(2004)

S̃τ = A−1
τ Sτ

= S0 exp

(∫ τ

0

σsdB̃s −
1

2

∫ τ

0

σ2
sds

)
The discounted wealth process of any self-�nancing strategy is also a local martin-

gale, therefore,

W̃t(%) = x +

∫ τ

0

NsdS̃s

= x +

∫ τ

0

σsNsS̃sdW̃s

If there are no opportunities for arbitrage, then

EQ
(∫ T

0

(σsNsS̃s)2ds

)
<∞

This implies that W̃τ is a martingale under measure Q. Using the property of

martingale, Rose-Anne.D and Monique. J (2007), we have

EQ(g̃T (%)) = g0(%) = 0

13



Remark:

Subsequently, to reduce ambiguity in our notations, we shall write the expectation

of any process with respect to probability measure Q, EQ(.) simply as E(.)

De�nition 1.22 (Admissible):

If Wτ is bounded from below by some �xed real numbers, then the strategy is said

to be admissible. If the value process of a portfolio % satis�es Wτ (%) ≥ 0 for a

pre-investment x > 0, that is, the initial amount invested in the risk free asset,

then the portfolio is refered to as admissible.

Remarks:

1) The class of admissible portfolio do not permit arbitrage opportunity. This mean

that the condition

E(W̃T (%)) ≤ W0(%) = 0

is satis�ed. Hence, WT (%) = 0 with respect to measure Q. This contradict the

assumption P (gT (%) > 0) > 0.

2) Suppose στ is a uniformly bounded process, then {S̃τ , 0 ≤ τ ≤ T}, a discounted
price process is a martingale with respect to measure Q.Steven. E. S (2004).

De�nition 1.23 (Replicating Portfolio):

A portfolio is said to be a replicating portfolio if the portfolio consists of cash de-

posit and a certain unit of assets that can re-generate themself over time t. The

idea is to keep this unit of assets constant over a small time δt.

The changes that occured in the portfolio has two sources;

1) Asset price �uctuation and

2) The interest accrued on the cash deposit over time.

De�nition: 1.24 (Complete Market):

A complete market is a �nancial market where every contingent claim which is also

known as �nancial derivative is replicable, otherwise, it is incomplete.

Remarks:

(1) By �nancial derivative, it means that the value of �nancial instuments, for

example, option contract are derived from the underlying assets and not

derivative, that is di�erentiation.

(2) If C is a contingent claim whose price x ∈ R is arbitrage free, then there is

an admissible strategy % such that C =Wx ,%
T a.s.
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(3) If a �nancial market is completely free from having arbitrage opportuni-

ties, then any claim C has a unique arbitrage free price, Rose-Anne. D and

Monique. J (2007)

x = E(e−rTC)

(4) In incomplete market, there is generally no possibility for portfolio to repli-

cate.

De�nition 1.25:

Suppose that an investor holds a Call option with strike price K. If τ = 0 is the

time when the Call option was acquired and S(τ) is the price of the underlying

asset at time τ , then, if at maturity time T ,

• S(T ) > K, then, the option is in the money.

• S(T ) = K, then, the option is at the money.

• S(T ) < K, then, the option is out of the money.

1.6.1 Change of Probability Measure

In this section, we consider the relationship between the probability measure P and

the risk neutral measure Q. The price process S(t) is de�ned on the probability

space (Ω,A, P ) with probability measure P . When a model is neutral with respect

to risk, that is when an investment in the riskless assets could yield the same return

as the investment in the risky assets, then a no arbitrage opportunity position is

attained. To attain this position, there is a need to change from probability mea-

sure P to a risk-neutral measure Q.

The connection between the two probability measures shall be discuss in what fol-

lows

Let Ω be a non empty set, and let A ⊂ Ω. If $1, $2 ∈ Ω then P ($1) = p,

and P ($2) = 1− p, implies that $1, $2 are compliments where 0 < p < 1

De�nition 1.26:

The probability measure P is said to be equivalent to the probability measure Q

expressed as (P ∼ Q), if P and Q have equal null sets such that

Q($) = 0
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if and only if

P ($) = 0

$ ∈ Ω.

If Q($1) = q and Q($2) = 1− q, where 0 < q < 1 then we de�ne the relation

∧(A) =
Q(A)

P (A)

as the ratio of the two probability measures P and Q. Steven. E. S (2004). This

implies that

∧($1) =
Q($1)

P ($1)
=
q

p

and

∧($2) =
Q($2)

P ($2)
=

1− q
1− p

.

So by de�nition of ∧(A), ∀ A ⊂ Ω,

Q(A) = P (A) ∧ (A)

If υ is a random variable, then it expectation with respect to the probability mea-

sure P is de�ned as

EP (υ) = υ($1)P ($1) + υ($2)P ($2)

= pυ($1) + (1− p)υ($2)

and with respect to the probability measure Q, it is de�ned as

EQ(υ) = υ($1)Q($1) + υ($2)Q($2)

= qυ($1) + (1− q)υ($2)

= υ($1)∧($1)P ($1) + υ(2)∧($2)P ($2)

= EP (∧υ)

let H = ∧υ, then

EP (υ) = H($1)P ($1) +H($2)P ($2)

= EP (H)
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If υ = 1, then EQ(υ) = EP (∧) = 1

If we consider a random variable ∧ > 0 where EP (∧) = 1 and

Q($k) = ∧($k)P ($k) > 0, k = 1, 2

then

Q(Ω) = Q($1) +Q($2)

= ∧($1)P ($1) + ∧($2)P ($2)

= EP (∧) = 1

So ∧ is strictly positive random variable. This implies EP (∧) = 1 and Q($) =

∧($)P ($), EQ(υ) = EP (∧υ), for any equivalent change of measure.

Change of Measure for Normal Random Variables

Here, we consider a change of measure with respect to the normal random variable

distributed normally with mean κ and variance 1.

Let fκ(x ) be the probability density function of a random variable x normally dis-

tribution such that x ∼ N(κ, 1), with mean κ, a real number and variance 1 and

let Pκ be the probability measure of N(κ, 1) on R, (B , (R)). then

fκ(x ) =
1√
2π
e−

1
2

(x−κ)2

= f0(x )eκx−
κ2

2

= f0(x )∧(x )

so

P (A) =

∫
A

f(x )dx

=

∫
A

dP

so that

dP = P (dx ) = f(x )dx

and

if a random variable χ ≥ 0 then

E(χ) = 0

17



if and only if

P (χ = 0) = 1

by the property of expectation.

So

Pκ(A) =

∫
A

∧(x )P0(dx )

= Ep(IA∧) = 0

It therefore means that P0(IA∧ = 0) = 1, where IA represents the Indicator func-

tion.

Since ∧(x ) > 0 ∀ x , then P0(A) = 0. This means that ∧ can be expressed as

∧ =
dPκ
dP0

, ∧ =
dPκ
dP0

(x ) = eκx−
κ2

2

This implies that by an equivalent change of probability measure, any N(κ, 1) prob-

ability can be determined from the N(0, 1) distribution.

Theorem 1.1(Removal of the mean):

Let γ = χ+κ where χ and γ are distributed normally as N(0, 1), then there exists

an equivalent probability Q ∼ P such that

dQ

dP
(x ) = ∧(x ) = e−κx−

κ2

2

Change of Measure on a General Space

Assume on the same space, we de�ne P and Q representing two probability mea-

sures, then we have the following;

De�nition 1.27:

Let Q(A) = 0 whenever P (A) = 0, then P is said to be equivalent to Q if P and

Q are absolutely continuous with respect to each other expressed as Q � P and

P � Q.

Theorem 1.2(Radon Nikodyn):

Randon Nikodyn derivative helps to determine all the equivalent martingale mea-

sure (EMM). Assume Q � P , then there is a random variable ∧ with ∧≥0,

EP (∧) = 1 and Q(A) = EP (∧I(A)) =
∫
A
∧dP , where A is any measurable set.

Conversely, if the random variable ∧ and Q are as de�ned above, then ∧ is a
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probability measure and Q � P . The random variable ∧ is refered to as the

Radon-Nikodyn derivative or simply as the Q density with respect to P which is

represented as dQ
dP

= ∧.
If Q� P , it means that the expectation of any integrable random variable χ with

respect to Q can be related by EQ(χ) = EP (∧χ) under P and Q.

De�nition 1.28:

Assume we de�ne on the same space P and Q representing two probabilty mea-

sures, if we have A, a set where P (A) = 0, and Q(A) = 1, then P and Q are

singular.

By singularity, it is possible to decide on the probability model with level of cer-

tainty simply by observing the outcome of the model.
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Chapter 2

REVIEW OF LITERATURE

2.1 Introduction

In this work, we consider some studies where Malliavin calculus has been ap-

plied to �nance especially in pricing and hedging of options.

Options whose formulas can be computed explicitly can be derived with the Ito

framework, but it is challenging to work in the Ito framework when the payo�

function are not regular. These types of payo� can be handled in Malliavin sense.

This is because the original idea of Malliavin calculus is to study how smooth the

densities of stochastic di�erential equations solutions are especially when they have

discontinuous coe�cients

The real advantage of using Malliavin calculus by means of the integration by part

is that, it is applicable when dealing with random variables with unknown density

functions and when we have options with non smooth payo�s.

In this chapter, we summarize some of the �ndings that have been studied over

time about the applications of Malliavin calculus in �nance

2.2 Review of Relevant Literature

A lot of work and publications have appeared in recent years about the Malliavin

calculus and its applications in pricing and hedging of options. Here, we consider

some of these literature.

Ocone, D. (1984) discovered an explicit representation of the Clark represen-

tation formula using the Malliavin derivative. This formula is refer to as Clark

Ocone formula. This formula has become famous among the users of Malliavin cal-

culus. In 1991, Ocone together with Karatzas applied the representation formula

to �nance,(and since then, di�erent authors have applied the theory to the study

of �nance). They shows that an explicit formula that can replicate the contingent
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claims portfolio can be obtained through the representation formula especially when

dealing with complete market.

Eric Fournie et al,(1999) presented a probabilistic approach to the numerical

computations of Greeks in Finance using the Malliavin Calculus principles. The

Greeks formulae they obtained were for path-dependent discontinuous pay o� func-

tional. Their result was applied to the study of European options in the Black and

Scholes model framework. When compared with the approach of Monte Carlo �nite

di�erence, the method was found to be more e�cient especially when the payo�

functional is discontinuous. Where as, the Monte Carlo �nite di�erence approxi-

mation(FDA) has a convergence rate of n−
1
4 against Eric Fournie method which

have a convergence rate of n−
1
2

Broadie and Glassermann(1996) obtained a convergence rate of n−
1
3 with the

central �nite di�erence approximation.

Ivanenko and Kulik (2003), did a study of Integral representation of the like-

lihood function and the derivative of the log- likelihood function using Malliavin

Calculus for a model that is centred on discrete time observations of the solution

to the equation of the form

dxt = aθ(xt)dt+ dzt (2.2.1)

where z represent a levy process, a : θ × R→ R represents a measurable function,

θ ⊂ R is a parametric set.

Due to the implicit nature of the likelihood function of (2.2.1), the authors used

the Malliavin Calculus to control the properties of the likelihood and log-likelihood

functions with respect to the objects involved in the model. The Malliavin Calcu-

lus becomes a tool used for showing both existence and smoothness of distribution

densities. This is crucial when studying the sensitivities of expectations with re-

spect to the parameters. Their approach follows from K. Bichteler , et al (1987)

and was used by Bally, V and Clement, E (2011), followed by Bouleau, N and

Denis, L. (2011). The integral representation for the likelihood functions together

with the di�erential of the log-likelihood function in terms of the parameter were

used for proving the regularity of the experiment generated via set of discrete time

observations of the solution of equation (2.2.1). The representations also provide

a basis for asymptotical analysis of the behaviours of the model when sample size

increase to in�nity.
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Wanyang Dai (2013) consider the numerical schemes, the adapted solution,

and the corresponding convergence analysis in the study of uni�ed backward stochas-

tic partial di�erential equation (BSPDE) described as a vector valued function.

U(s, y) = G(y) +

∫ T

t

K(v, y, U) +

∫ T

t

(R(v, y, U)− Ũ(v, y))dW (v), (2.2.2)

where K and R are non linear partial di�erential operators that depend on U, Ũ

and their associated high order partial derivatives.

So

K(v, y, U) = K(v, y, U(v, y), ..., Ũ (k)(v, y), Ũ(v, y), ..., Ũ (m)(v, y))

R(v, y, U) = R(u, y, U(u, y), ..., U (n)(v, y))

(2,2.2) becomes a BSDE if the value of J = 0 and L does not depend on their

associated parial de�erentials but on x, V, and Ṽ which was study by Peng (1990).

Also, (2.2.2) reduces to a non linear BSPDE derived by Zariphopoulou and Musiela

in the study of optimal-utilty based portfolio chose the value of J to be zero and

allow L to depends the derivatives of V and Ṽ . The BSPDE in (2.2.2) was de-

veloped in line with the BSPDE studied by Becherer, Zariphopoulou and Musiela,

Dai . In order to solve (2.2.2), two numerical algorithms were proposed. The �rst

is an iterative scheme while the second is not exactly iterative because it require

to solve equations that is either non linear or linear at every point.

The error estimation and the error analysis or rate of convergence of the scheme

was conducted with respect to a completely discrete criterion. The analysis was

based on the theory of random �eld developed to show both the uniqueness and

the existence of adapted solutions of the Malliavin derivative of �rst and second

order with randomness environments.

Yuzuru Inahama (2014) studied rough di�erential equations driven by Gaus-

sian rough paths using Malliavian Calculus under mild assumptions on co-e�cient

vector �elds and underlying Gaussian processes. It was proved that solutions at a

�xed time is smooth in the Malliavin calculus sense.

Dahl,Mohammed,and Oksendel (2015) worked on optimal stochastic controlled pro-

cess χ(τ), whose state dynamics represent a controlled stochastic di�erential equa-

tions which has jumps, delay and noisy memory. The dynamic of χ(τ) is de�ned on∫ t
t−τ χ(s)dW (s), where W (t) is a Brownian motion, τ is the memory span, and it

involves memory due to the in�uence from the previous values of the state process.
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They derived in two di�erent ways, the necessary and su�cient maximum princi-

ples for the process χ(τ) which resulted in two set of maximum principle. The �rst

set was deduce by using Malliavin derivative techniques while the second set was

deduce by reducing the problem to a discrete delay optimal control problem.

Clyin (1989) worked on �nite di�erence approximation where he use Monte-

Carlo simulation method to approximate the derivatives of payo� of certain exotic

option. Though his approach has error because expectation of the derivatives were

approximated numerically especially when the pay o� is discontinuous.This was

�rst observed by Curran (1994) when he determine the greeks by using the expec-

tation of the payo� derivatives.

Broadie and Glasserman (1996) came up with the process of di�erentiating

the density function of the pay o� function using the likelihood ratio to determine

the greek delta. For instance, the delta obtained is represented as

∆ =
∂

∂x
EX [ϕ(X(T ))]

= E[ϕ(XX(T ))
∂

∂x
lnP (XX(T ))]

The density function in their approach require an explicit expression even though

the approach was adjudge to be e�cient.

Avellanda et al (2000) motivated by the work of Kullback-Leibler (1998) on

relative entropy maximization, developed yet another way by which the weight

function can be obtained. They worked on the inclusion of a weight functional by

taking the derivative of the pay o� function.

Benhamon (2003) studied how to characterized and choose the weights by;

(i) expressing the weights function as skorohod integrals which allow the intro-

duction of the idea of weighting function generator.

(ii) choosing the weights, he focuses on those random variable that provide a

minimum variance described as ϕ(X(T ))W

(iii) The weight with minimum variance is described as the conditional expecta-

tion of the weight given X(T ) as the process
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iv The link in the density method with the likelihood ratio was provided by the

result.

Arturo Kohatsu-Higa and Miquel Montero (2003) discussed the signi�cance of

Malliavin calculus in �nance and applied the ideas to the simulation and compu-

tation of greeks using Monte Carlo simulation. Their work focussed on European

-type option whose formula are computed explictly.Their approach shows that it is

not possible to get the integration by part formula which guarantee a small vari-

ance,because they are of the opinion that,for a minimal variance to be attained,the

probability density of the random variable must be known.

Ali, S. U (2008) studied the existence and uniqueness probability solutions of

the variational inequalities for American style of option using the main tool of the

Malliavin calculus,which was the extension of the Ito calculus. It was shown that

the American option possess a unique solution when the calculus moved from the

Ito type to the Malliavin type. This study follows from the idea of Kusuoka (1987).

Youssef El-Khatib (2009) did a study of stochastic volatility model using the

theories of Malliavin calculus in calculating the sensitivities of the price of certain

underlying. This was �rst considered by Fournie et al (1999) for deterministic

volatility models,and this became the tool for studying the case of the stochastic

volatility model which this author studied. The author computed the sensitivi-

ties of the price of underlying assets driven by Brownian motion which takes into

consideration the noise e�ect. In doing this,the theory of Malliavin calculus was

engaged as in the case of Fournie et al (1999)

Nicola, C. P and Piergiacomo, S (2013) studied Asian basket option's prob-

lem of hedging and pricing using the method of Quasi-Monte carlo simulation in

a Black-Schole market associated with a time-dependent volatilities.This method

as highlighted by the authoronly generated result for the delta of the price. This

Quasi-Monte Carlo simulation method was observed not independent and not suf-

�cient for evaluating the delta without the concept of the Malliavin derivative as

discussed by Sabino (2008).

Abbas-Turki, L. A and Lpeyre, B (2011) was concerned with pricing of Amer-

ican option with the aid of Monte-Carlo method and Malliavin calculus.The aim is

to use these technique to reduce the variance of the computation.This was carried

out by using the Monte-Carlo non parametric variance reduction method rather
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than using the localization function reduction method of Bally et al (2005) and

Tsitsiklis and Roy (2001) . Their method require writing the conditional expecta-

tion of the stochastic process without localization by using the Malliavin calculus

to estimate the variance based on high number of simulated path contrary to the

assumption of Abbas-Turki (2009).

Deya, A. and Tindel, S. (2013) highlighted in their study of a class of �nite

dimensional generated stochastic heat equation some results about its smoothness

and existence of solution. These results was obtained using the theories of Malli-

avin calculus and the pathwise estimates for integrals generated by rough signals.

Yaozhong, H., Nualart, D. and Xiaoming, S (2011) did a study of backward

stochastic di�erential equation(BSDE) which has a general terminal value and a

general random generator both of which are not particularly from a forward equa-

tion.The authors obtained by Malliavin calculus,the convergence scheme for the

Lp-Holder continuity solution of the BSDE and several numerical approximation

was obtained for the scheme.The study did not speci�cally assumed any terminal

value, which means that the terminal value could be any random variable and that

the generator can also be any random variable that is Ft - measurable. Due to

the problem in constucting a numerical scheme for the BSDE with adapted pro-

cess,and the approximation of the adapted process,Zt, Malliavin calculus becomes

the appropriate tool since the random variable (the adapted process) is writen as

Zt = DtYt as shown by Karoui et al(1997) and used by Zhang, J (2004) and Ma, J

(2002), where Yt represent trace of Malliavin derivative

Samy, J. and Saporito, Y. F. (2018) developed an approach that is centered

around the theories of Malliavin calculus to compute the sensitivities of path-

dependent derivative security. They considered in the Ito calculus framework, a

measure of path-dependence of functionals and time functional derivatives which

are use for the classi�cation of functionals with respect to the degree of path-

dependence. They use the Malliavin calculus integration by part technique for the

computation of the sensitivities for path- dependence derivative securities.Through

this technique, the weighted expectation formula for the greeks were obtained.

Federico, D. O and Ernesto, M (2014) use the theory of integration by part

technique of the Malliavin calculus and the method of likelihood ratio and �nite dif-

ference to compute the greeks for exponential Levy model. Exact formula for greeks

of European option were obtained via the likelihood ratio method and the Malli-

avin calculus. The authors also worked using the method of fast Fourier transform
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in �nding an approximation and the associated error which shows a considerable

improvement when compare with the Black-Schole model. An approximation was

also obtained for the variance gamma model associated with the levy process and

the error was minimal because the error was generated by approximation of the

integral.

Christian, B and Peter, P (2016) provides some necessary and su�cient con-

dition for weak and strong L2-convergenceof a discretized Malliavin derivative, sko-

rohod integral,the discrete form of Clark-Ocone formula and the continuous form.

They showed that there is a connection between the Malliavin calculus on Bernoulli

and Wiener space.

Anselm, H and Ludger, R (2018) use the principle of Malliavin calculus to

determine an explicit representation for sensitivities of Asian and European deriva-

tives where the underlying assets are driven by an exponential levy process through

the Monte-carlo procedure of the Malliavin calculus.This method takes care of the

jump in the process.

Viktor, B., Luca, P. D. and Yuliya, M. (2016) considered the pricing of deriva-

tives that has payo� with discontinuous polynomial growth.They consider underly-

ing asset whose dynamics are de�ned in the Black-Scholes setting associated with a

stochastic volatility. Three di�erent methods were considered in solving this prob-

lem. One, they consider a process by which they can tranform the initial asset

price so that the discontinuity can be eliminated. This makes the fractional Brow-

nian motion and the Wiener process discretization possible and consequently the

estimate of the rate of convergence of the discretized prices. Secondly, they con-

sidered on the fractional Brownian motion trajectory the conditional expectation

of the process. Then, a closed expression was obtained for the fractional Brownian

motion, which was used to evaluate the price. Lastly, the density of the integral

functional was calculated using Malliavin calculus as it rely on the trajectory of

the fractional Brownian motion

Kuchuk-Iatsenko, S., Mishura, Y. and Munchak, Y. (2016) considered a prob-

lem of exact price of European option in a �nancial market with stochastic volatility

de�ned by a functional of Cox-Ingersoll-Ross process or Ornstein-Uhlenbeck pro-

cess. The random variable density function that described the mean of the volatility

over time to expiration was obtained using the Malliavin calculus. With this, the

option price can be calculated with respect to minimum martingale measure es-

pecially when the Wiener process driving the dynamic of the asset price and the
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Wiener process that de�nes the volatility are uncorrelated.

Nacira, A and Oksendal, B (2018) considered an alternative method for de-

termining the optimal stochastic control of stochastic process with jumps contrary

to Peng, S. (1990) by ensuring that the coe�cient of jump and di�usion depends

on the control without considering the BSDE with second order derivative as in

the case of Oksendal. B (2017)

Youssef El-Khatib, Abdulnasser, H. J (2019) considered the general form of

the dynamics of asset price volatility as a stochastic volatility. The objective of

the study is to calculate the price sensitivities for the stochastic volatility models

using the Malliavin calculus. Their result shows that each of the price sensitivities

represent a source of �nancial risk and the result provide an improvement on the

hedging of the underlying risk.

Caroline Hillairet,Ying Jiao and Anthony, R. (2018) provides a valuation for-

mula for various kind of contracts in actuarial, using the Malliavin calculus when

the contract is generally on loss process. The expected cash �ow, according to the

authors was expressed in term of a building block in line with the Black-Schole

formula. The loss process depend on the jump and the intensity time of the count-

ing process. The building block represent the cumulated loss in line with stop-loss

contract, considered when the expected shortfall risk measure is been computed.

Julien, H., Philip Ngare and Antonis, P. (2018) works on the formula for pric-

ing European quanto options written on LIBOR rate. They use domestic forward

measure to derived the system dynamics and then consider the price of the quanto

option.The author consider the local volatility model for the LIBOR rate and the

FX rate so that smile e�ect in the �xed income and FX market might be taken

into consideration.They observed that,due to the structure of the local volatility

function, a closed form solution for quanto option does not exist.

Bilgr Yilmaz (2018) consider computing option sensitivities problems under

the condition that the underlying asset and the interest rate emanated from a

stochastic volatility model and a stochastic interest rate respectively using the the-

ory of the Malliavin calculus which leads to e�ective numerical implementation of

a running Monte-Carlo algorithm. This algorithm ,the author implied can be used

for di�erent types of option even if their payo� functions are not di�erentiable.

This is similar to our work except that the author consider a stochastic volatility

model.
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Takuji, A and Ryoichi, S (2019) consider the explicit martingale representa-

tion for random variable which are described as a functional of a levy process.The

integrands that appear in this martingale representation described by the theo-

rem of Clark-Ocone are expressed by the conditional expectation of the Malliavin

derivatives. The author extend this to random variable that are not Malliavin

di�erentiable using the Ito formula rather than the Malliavin calculus. This exten-

sion was applied to an explicit representation of locally risk-minimizing strategy of

digital option for exponential levy models. The author also discussed the Malli-

avin di�erentiabilty in terms of the levy process of digital option whose payo� is

described by an indicator function.
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Chapter 3

METHODOLOGY

3.1 Introduction

In this section, we shall discuss the theory of Malliavin calculus and its properties.

This calulus is a tool used to develop our formulations in this study.

The formulation of the Wiener process (Wiener.N,1923) as a mathematical model

of Brownian motion leads to the development in the theory of integration on a

function space and to the study of stochastics analysis.

Malliavin calculus, was introduced by Malliavin, P in 1978. This calculus is also

known as the calculus of variation with a theory which extends the calculus of

variation to the study of stochastic calculus. One of the bene�ts is that, the the-

ory gives a probabilistic proof of the Hormander criterion (Hormander .L,1967) of

hypoellipticity by relating the smoothness of the solution of a second order partial

di�erential equation with the smoothness of the law of the solution of a stochastic

di�erential equation.

Malliavin, P. (1978) studied the solution of stochastic di�erential equation

generated by Brownian noise by considering the regularity of the law of functionals

of the Brownian motion. The calculus can be adapted to both �nite dimensional

space, like Rn and in�nite dimensional space like the Wiener space.

Malliavin Calculus helps us to obtain the derivative of the functions of Brownian

motion and this derivative is referred to as Malliavin derivative.

3.2 Malliavin Calculus for Gaussian Processes

The study of Mallivian Calculus started with the concept of Gaussian Calculus,

that is, a Calculus with respect to a Gaussian �eld, and in the abstract setting with

respect to abstract Wiener Space. Mallivian Calculus is an element of stochastic

analysis that is valid for a general class of Gaussian objects namely the Isonormal
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Gaussian processes.

De�nition 3.1:

Let R represents a real separable Hilbert space (i.e R admits a countable or-

thonormal basis) with 〈·, ·〉R representing the inner product for r ∈ R, we let

||r||R :=
√
〈r, r〉R.

If Z := {Z(r), r ∈ R} is a stochastic process de�ned on the complete probability

space (Ω,A, P ) then Z is an isonormal Gaussian process provided

(i) the random variable Z(r) is a centered Gaussian random variable E(Z(r)) = 0

and variances ||r||2R ∀ r ∈ R

(ii) E[Z(g)Z(r)] = 〈g, r〉R ∀ (g, r) ∈ R2

(iii) The map r → Z(r) is linear.

We refer to the pair (Z,R) as Isonormal Gaussian process but for convenience

of notation we simply call it Z on R, a real seperable Hilbert space

Z, by the de�nition is a Gaussian process indexed by functions in some Hilbert

space which describes the covariance of Z.

De�nition 3.2: B := (Bτ )τ∈[0,T ] is a standard Brownian motion with respect

to a right - continuous �ltration (Aτ )τ∈[0,T ] if

(i) B is adapted with respect to (Aτ )τ∈[0,T ]

(ii) B0 = 0

(iii) B possess a stationary Independent increments

(iv) B is a Gaussian process that has Variance τ ∀ 0 ≤ τ0 ≤ τ1 ≤ · · · ≤ τn ≤ T ,

the random vector (Bτ1 − Bτ0 , . . . , Bτn − Bτn−1) is Centered Gaussian with

Covariance matrix Diag(τ1− τ0, . . . , τn− τn−1).The Brownian motion can be

described in the setting of isonormal Gaussian process.

Let R := L2([0, T ], dτ) be the space of deterministic functions h : [0, τ ] → R such

that
∫ τ

0
h(s)2ds <∞. then de�ne Z(r) :=

∫ T
0
r(s)dBs , r ∈ R where the stochastic

integral is de�ned in the sense of Ito calculus. By linearity of the Ito stochastic

integral,we have that

- Z is a linear map
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- E[
∫ T

0
h(s)dBs] = 0 ∀ h ∈ R

- Z is Centered Gaussian random variable with variance
∫ T

0
h(s)2ds ∀ h ∈ R

- E[
∫ T

0
g(s)dBs

∫ T
0
h(s)dBs] =

∫ T
0
g(s)h(s)ds = 〈g, h〉R ∀ (g, h) ∈ R2.

3.3 Decomposition of Wiener Chaos

Malliavin calculus on abstract Wiener space represents an in�nite dimensional

space. This space can be decomposed into orthogonal sum of subspace Rn. Giulia

Di Nunno (2009). This decomposition is obtained via the hermite polynomial. This

is because, the family of hermite polynomials constitutes an orthonomal basis for

L2(R, µ(dx)), where µd(x) = 1√
2π
e
x2

2 d(x), Schoutens. W (2000). The review of the

hermite polynomial shall be discuss in this section.

Let r ∈ R with an inner product de�ned as 〈., .〉R where R represents a real

separable Hilbert space, then we denoted by ||r||R the norm of r.

De�nition 3.3:

If Z is as de�ned in de�nition (3.1) above and it satis�es condition (2), then Z is

a centred Gaussian family of random variables

This means that {Z(r)} is classi�ed as a Gaussian family

If we have the Hilbert space R, we can always form a probability space and a

Gaussian process {Z(r)}. The mapping r → Z(r) gives a linear isometry between

R and R1 where R1 is a closed subspace of L2(Ω,A, P ). The members of R1 are

zero- mean Gaussian random variables.

So,

||Z(r)||2L2 = E(Z(r)2) = ||r||2R

If the σ-�eld G is formed by {Z(r), r ∈ R} some random variables then we

consider by the Hermite polynomial, the decompsition of L2(Ω,G, P ).

Let Hm(y) denote the mth Hermite polynomial, then

Hm(y) =
(−1)m

m!
exp

y2

2
dm

dym
(exp

−y2
2 )

m ≥ 1, such that H0(y) = 1

In the expansion of

G(τ, y) = exp(τy − τ 2

2
)
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in powers of τ, the coe�cients of the expansion represent the hermite polynomials

which can be expressed as

G(τ, y) = exp(
y2

2
− 1

2
(y − τ 2))

This function G has some particular properties i.e.

∂G

∂y
= τ exp(τy − τ 2

2
) = τG(τ, y)

∂G

∂τ
= (y − τ) exp(τy − τ 2

2
)

= (y − τ)G(τ, y)

G(−y, τ) = exp(−τy − τ 2

2
)

= G(y,−τ)

These can be compared for m ≥ 1 with the Hermite polynomials properties i.e.

H ′m(y) = Hm−1(y)

(m+ 1)Hm+1(y) = yHm(y)−Hm−1(y)

Hm(−y) = (−1)mHm(y)

These can be shown by induction as follows ;

Let m=1, from

Hm(y) =
(−1)m

m!
e
y2

2
dm

dym
(e
−y2
2 ),

we have

H ′1(y) =

(
−e

y2

2
d

dy
e
−y2

2

)′
=

(
−e

y2

2 (−y)e
−y2

2

)′
= y ′ = 1 = Hm−1 = H0(y)

Let m=2, then

H ′2(y) =

(
1

2
e
y2

2
d2

dy2
e
−y2
2

)′
=

(
1

2
e
y2

2
d

dy
(−ye

−y2
2 )

)′
=

(
1

2
e
y2

2 (−e
−y2
2 + y2e

−y2
2

)

)′
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=
1

2

(
−1 + y2

)′
= y = H1(y)

Let m=3, then

H ′3(y) =

(
−1

6
e
y2

2
d3

dy3
e
−y2
2

)′
=
−1

6

(
y + 2y − y3

)′
=

1

2

(
y2 − 1

)
= H2(y)

So,

H ′1(y) = H1−1(y) = H0(y)

H ′2(y) = H2−1(y) = H1(y)

H ′3(y) = H3−1(y) = H2(y)

showing that H ′m(y) = Hm−1(y)

Also,

(1 + 1)H1+1(y) = 2H2(y) = yH1(y)−H0(y)

=⇒ 2

(
1

2
(y2 − 1)

)
= y(y)− 1

=⇒ y2 − 1 = y2 − 1

(2 + 1)H2+1(y) = 3H3(y) = yH2(y)−H1(y)

=⇒ 3

(
−1

6
(y + 2y − y3)

)
= y

(
1

2
(y2 − 1)

)
− y

=⇒ −1

2

(
y + 2y − y3

)
=

1

2

(
y3 − y

)
− y

=⇒ 1

2

(
y3 − 3y)

)
=

1

2

(
y3 − y − 2y

)
=⇒ 1

2

(
y3 − 3y

)
=

1

2

(
y3 − 3y

)
Showing that (m+ 1)Hm+1(y) = yHm(y)−Hm−1(y)

Lastly,

H2(−y) =
1

2

(
−(y2)− 1

)
= −(1)2H2(y)

=⇒ 1

2

(
(−y2)− 1

)
= H2(y)

=⇒ 1

2

(
y2 − 1

)
=

1

2

(
y2 − 1

)
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H3(−y) = −1

6

(
(−y) + 2(−y)− (−y)3

)
= (−1)3H3(y)

=⇒ −1

6

(
−y − 2y + y)3

)
= +

1

6

(
y + 2y − y3

)
=⇒ 1

6

(
y + 2y − y3

)
=

1

6

(
y + 2y − y3

)
Showing that Hm(−y) = (−1)mHm(y)

Suppose B(τ) =
(
B1(τ), ..., Bd(τ)

)
, τ ≥ 0 is a d-dimensional Brownian motion

de�ned on its canonical probability space (Ω,A, P ) i.e Ω = C0(R+;Rd), P is the

d-dimesional Wiener measure and A is the completion of the Borel σ-�eld of Ω

with respect to P, so that the underlying Hilbert space R = L2(R+;Rd) and for

any r ∈ R, Z(r) =
∑d

i=1

∫
R+
ri(s)dB

i(s) (the wiener integral)

The next lemma shows that E(Hn and E(Hm are orthogonal if n 6= m

Lemma 3.1: [Giulia Di Nunno (2009)]

Let χ,υ represent two random variables with joint Gaussian distribution where

E(χ) = E(υ) = 0 and E(χ2) = E(υ2) = 1, then ∀ m,n ≥ 0, we have

E(Hn(χ)Hm(υ)) = 0 if n 6= m

=
1

n!
(E(χυ)n) if n = m

Lemma 3.2:[Schoutens. W (2000)]

The random variable {eZ(r), r ∈ R} forms a total subset of

L2(G) = L2(Ω,G, P )

Theorem 3.1 [Giulia Di Nunno (2009)]

L2(Ω,G, P ) can be decomposed in�nitely into orthogonal sum of subspace Rn rep-

resented as

L2(Ω,G, P ) =
∞⊕
n=0

Rn

Since the total subset of L2(Ω,G, P ) was formed by {eZ(r), r ∈ R}, then
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E(χ exp(τZ(r))) = 0 implies that χ = 0. If R is one-dimensional, then (Ω,A, P ) =

(R,B(R),U) where U represents the standard normal law with mean 0 and variance

1. We set W (h)(x) = hx for each h ∈ R, where H = R. So in R, there are two

members of norm one (i.e. 1 and -1), and we can relate them respectively with

the random variables x and −x. From Hn(−x) = (−1)nHn(x), n ≥ 1, we have

that xn has one dimension generated by Hn(x). The above theorem implies that a

complete orthonormal system is formed by the Hermite polynomial inL2(R,V)

Assume an orthonormal basis of R is represented by {ei i ≥ 1} and that

R is in�nite-dimensional. If a = (a1, a2, ...) ai ∈ N, the set of all sequences is

represented by Λ so that except for a �nite number of them, all the terms varnish.

We represent a!, for each a ∈ Λ, by

a! =
∞∏
i=1

ai! , |a| =
∞∑
i=1

ai

So that Ha(y) y ∈ RN , the generalized Hermite polynomial is de�ned as

Ha(y) =
∞∏
i=1

Hai(y) where H0(y) = 1

An orthonormal system is the family of random variables ϕa described as

ϕa =
√
a!
∞∏
i=1

Hai(Z(ei))

For any a ∈ Λ.

Let a, b ∈ Λ, we have

E

(
∞∏
i=1

Hai(Z(ei))Hbi(Z(ei))

)
=
∞∏
i=1

E (Hai(Z(ei))Hbi(Z(ei)))

=
1

a!
if a = b

= 0 if a 6= b
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3.3.1 Wiener Chaos Expansion

In the study of Stochastic analysis especially Malliavin Calculus, the Wiener-Ito

chaos expansion is important. It was shown by Ito (1951) that the expansion can

be expressed as iterated Ito integrals.

Here, we shall consider a one-dimensional Wiener process B(τ) = B(τ,$) : τ ≥
0, $ ∈ Ω where B(0, ω) = 0, de�ned on (Ω,A, P ). A real function S is such that

S(ςσ1 , ..., ςσn) = S(ς1, ..., ςn) (3.3.1)

is called symmetric given that S : [0, T ]n → R
If together with (3.3.1),

||S||2L2([0,T ]n) :

∫
[0,T ]n

S2(ς1, ..., ςn)dς1, ..., dςn <∞

then S ∈ L̂2([0, T ]n), where L̂2([0, T ]n)

If S ∈ L̂2([0, T ]n) and the set Sn is de�ned such that

Sn = (ς1, ..., ςn) ∈ [0, T ]n; 0 ≤ ς1 ≤ ς2 ≤ ... ≤ ςn ≤ T

then we have

||S||2L2([0,T ]n) = n!

∫
Sn
S2(ς1, ..., ςn)dς1, ..., dςm = n!||s||2L2(Sn)

The symmetrization of S denoted as Ŝ is de�ned over all permutations σ of

(1,...,k) by

Ŝ(ς1, ..., ςk) =
1

k!

∑
σ

S(ςσ1 , ..., ςσk)

If S is symmetric, then Ŝ = S

For example, suppose

S(ς1, ς2) = ς2
1 + ς2 sin ς1

then

Ŝ(ς1, ς2) =
1

2!

[
ς2
1 + ς2

2 + ς2 sin ς1 + ς1 sin ς2
]

A k-fold iterated Ito integral of the form
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Ik(h) =

∫ T

0

∫ τk

0

...

∫ τ3

0

(∫ τ2

0

h(τ1...τn)dB(τ1)dB(τ2)...dB(τk−1)dB(τk)

)

can be formed given h such that

||h||2L2(Sk) :=

∫
Sk
h2(τ1, ..., τk)dτ1...dτk <∞

This is because the integrand is square integrable with respect to dB(τi) at each

Ito integration and its Aτ -adapted.
Iteratively, by Ito isometry properties,

E[I2
k(r)] = E

[
{
∫ T

0

(

∫ τk

0

...

∫ τ2

0

r(τ1...τk)dB(τ1)...)dB(τk)}2

]

=

∫ T

0

E

[
(

∫ τk

0

...

∫ τ2

0

r(τ1...τk)dB(τ1)...dB(τk−1))
2]
dτk

= ... =

∫ T

0

∫ τn

0

...

∫ τ2

0

r2(τ1...τk)dτ1...dτk = ||r||2L2(Sn)

Similarly, applying iteratively the Ito isometry, where r ∈ L2(Sk) and g ∈
L2(Sm) with k > m, then we have that

E[Ik(r)Im(g)]

= E[{
∫ T

0

∫ sm

0

...

∫ s2

0

r(τ1...τk−m, s1...sm)dB(τ1)...dB(sm)}

{
∫ T

0

∫ sm

0

...

∫ τ2

0

g(s1...sm)dB(s1)...dB(sm)}]

=

∫ T

0

E[{
∫ sm

0

...

∫ τ2

0

r(τ1...sm−1sm)dB(τ1)...dB(Sm−1)}]dsm

∫ sm

0

...

∫ s2

0

g(s1...sm−1sm)dB(s1)...dB(sm−1)

=

∫ T

0

∫ sm

0

...

∫ s2

0

E

[
g(s1s2...sm)

∫ s1

0

...

∫ τ2

0

r(τ1...τk−m, s1...sm)dB(τ1)...dB(tτk−m)

]
ds1...dsm
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=

∫ T

0

∫ sm

0

...

∫ s2

0

E

[
g(s1s2...sm)

∫ s1

0

...

∫ τ2

0

r(τ1...τk−m, s1...sm)dB(τ1)...dB(τk−m)

]
ds1...dsm

= 0

Since an Ito integral has its expectation as zero, then, these results can be

summarized as follows

E[Im(g)Ik(r)] = {(g, r)L2(Sk) if k = m

= {0 if k 6= m

where the inner product of L2(Sk) is repesented as

< g, r >L2(Sk)=

∫
Sk
g(ς1...ςk)r(ς1...ςn)dς1...dςk

Theorem 3.2: (The Wiener-Ito Chaos expansion)[Giulia Di Nunno (2009)]

If we have {hn}∞n=0, a sequence of deterministic functions such that

%($) =
∞∑
n=0

In(hn)

(where hn ∈ L̂2([0, T ]n)) Converges in L2(P ) then for an AT - measurable

random variable % we have

||%||2L2(Ω) := ||%||2L2(P ) := EP [%2] <∞

Moreover, the isometry

||%||2L2(P ) =
∞∑
n=0

n!||hn||2L2([0,T ]n). (3.3.2)

Given the process %1(t1, ϕ) such that

[∫ T

0

%2
1(t1, $)dt1

]
≤ ||%||2L2(P ) (3.3.3)
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and

%($) = E[%] +

∫ T

0

%1(t1, $)dB(t1) (3.3.4)

where E[%] = s0 (constant)

Applying Ito representation theorem to %1(t1, $), t1 ≤ T , we have

E

[∫ S1

0

%2
2(t2, t1, $)dt2

]
≤ E

[
%2

1(t1)
]
<∞

where %2(t2, t1, $), 0 ≤ t2 ≤ t1 is an Aτ -adapted process and

%1(t1, $) = E[%1(t1)] +

∫ t1

0

%2(t2, t1, $)dB(t2) (3.3.5)

Substituting (3.3.5) in (3.3.4), we have

%($) = s0 +

∫ T

0

s1(t1)dB(t1) +

∫ T

0

∫ t1

0

%2(t2, t1, $)dW (t2)dB(t1) (3.3.6)

here, we use

E[%1(t1)] = s1(t1) (3.3.7)

By (3.3.4) and (3.3.7),

E

[
{
∫ T

0

(

∫ t1

0

%2(t1, t2, $)dB(t2))dB(t1)}2

]
=

∫ T

0

(

∫ t1

0

E
[
%2

2(t1, t2, $)
]
dt2)dt1 ≤ ||%||2L2(P )

Likewise, %3(t3, t2, t1, $) an Aτ -adapted process (0 ≤ t3 ≤ t2) was obtained by

applying the Ito representation theorem (t2 ≤ t1 ≤ T ), to %2(t2, t1, $) such that

E

[∫ t2

0

%2
3(t3, t2, t1, $)dt3

]
≤ E

[
%2

2(t2, t1)
]
<∞

and

%2(t2, t1, $) = E[%2(t2, t1, $)] +

∫ t2

0

%3(t3, t2, t1, $)dB(t3) (3.3.8)

Substitute (3.3.8) in (3.3.6), we get
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%($) = s0+

∫ T

0

s1(t1)dB(t1)+

∫ T

0

∫ t1

0

s2(t2, t1)dB(t2))dB(t1)+

∫ T

0

∫ t1

0

∫ t2

0

%3(t3, t2, t1, $)dB(t3)dB(t2))dB(t1)

where

E [%2(t2, t1)] = s2(t2, t1); 0 ≤ t2 ≤ t1 ≤ T (3.3.9)

Using (3.3.4), (3.3.7), (3.3.9),

E

[
{
∫ T

0

∫ t1

0

∫ t2

0

%3(t3, t2, t1, $)dB(t3)dB(t2)dB(t1)}2

]
≤ ||%||2L2(P )

If we follow this procedure iteratively by induction after n steps, we have

%n+1(τ1, τ2, ...τn+1, $) and s0, s1, ..., sn and after n steps a process where s0 is con-

stant and sk is de�ned such that

%($) =
n∑
k=0

Ik(sk) +

∫
Sn+1

%n+1dB
⊗(n+1)

with 0 ≤ τ1 ≤ τ2 ≤ ... ≤ τn+1 ≤ T where %n+1 an (n+1)-fold iterated integral

is given by

∫
Sn+1

%n+1dB
⊗(n+1) =

∫ T

0

∫ τn+1

0

...

∫ τ2

0

%n+1(τ1...τn+1, $)dB(τ1)...dB(τn+1)

and

E

[{∫
Sn+1

%n+1dB
⊗(n+1)

}2
]
≤ ||%||2L2(Ω)

If ϕn+1 :=
∫
Sn+1

%n+1dB
⊗(n+1) n = 1, 2, ... is bounded in L2(P ) and

(ϕn+1, Ik(hk))L2(Ω) = 0 ∀k ≤ n, sk ∈ L2([0, T ]k)

Then,
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||%||2L2(Ω) =
n∑
k=0

||Ik(sk)||2L2(Ω) + ||ϕn+1||2L2(Ω)

by the Pythagorean theorem where,

n∑
k=0

||Ik(sk)||2L2(Ω) <∞

and so, in L2(Ω)
∞∑
k=0

Ik(sk)

is strongly convergent and

lim
n→∞

ϕn+1 := ϕ exist ∈ L2(Ω)

Ik(hk), ϕ)L2(Ω) = 0, hk ∈ L2([0, T ]k)

Hence,

%($) =
∞∑
k=0

Ik(sk) convergence in L2(Ω)

and

||%||2L2(Ω) =
n∑
k=0

||Ik(sk)||2L2(Ω) (3.3.10)

Finally, we proceed to obtain (3.3.2)-(3.3.3), as follows:

Taking

sn(τ1, ..., τn) = 0 if (τ1...τn) ∈ [0, T ]n/tn (3.3.11)

the function sn is de�ned on Sn and can be extended to [0, T ]n.

De�ne the symmetrization hn = ŝn of s, then

Jn(hn) = n!In(hn) = n!In(ŝn)

= In(sn)

So, (3.3.2)-(3.3.3) follows from (3.3.10) and (3.3.11).
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We de�ne as

h⊗ s(ς1, ς2) = h(ς1)s(ς2)

for two functions h and s the tensor product h⊗ s and the symmetriztion of h⊗ s
as the symmetrized tensor product h⊗̂s

3.3.2 Multiple Wiener-Ito Integrals

In this section, we de�ne the Malliavin derivative via the wiener-Ito decomposi-

tion.[Kuo. H (2005)].

Suppose the Hilbert space H be represented as L2(B,B, µ) such that (B,B) repre-

sent a measurable space and a σ - �nite measure µ, i.e the Gaussian process Z is

characterized by the family of random variables {Z(A), A ∈ B, µ(A) < ∞} where
Z(A) = Z(1A). We assume Z(A) to be an L2(Ω,A, P )-valued measure on the

measurable space (B,B), which takes independent values on any family of disjoint

subsets of B such that any random variable W(A) has the distribution N(0, µ(A)),

where µ(A) <∞.

This measure is also known as the white noise. To this end, for any function

h ∈ L2(B), we shall de�ne the stochastic integral W (h) as

W (h) =

∫
B

hdW

It is possible to expressed as multiple stochastic integral the nth Wiener chaos Hn

with respect to W . Next, the multiple stochastic integral In(f) is de�ne in what

follows;

For a function f ∈ L2(Bk,Bk, µk), k ≥ 1, a stochastic integral is de�ned where Bk

is the k-times product of space B and µk is the corresponding product measure.

Let Ek represent the set of simple functions de�ned as

f(τ1...τk) =
n∑

i1...ik

ai1...ik1Ai1×...×Aik (t1, ..., tk)

42



such that whenever we have any two equal indices,the coe��ent ai1...ik vanish and

the set A1, ..., Ak are pairwise disjoint in B0. So,

Ik(f) =
n∑

i1...ik=1

ai1...ikW (Ai1)...W (Aik)

de�ned the multiple-stochastic integral

Remarks:

The multiple stochastic integral Ik(f) has the following properties

(1) Ik(f) is linear.

(2) Let

f̂(τ1...τk) =
1

k!

∑
σ

f(τσ(1)...τσ(k))

be the symmetrization of f and σ run over all permutation of {1, ..., k} then Ik(f) =

Ik(f̂)

(3)

EIk(f)In(f) = {0 ifn 6= k

= k! ifn = k

De�nition 3.5:

Let

In(f) :=

∫ T

0

∫ τn

0

...

∫ τ3

0

∫ τ2

0

f(τ1...τn)dB(τ1)d(τ2)...dB(τn)

represent n-fold iterated Ito integrals where f = J0(f) ; f ∈ R
We have by Ito integrals properties that

• In(f) ∈ L2(P ) and by Ito isometry, ||In(f)||2L2(P ) = ||f ||2L2(SN )

• f ∈ L2(sn) and g ∈ L2(sm) such that n > m, then E[In(f)Im(g)] = 0.

f ∈ L̂2 implies that the function f is a symmetric square integrable.

3.4 Skorohod Integral

In this section, we present the theory of Skorohod integral. This integral will be

used to formulate the Malliavin weight function. This is very important in the

calculation of the Greeks.
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Consider a Hilbert space H de�ned as H = L2(D,A, κ), an L2-space where κ

is de�ne on a measurable space (D,A). Here, the square integrable processes are

members of Domδ ⊂ L2(T×Ω), and the Skorohod stochastic integral is represented

as δ(v) of the process v = v(τ,$) τ ∈ T,$ ∈ Ω.

De�nition 3.7

Suppose the stochastic process u(τ) is measurable such that τ ∈ [0, T ]. If

E
[∫ T

0

v2(τ)dτ

]
<∞

then v(τ) is Aτ -measurable.

Suppose for fn(·, τ) ∈ L̂([0, T ]n), we de�ne Wiener Ito expansion of the stochastics

process v(τ) as

v(τ) =
∞∑
n=0

Jn(fn(·, τ))

then,

δ(v) :=

∫ T

0

v(τ)dB(t) :=
∞∑
n=0

In+1(f̂n)

de�ned the Skorohod integral of v where the symmetrization of fn(., t) is

represented as f̂n

Moreso,

||δ(v)||2L2(P ) =
∞∑
n=0

(n+ 1)!||f̂n||L2([0,T ])n+1) <∞

We can write fn,τ (τ1...τn) = fn(τ1, ..., τn, τ) since fn(·, τ) = fn,τ (.) is a function of

the parameter τ .

Since the function fn is symmetric with respect to its �rst n variables then fn

and the symmetrization f̂n are function of n+1 variables τ1, ..., τn, τ where the

symmetrization with τn+1 = τ is given by,

f̂n(t1, ..., tn+1) =
1

n+ 1
[fn(t1...tn+1) + ...+ fn(t1...ti−1, ti, ti+1...tn+1) + ...+ fn(t2...tn+1, t1)]

where the sum is taken over those permutations σ of the indices (1, ..., n+ 1)

which inter- change the last component with one of the others and leave the rest

in place.

The Skorohod integral satis�es the following properties
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• it is a linear operator

• its expectation is zero i.e E[δ(v)] = 0

• If v,Xv,∈ Dom(δ) then,

∫ T

0

Xv(τ)δB(τ) 6= X

∫ ∞
0

v(τ)δB(τ)

provided the random variable X is an Aτ -measurable.

Theorem 3.3[Giulia Di Nunno, (2009)]:

The Ito-integral can be extended to the Skorohod integral i.e

Let E

[ ∫ T
0
v2(t)dτ

]
< ∞ where the stochastic process v(τ), τ ∈ [0, T ] is a A-

adapted measurable process then

∫ T

0

v(τ)δB(τ) =

∫ T

0

v(τ)dB(τ)

i.e v is Skorohod integrable and it is also Ito integrable.

Proposition (3.2) (Nualart, D.(2006)): If in L2(Ω), the series

δ(v) =
∞∑
n=0

In+1f̂n

converges and v can be expanded as

v(τ) =
∞∑
n=0

Jn(fn(·, τ))

where v ∈ L2(T × Ω), then v is in Domδ.

Proposition (3.3): (Nualart D (2006))

Assume u ∈ L1,2, and if {
∫
T
DtusdBs, τ ∈ T} exist in L2(T × Ω) and there is a
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Skorohod integrable process {Dτvs, s ∈ T}, then δ(v) ∈ D1,2 and

Dτ (δ(v)) = vτ +

∫ T

s

DτvsdBs

Proposition (3.4)Nualart D (2006): IfX, Y ∈ D1,2 such that E(〈DX, v0〉H) =

0 and E(Y ) = 0, then v has a unique orthogonal decomposition v = DY +v0 where

v ∈ L2(T × Ω). In addition, v0 is Skorohod integrable and δ(v0) = 0

Lemma(3.4): [Ocone. D (1984)]

Let

v(τ,$) =
∞∑
n=0

Jn(fn(·, τ))

represent the Wiener Ito expansion of the stochastic process v(τ,$) where τ ∈
[0, T ], then the stochastic process v is Aτ -adapted i� fn(τ1...τn, τ) = 0 and

τ < max
1≤i≤n

τi

Theorem 3.4: [Da Prato G, (2007)]

Suppose v(τ,$) is a Aτ -adapted stochastic process and

E
[∫ T

0
v2(τ,$)dτ

]
<∞ where τ ∈ [0, T ] then

∫ T

0

v(τ,$)δB(τ) =

∫ T

0

v(τ,$)dB(τ)

and v ∈ Dom(δ)

3.5 Malliavin Derivative/Derivative Operator

In this section, we de�ne the Mallivian derivative and its adjoint, the divergence

operator. The derivative operator is a derivative with respect to the inverse oper-

ator of the stochastic integral.

Let A represent a σ-�eld generated by B and let (A,A, P ) represent a complete
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probability space on which a Hilbert space R is de�ned, then we can represent by

Z = {Z(r), r ∈ R} an Isonormal Gaussian process.

The space of in�nitely continuously di�erentiable functions f : Rn → R is rep-

resented as C∞b (Rn) (respectively C∞p (Rn)) such that its partial derivatives are

bounded (respectively have polynomial growth ). We represent also C∞0 (Rn) as the

space of all in�nitely continuously di�erentiable functions with compact support.

De�nition 3.8:

(1) Let Y : Ω → R and let denote by S the set of smooth random variables, if

there is a function y in C∞p (Rn), then

Y = y(Z(r1) . . . Z(rn)) (3.3.12)

for n ≥ 1 and elements r1, . . . , rn ∈ R

(2) The set P denotes the set of random variables of the form (3.3.12) where y

is a polynomial

(3) Sb(respectively S0) denotes the space of random variables of the form (3.3.12)

with y in C∞b (Rn) (respectively) C∞0 (Rn))

De�nition 3.9:

Assume Y is a member of S with expression (3.3.12), then DY , the Mallivian

derivative of Y is de�ned as

DY =
n∑
i=1

δy(Z(r1), . . . , Z(rn))ri
δςi

(3.3.13)

The derivative is a mapping DY : Ω→ R
By iteration for m ≥ 2 we de�ne DmY in L2(Ω,R⊗m) as

DY =
∑

i=1...im=1

δmy(Z(r1)...Z(rn))ri1 ⊗ ...⊗ rim
δς1...δςm

This represent the mth order Malliavim derivative.

Proposition 3.6:[Malliavin. P (2005)]

If a smooth random variable Y admit two di�erent representation of the form

(3.3.12)
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Y = y(Z(r1)...Z(rn))

= g(Z(g1)...Z(gm))

then

n∑
i=1

δy

δςi
(Z(r1), Z(r2), ..., Z(rn−1), Z(rn))ri =

m∑
i=1

δg

δςi
(Z(g1), Z(g2), ..., Z(gm−1), Z(gm))gi

In other words,the Mallivian derivative DF of F is well de�ned by (3.3.13)

Remark:

By the de�nition of the gradient operator for smooth random variables,

D(Y X) = Y DX +XDY

for every smooth random variables of the form (3.3.12).

3.6 Integration by Part Formula

We use the Malliavin derivative and the relation between it and Skorohod integral

to obtain an integration by part formula which play an important role in the cal-

culation of the Greeks.

The integration by part formula is very essential in the study of smoothness of

random variables and the absolutely continuity of the Malliavin calculus. This is

fundamental in its application to �nance.

Proposition 3.7: [Nualart. D (2006)]

Let r ∈ R and let Y be a smooth random variable of the form (3.3.12). then

E[〈DY, r〉R] = E[Y Z(r)]

the integration by parts formula holds.

Proposition 3.8:[Oksendal. B (2003)]

Suppose that (DYn)n converges to η, a stochastic process in L
p(Ω,R) such that the
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sequence {Yn}n∈N of smooth random variables, n→∞ converges to zero in Lp(Ω).

Then, η = 0 and D, the Malliavin derivative operator is closable from Lp(Ω) to

Lp(Ω,R)

Proposition 3.9: [Oksendal. B (2003)]

Suppose Y = (Y 1, . . . , Y m) where Y i ∈ D1,P , P ≥ 1, %(Y ) ∈ D1,P and %Rm → R
then

D(%(Y )) =
m∑
i=1

d%

dςi
(Y )DY i

Proposition 3.10 (D. Nulart 2006): Suppose %Rm → R is a function, where

x, y ∈ Rm and k > 0 then % is a Lipschitz function provided |%(x)−%(y)| ≤ k‖x−y‖.
Given a random vector Y = (Y

′
, . . . , Y m) such that Y i ∈ D1,P , P ≥ 1, if there

exist random variables X i and %(Y ) belongs to D1,P then

D(ϕ(Y )) =
m∑
i=1

X iDY i

In addition, if Y is an absolutely continuous random variable on Rm then

Gi =
dϕ

dxi
(Y ). Note that since % is Lipschitz,

d%

dxi
(x) exist for almost all x in Rm.

Theorem 3.5: :

Suppose Yk ∈ D1,2 for every Y ∈ L2(P ) where k = 1, 2, ... then

(1.) Yk → Y , in L2(P ) as k →∞
(2.) Given that DtYk → DtY in L2(P × λ) where Y ∈ D1,2 then {DtYk}∞k=1 con-

verges in L2(P × λ) as k →∞

Proposition 3.11: [Malliavin P and Thalmaier, (2005)]

Let Y ∈ D1,2 be a square integrable random variable with a decomposition given

above, then

DtY =
∞∑
n=1

nJn−1(yn(·, t))
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Proposition 3.12: [Malliavin P and Thalmaier, (2005)]

Suppose

E(Y |AA) =
∞∑
n=0

Jn(yn1⊗nA )

represent the conditional expectation of Y where A ∈ B then

Y =
∞∑
n=0

Jn(yn)

is a square integrable random variable.

Let G be a Borel set in [0,T]. Let AG ⊆ AT be de�ned as the completed

σ-alegbra generated by
∫ T

0
1A(τ)dB(τ) for all Borel sets A ⊆ G. If Y ∈ D1,2, then

E[Y |AG] ∈ D1,2 and

DτE[Y |AG] = E[DτY |AG] · 1G(τ)

If v is a A-adapted stochastic process such that v(s) ∈ D1,2 for all s. In particular

Dτv(s) = DτE[v(s)|As] = E[Dτv(s)|As] · 1[0,s](τ)

Let Y = (Y 1, ..., Y m) with Y l ∈ D1,2, the Maliavin covariance matrix of Y is de�ned

as the symmetric positive de�nite matrix given by

σijY = 〈DY i, DY j〉 =

∫ 1

0

DsY
iDsY

jds

Then σY satis�es the non-degeneracy assumption provided E((detσY )−P ) <∞ for

all P ∈ N
If this is true, then, σY is almost surely invertible.

Let P represent the family of all random variable Y : Ω → R of the form

Y ($) = ξ(θ...θn) where ξ(ς1...ςn) is a polynomial in n variables ς1, ..., ςn and

θi =

∫ T

0

yi(τ)dB(tτ) yi ∈ L2([0, T ])
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such random variables are called Wiener polynomials.

D1,2 is the closure (with respect to the norm || · ||1,2 of P which represent family of

random variable of the form Y ($) = ξ(θ...θn) where Y : Ω→ R
A function y : Rm → R is said to be Lipschitz continuous provided

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ Rm, and L is the Lipschitz constant.

Proposition:(Integration by Part formula)[Oksendal. P (2000, 2003), Nu-

alart. D (2006)]

Given the function y ∈ C1 with bounded derivatives and two random variables Y ,

X where Y ∈ D1,2. Suppose Xv(< DY, v >R)−1 ∈ Domδ and < DY, v >R 6= 0

where v an R- Value random variable,then

E[y′(Y )X] = E[f(Y )H(Y,X)] (3.3.14)

and

H(Y,X) = δ(Xv(< DY, v >R)−1)

Remark: In application to �nance,

1 If v = DY then

E[y′(Y )X] = E[y(Y )δ(
XDY

||DY ||2R
)]

2 Suppose X(< DY, v >R)−1 ∈ D1,2 such that

Xv(< DY, v >R)−1 ∈ D1,2(R) ⊂ Domδ

then v is a deterministic process

3 This result form an integral part of the tool used in establishing the results

obtained in this work,
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3.7 The Divergence Operator

In this section, we introduce the divergence operator which is the adjoint of the

derivative operator. The divergence operator in the white noise case is known as

the Skorohod integral. The element of Domσ are square integrable stochastic pro-

cess and the ddivergence σ(u) is called the Skorohod integral of the process u.

Let κ be a σ-�nite measure so that the underlying Hilbert space R of the adjoint of

the derivative operator also known as the divergence operator is an L2-space of the

form L2(B,B, µ) . The adjoint of the derivative operator is both Skorohod integral

and stochastic integral in the Brownian motion sense.[Nualart. D (2006)]

Let (Ω,A, P ) represent a complete probability space on which Z = Z(r) a Gaus-

sian isonormal process is de�ned where h ∈ H the associated Hilbert space. So in

the framework of Z = Z(r), r ∈ R, the divergence operator D is unbounded and

closed in L2(Ω;R)

De�nition 3.10:

Let D be the derivative operator and let δ represent it adjoint also known as diver-

gence operator then δ is an unbounded operator on L2(Ω,R).This operator satis�es

the following assumptions

(i) The domain of δ is represented as Dom δ and its the set of R-valued square

integrable random variable v ∈ L2(Ω;R) where

|E(〈DY, v〉R)| ≤ c||Y ||L2(Ω)∀Y ∈ D1,2

where c = constant

(ii) Let v ∈ Domδ, then δ(v) ∈ L2(Ω) so that for Y ∈ D1,2

E(Y (δ(v)) = E(〈DY, v〉R) (3.3.15)

(3.3.15) is called the Duality Relation

From (3.45), if F = 1 and v ∈ Domδ then E(δ(v)) = 0. Suppose rj ∈ R and Yj

are smooth random variables so that

v =
n∑
j=1

Yjvj
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where v ∈ SR By the formula of integration by part, we have that for v ∈ Domδ,

δ(v) =
n∑
j=1

YjZ(rj)−
n∑
j=1

〈DYj, rj〉R

Properties of The Divergence Operator: The proof of these properties are

shown in [Nualart. D (2009)]

(i) E((δ(v)) = 0 provided v ∈ Domδ

(ii) The operator δ is closed and linear in Domδ

(iii) if v ∈ SR, then v ∈ Domδ and

δ(v) =
n∑
j=1

YjZ(rj)−
n∑
j=1

〈DYj, rj〉R

(iv) Let v ∈ SR,Y ∈ S and r ∈ R,then

〈D(δ(v)), r〉R = 〈v, r〉R + δ(
n∑
j=1

〈DYj, r〉Rrj)

Lemma 3.6:[Nualart. D (2009)]

Suppose r ∈ R and Y,X ∈ S, then

E[X〈DY, r〉R] = E[Y XZ(r)]− E[Y 〈DX, r〉R]

The implication of this lemma is that, it establish the closability of the operator D

Lemma 2.7: [Malliavin. P and Thalmaier. A (2005)]

Suppose v ∈ SR such that

v =
n∑
j=1

Yjrj Y ∈ S r ∈ R
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and

Dr(v) =
n∑
j=1

Dr(Yj)rj

then the commutativity relationship

Dr(δ(v)) = 〈v, r〉A + δ(Drv)

holds, but

δ(v) =
n∑
j=1

YjZ(rj)−
n∑
j=1

〈DYj, rj〉R

so

Dr(δ(v)) =
n∑
j=1

〈D(YjZ(rj))−D〈DYj, rj〉R, r〉R

=
n∑
j=1

Yj〈r, rj〉R +
n∑
j=1

(DrYjZ(rj)− 〈D(DrYj), rj〉R)

= 〈v, r〉R + δ(Drv)

Proposition 3.13: [Pascucci A, (2010)] The equality

δ(Y r) = Y Z(r)−DrY

holds provided Y r is in the domain of δ, Y ∈ D1,2 and r ∈ R

3.8 Clark-Ocone Formula

The Clark-Ocone formula is a representation theorem for square integrable random

Variables in terms of Ito stochastic integrals in which the integrand is explicitly

characterized in terms of the Malliavin derivative. Clark Ocone formula can be

applied to �nd explict formula for hedging portfolio that can be replicated.
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Theorem 3.6: (Clark-Ocone formula,(Di-Nunno 2002,2007))

Let Y ∈ D1,2 be AT -measurable, then

Y = E[Y ] +

∫ T

0

E[DτY |Aτ ]dB(τ)

The formula can only be applied to random variables in D1,2 but extension beyond

the domain D1,2 to L2(P ) is possible in the white noise framework.

Theorem 3.7: Clark-Ocone formula under change of Measure:(Di-Nunno

2007)

Suppose X ∈ D1,2 is AT -measurable and EQ[|X|] <∞

EQ

[ ∫ T

0

|DτX|2dτ
]
<∞,

EQ

[
|X|

∫ T

0

(∫ T

0

Dτv(s)db(s) +

∫ T

0

v(s)DτU(s)ds

)2

dτ

]
<∞

where the measure dQ = Z(T )dP is the one given by the Girsanov theorem with

U(τ) :=
v(τ)− ρ(τ)

σ(τ)
, τ ∈ [0, T ]

then

X = EQ[X] +

∫ T

0

EQ

[(
DτX −X

∫ T

0

DτU(s)db̃(s)

)
|Aτ
]
dB̃(τ)

Under the change of measure framework, the Clark-Ocone formula is applicable to

random variables X that are measurable with respect to the �ltration generated by

the noise. If F̃ is the P (∼) Q-augmented �ltration generated by B̃, then we have

that in general Ãτ ⊂ Aτ and Ãτ 6= A.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction

Rainbow Options are options or derivatives exposed to two or more sources of

uncertainty.

Apart from it been a path dependent option, that is, options whose value depend

both on the price of the underlying assets, and the path that the asset took during

some part or all the life of the option, it is also an option contract linked to the

performance of two or more underlying assets. They can speculate on the best

performer in the group or minimum performance of all the underlying assets at

any time. Each underlying may be called a color so the sum of all these factors

makes up a rainbow.

Rainbow options sometimes has many moving paths and all the underlying

assets in a rainbow option have to move in the right direction so that the investment

will pay o� eventually.

The measure of the sensitivity analysis refers to the greeks, and the greeks are

quantities that describe the sensitivities of �nancial derivative with respect to the

di�erent parameters of the model. They are vital tools in risk management and

hedging.

De�nition (Sensitivities):

Suppose V (t) represent the pay o� process of some derivatives where t ∈ [0, T ],

then

∆ = Delta =
∂V

∂s

This measures the changes in V with respect to the underlying asset initial

price.

Γ = Gamma =
∂2V

∂s2
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This quantity estimate the change in terms of delta

ρ = rho =
∂V

∂r

This measures the changes in V in terms of the prevailing rate of interest r

θ = theta = −∂V
∂T

This measures the changes in V with respect to the expiration time

ν = V ega =
∂V

∂σ

This measures the changes in V in terms of volatility.

The computation of the greeks are sometime di�cult to express in closed form

depending on the pay o� function, and so, they require numerical methods for their

computation.

Malliavin calculus is suitable in calculating greeks especially when the pay

o� function is strongly discontinuous. Greeks are the measure of changes in the

derivative security with respect to the parameters of �nancial derivative. They are

important when considering how stable is the quantity under variation, that is the

chosen parameter. If the price of an option is calculated using the measure Q as

V = E[e−r(T−τ)ϕ(s(τ))],

where the pay o� function is represented as ϕ(x), then under the same measure as

the price,the greek will be calculated , so that the

Greek = E[e−rτϕ((s(t))) ∗ ψ(x)]

where ψ(x) represent the weight function called Malliavin weight.

We consider the stochastic process S(t) de�ned on (Ω,A, P,Aτ ), the �ltered
probability space where τ ∈ [0, T ]

So, if S(τ) satis�es the equation

S(τ) = S0 exp((κ− σ2

2
)τ + σB(τ)),
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then

∂ST
∂S0

= exp((κ− σ2

2
)T + σB(T )) =

ST

S0

∂2ST

∂S2
0

=
−S0exp((κ− σ2

2
)T + σB(T ))

s2
0

=
−ST
S2

0

∂ST
∂κ

= S0Texp((κ−
σ2

2
)T + σB(T )) = TST

∂ST
∂T

= (κ− σ2

2
)S0exp((κ−

σ2

2
)T + σB(T ))

= (κ− σ2

2
)ST

∂ST
∂σ

= (BT − σT )s0exp((κ−
σ2

2
)T + σB(T )) = (BT − σT )ST

Greeks generally measure the sensitivity of the �nancial quantity in terms of

the changes in the parameter, and these can be calculated using Malliavin calculus

integration by part technique de�ned in equation (3.3.14).

E[y′(Y )X] = E[y(Y )δ(Xv(DvY )−1)]

4.2 Greek Delta

Theorem 4.1 (Greek Delta):

Suppose the value of the Rainbow option is represented by V : [0, T ] × R −→ R,
where the dynamics of the option underlying asset S(τ) is given by

dS(τ) = κs(τ)dτ + σs(τ)dB(τ) τ ∈ [0, T ]

where κ and σ are constant, B(τ) is de�ned on the �ltered probability space

(Ω,A, P,Aτ ), with �ltration Aτ , then greek delta is given by

∆ = e−rTE(ϕ(ST )ψ(x))
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Proof

∆ =
∂V0

∂S0

, V0 = E(e−rTϕ(ST ))

∆ =
∂E(e−rTϕ(ST ))

∂S0

,

where ϕ(ST ) represent the payo� function.

∆ = e−rT
∂

∂S0

E(ϕ(ST ))

= e−rTE
(
ϕ′(ST )

∂ST
∂S0

)
= e−rTE

(
ϕ′ST )

ST

S0

)
.

Here, we apply the Malliavin calculus integration by part technique on the deriva-

tive ϕ′ using the relation de�ned in equation (3.3.15)

E(y′(Y )X) = E(y(Y )δ(Xv(DvY )−1))

if we take

Y = ST X = ST , v = 1

then

E(y′(Y )X) = E(y(ST )δ([S]T (DY )−1))

but

DvST =

∫ T

0

DTSTdτ =

∫ T

0

σSTdτ = σTST

Because

DTS]T = σ[ST

so

δ

(
ST

(∫ T

0

DTSTdτ

)−1
)

= δ

(
ST

σTST

)

= δ

(
1

σT

)
=

∫ T

0

dB

σT
=
BT

σT
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Therefore

∆ = e−rTE
(
ϕ′(ST )

ST

S0

)
=
e−rT

S0

E(ϕ′(ST )ST )

=
e−rT

S0

E(ϕ(ST )
BT

σT
)

=
e−rT

S0σT
E(ϕ(ST )BT )

Where
BT

S0σT
= Weight function.

So for European call option with payo� described as

ϕ(ST ) = (ST −K)+

we have

∆ =
e−rT

S0σT
E(ST −K)+BT )

For an Asian options whose payo� is described as

ϕ(ST ) =
1

T

∫ T

0

STdτ

We have

∆ =
e−rT

S0σT
E
(

1

T

∫ T

0

STdτ ·BT

)
Here v(s) = Ss, Y = S̃T (average of ST ), X = ∂S̃T

∂S0
= S̃T

S0

This means that

E(y′(Y )X) = E(y(Y )δ(Xv(DvY )−1))

can be expressed as

E(y′(S̃T )
S̃T

S0

) = E

(
y(S̃T )δ

(
S̃T ·Sτ
S0

DvS̃T

))
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E(y′(S̃T )
S̃T

S0

) = E
(
y(S̃T )δ

(
S̃T · Sτ
S0

∗ 1

σT S̃T

))
But DuS̃T = σTST

so

δ(Xv(DvY )−1) = δ

(
Xv

DvY

)

= δ

(
S̃T Sτ
S0∫ T

0
SsDsS̃Tdτ

)

= δ

(
S̃TSτ

S0

∫ T
0
SsDsS̃Tdτ

)

δ(
Sτ

S0σT
) =

∫ T

0

Sτ

S0σT
dB

=
1

S0σT

∫ T

0

SτdB =
1

S0σT

[
1

2
(S2
T − T )

]
so

∆ =
e−rT

S0σT
E(ϕ(ST )

1

2
(S2
T − T ))

=
e−rT

2S0σT
E
(
ϕ(ST )(S2

T − T )
)
,

where
S2T−T
2S0σT

represent the Weight function ψ

For a best of asset call whose payo� is described as

ϕ(ST ) = max(Si −K),1Si>Sj i 6=j, i,j=1,2,...n i = 1 . . . n.,

we have

∆ =
e−rT

S0σT
E(max(Si −K)BT )

4.3 Greek Gamma

Theorem 4.2 (Greek Gamma):

Suppose the value of the Rainbow option is represented by V : [0, T ] × R −→ R,
where the dynamics of the option underlying asset S(τ) is given by
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dS(τ) = κs(τ)dτ + σs(τ)dB(τ) τ ∈ [0, T ]

where κ and σ are constant, B(τ) is de�ned on the �ltered probability space

(Ω,A, P,Aτ ), with �ltration Aτ , then Greek gamma is given by

Γ = e−rTE(ϕ(ST )ψ(x))

Proof

Γ =
∂2V

∂S2
, V0 = E(e−rTϕ(ST ))

Γ =
∂2

∂S2
0

E(e−rTϕ(ST ))

= e−rT
∂2

∂S2
0

E(ϕ(ST )) = e−rTE
(
ϕ′(ST )

∂2ST

∂S0

)

= e−rTE(ϕ′(ST )
S2
T

S2
0

)

we have
e−rT

S2
0

E(ϕ′(ST )S2
T )

Γ =
−e−rT

S2
0

E
(
ϕ′(ST )ST (

BT

σT
− 1)

)

y′ = ϕ′, Y = ST , X = ST (
BT

σT
− 1), v = 1

Γ =
−e−rT

S2
0

E
(
ϕ′(ST )ST (

BT

σT
− 1)

)

y′ = ϕ′, Y = ST , X = ST (
BT

σT
− 1), v = 1
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Γ =
−e−rT

S2
0

E
(
ϕ(ST )δ(ST (

BT

σT
− 1)(σTST )−1)

)
=
−e−rT

S2
0

E

(
ϕ(ST )δ

(
ST (BT

σT
− 1)

σTST

))
−e−rT

S2
0

E
(
ϕ(ST )δ

(
(
BT

σT
− 1)× 1

σT

))
=
−e−rT

S2
0

E
(
ϕ(ST )δ(

BT

(σT )2
− 1

σT
)

)
−e−rT

S2
0

EQ
(
ϕ(ST )

1

(σT )2
(B2

T − T
)

1

2
− BT

σT

The weight function is
B2
T − T

2S2
0(σT )2

− BT

σT

So for European call option whose payo� is described as

ϕ(ST ) = (ST −K)+

We have

Γ =
−e−rT

S2
0

E
[
(ST −K)+ 1

(σT )2

1

2
(B2

T − T )− BT

σT

]
For an Asian option whose payo� is described as

ϕ(ST ) =
1

T

∫ T

0

STdτ

we have

Γ =
−e−rT

S2
0

E
[

1

T

∫ T

0

STdτ
1

(σT )2

1

2
(B2

T − T )− BT

σT

]
For Best of asset option with payo�

ϕ(ST ) = max(Si −K),1Si>Sj i 6=j, i,j=1,2,...n i = 1 . . . n

we have

Γ =
−e−rT

S2
0

E
[
max(Si −K)

1

(σT )2

1

2
(B2

T − T )− BT

σT

]
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4.4 Greek Rho

Theorem 4.3 (Greek Rho):

Suppose the value of the Rainbow option is represented by V : [0, T ] × R −→ R,
where the dynamics of the option underlying asset S(τ) is given by

dS(τ) = κs(τ)dτ + σs(τ)dB(τ) τ ∈ [0, T ]

where κ and σ are constant, B(τ) is de�ned on the �ltered probability space

(Ω,A, P,Aτ ), with �ltration Aτ , then greek rho is given by

ρ = e−rTE(ϕ(ST )ψ(x))

Proof

ρ =
∂V

∂κ
, V0 = E(e−rTϕ(ST ))

ρ =
∂E(e−rTϕ(ST ))

∂κ

= e−rT
∂E(ϕ(ST ))

∂κ

= e−rTE(ϕ′(ST )
∂ST
∂κ

)

= e−rTE(ϕ′(ST )TST )

Here, using

ϕ = y, ST = Y, X = TST v = 1

in equation (3.45)

E(y′(Y )X = E(y(Y )δ(Xv(DvY )−1))

we have

E(y′(Y )X) = E(y(ST )δ(
TST
σTST

))

= E(ϕ(ST )δ(
1

σ
))

= E(ϕ(ST )
BT

σ
)
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So

ρ =
e−rT

σ
E(ϕ(ST ), BT )

The weight function is

ψ =
BT

σ

So for European call options whose payo� is described as

ϕ(ST ) = (ST −K)+

, we have

ρ =
−e−rT

σ
E((ST −K)+BT )

For Asian options whose payo� is described as

ϕ(ST ) =
1

T

∫ T

0

STdτ,

then

ρ =
e−rT

σ
E
(

1

T

∫ T

0

STdτBT

)
For a best of asset call whose payo� is described as

ϕ(ST ) = max(Si − [K]), i = 1, 2...

So

ρ =
e−rT

σ
E
(
max(Si −K)1Si>Sj i 6=j, i,j=1,2,...nBT

)

4.5 Greek Theta

Theorem 4.4 (Greek Theta):

Suppose the value of the Rainbow option is represented by V : [0, T ] × R −→ R,
where the dynamics of the option underlying asset S(τ) is given by

dS(τ) = κs(τ)dτ + σs(τ)dB(τ) τ ∈ [0, T ]

where κ and σ are constant, B(τ) is de�ned on the �ltered probability space
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(Ω,A, P,Aτ ), with �ltration Aτ , then greek theta is given by

θ = e−rTE(ϕ(ST )ψ(x))

Proof

θ =
∂V

∂T
, V0 = E(e−rT ϕ(ST ))

θ =
∂E(e−rTϕ(ST ))

∂T

= e−rT
∂E(ϕ(ST ))

∂T

= e−rTE(ϕ′(ST )
∂ST
∂T

)

= e−rTE(ϕ′(ST )(κ− σ2

2
)ST )

Here, using

y = ϕ, Y = ST , v = 1, X = (κ− σ2/2)ST

in equation (3.45), we have

E(y′(Y )X) = E(ϕ(ST )δ(Xv(DvY )−1))

= E
(
ϕ(ST )δ

(
(κ− σ2

2
)

[S]T
σTST

))
= E

(
ϕ(ST )δ

(
κ− σ2

2

σT

))

= E

(
ϕ(ST )

(
κ− σ2

2

σT

)∫ T

0

dB

)

= E

(
ϕ(ST )

(
κ− σ2

2

σT

)
BT

)

so

θ = e−rTE

(
ϕ(ST )

(
κ− σ2

2

σT

)
BT

)

The weight function is

ψ =

(
κ− σ2

2

σT

)
BT
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For an European case,

θ = e−rTE

(
(ST −K)+

(
κ− σ2

2

σT

)
BT

)

For an Asian option

θ = e−rTE

(
1

T

∫ T

0

STdτ

(
κ− σ2

2

σT

)
BT

)

For best of asset call option

θ = e−rTE

(
max(Si −K)+)1Si>Sj i,j=1,...n

(
κ− σ2

2

σT

)
BT

)

4.6 Greek Vega

Theorem 4.5 (Greek Vega):

Suppose the value of the Rainbow option is represented by V : [0, T ] × R −→ R,
where the dynamics of the option underlying asset S(τ) is given by

dS(τ) = κs(τ)dτ + σs(τ)dB(τ) τ ∈ [0, T ]

where κ and σ are constant, B(τ) is de�ned on the �ltered probability space

(Ω,A, P,Aτ ), with �ltration Aτ , then greek delta is given by

ϑ = e−rTE(ϕ(ST )ψ(x))

Proof

ϑ =
∂V

∂σ
, V0 = E(e−rTϕ(ST ))
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ϑ =
∂E(e−rTϕ(ST ))

∂σ

= e−rT
∂EQ(ϕ(ST ))

∂σ

= e−rTE
(
ϕ′(ST

∂ST
∂σ

)
= e−rTE (ϕ′(ST )ST (BT − σT ))

Here using

Y = ST , v = 1, Y = ST (BT − σT )

in equatiom (3.45), we get

E(y′(Y )X) = E(ϕ(ST )δ(ST
(BT − σT )

σTST
)

= E
(
ϕ(ST )δ

(
BT − σT
σT

))
= E

(
ϕ(ST )δ

(
BT

σT
− 1

))
= E

(
ϕ(ST )

1

σT

(
1

2

(
B2
T − T

)))

So

ϑ = e−rTE
[
ϕ(ST )

1

σT

(
1

2

(
B2
T − T

)
BT

)]
= e−rTE

[
ϕ(ST )

1

2σT

(
B2
T − T − 2BT

)]
=
e−rT

2σT
E
[
ϕ(ST )

(
B2
T − T − 2BT

)]
For European case,

ϑ =
e−rT

2σT
E
[
(ST −K)+

(
B2
T − T − 2BT

)]
For Asian call option

ϑ =
e−rT

2σT
E
[

1

T

∫ T

0

STdt
(
B2
T − T − 2BT

)]

68



For a best of asset call option

ϑ =
e−rT

2σT
E
[
max(Si −K)1Si>Sj i 6=j i,j=1,...n

(
B2
T − T − 2BT

)]

4.7 Chain Rule

Theorem(Closability): Assume Yk ∈ D1,2 where Y ∈ L2(P ) and k = 1, 2, ...

(1.) Yk → Y in L2(P ) as k →∞
(2.) If Y ∈ D1,2 and DτYk → DτY in L2(P × λ) then {DτYk}∞k=1 → L2(P × λ), as

k →∞
Theorem (Chain rule) Let P ≥ 1 and Y i ∈ D1,p such that Y = (Y 1, ....Y d)

is a random vector, then g(Y ) ∈ D1,p where g : Rd → R is a function in C1 with

bounded partial derivatives and

D(g(Y )) =
d∑
i=1

∂ig(Y )DY i

Proof : Let Y j ∈ (D1,p)d, and given a sequence {Y j
k }k≥1 with Yk ∈ S, S is a set of

smooth random variables where [Yk = yk(Z(r1) . . . Z(rnk))] and Y = Y (Z(r1) . . . Z(rn))

where Yk ∈ C∞p (R)n and it converges to Y in Lp(Ω)

g(Y j
k ) = g(Y 1

k , Y
2
k , . . . Y

n
k )

Y j
k = y1

k(Z(r1) . . . Z(rnk)), y
2
k(Z(r1) . . . Z(rnk)), . . . ,

ynk (Z(r1) . . . Z(rnk))

Y j
k = Y 1

k , Y
2
k , . . . Y

n
k = Y

Y 1
k → Y 1, Y 2

k → Y 2, . . . Y n
k → Y n as k →∞

.

Y 1, Y 2, . . . Y n ∈ Lp(Ω)

and the sequence DY j
k → Y jεLp(Ω, R) as k →∞.

g(Y j
k ) = g(Y 1

k , Y
2
k , . . . Y

n
k )
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g′(Y 1
k ) =

∂g

∂Y 1
k

+
∂g

∂Y 2
k

+ . . .
∂g

∂Y n
k

D(g(Y j
k )) =

∂g

∂Y 1
k

·DY 1
k +

∂g

∂Y 2
k

·DY 2
k + . . .+

∂g

∂Y n
k

·DY n
k

= g′(Y 1
k )DY 1

k + g′(Y 2
k )DY 2

k + . . .+ g′(F n
k )DF n

k

=
n∑
j=1

g′(Y j
k )DY j

k k ≥ 1 =
n∑
j=1

∂jg(Y )DY

4.8 Computation and Analysis

The greeks play a major role when hedging a �nancial derivatives.It provides the

tool for risk management which help investor in taking right and appropriate de-

cisions concerning their investment. We discretize the investment period from 0

to 5 into 50 discretes (i.e 0, 0.1, 0.2, 0.3...5.0) and then express the underlying

asset price in discret form by the Euler-Maruyana method then, we simulate with

MatLab and Excel computational softwares to generate our values.

De�nition [Call Option]

If the holder of a certain option is given a right in the option contract to buy the

option at a speci�ed time τ at a �xed strike price K, such an option is known as a

call option. The call option has a payo� described by

Payoff = max[(ST −K), 0]

ST is the price of the underlying asset at the expiration date or time

De�nition [Put Option] An option is called put if the option at a particular

time τ gives the holder the right to sell at speci�ed strike price K but not the

obligation . The put option has a payo� described by

Payoff = max[(K− ST ), 0]

ST is the price of the underlying asset at the expiration date or time

• If K < Sτ (call option) or K > Sτ (put option), then the option is said to be

IN-THE-MONEY

• If K > Sτ (call option) and K < Sτ (put option), then the option is said to

be 0UT-OF -THE-MONEY
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• If K = Sτ (call option) and (put optoon), then the option is said to be

AT-THE-MONEY

• An investor can take either a long or a short position on an option of any

kind

4.9 Greeks

4.9.1 Delta

Let CE = max[(ST −K), 0] be the pay o� process of an European call and

suppose V (τ) represent the option value, where τ ∈ [0, T ], then the measures of

changes in V in terms of initial price of the asset is given as

∆ =
∂V

∂S

∆1 =
e−rT

S0σT
E(ST −K)+BT )

Sτ satis�es the SDE described as

dS(t) = µS(t)dt+ σS(t)dW (t) S(0) = S0

with Brownian motion B(τ) de�ned on (Ω,A, P,Aτ ), with �ltration Aτ .
So we can descritize the solution of the SDE as

Sj+1 = Sj + aSjh+ bSj
√
hZj, j = 0, 1, 2, · · ·n

where Zj ∼ N(0, t)

Also, we have

BT = B0 +
T−1∑
j=1

√
hZj

When we put these together we have

∆1 =
e−rT

S0σT
E[(Sj + aSjh+ bSj

√
hZj −K)+)(B0 +

T−1∑
j=1

√
hZj)]
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.

=
e−rT

S0σT
[(Sj + aSjh−K)B0]
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Figure 4.1: Delta AO Graph

Let CA = [Max( 1
T

∫ T
0
STdτ − K), 0] be the pay o� process of an Asian call

and suppose V (τ) represent the option value where τ ∈ [0, T ], then the measures

of changes in V with respect to the asset price is given as

∆2 =
∂V

∂S

∆2 =
e−rT

2S0σT
E[(

1

T

∫ T

0

STdτ −K)(S2
T − T )]

.
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AO.pdf

Initial Spot 

price

Investment 

Period
71 72 73 74 75 Sj 70

0.1 0.0146 0.0078 0.0010 0.0000 0.0000 73.1527

0.2 0.0145 0.0077 0.0009 0.0000 0.0000 73.1296

0.3 0.0277 0.0209 0.0141 0.0073 0.0005 75.0792

0.4 0.0118 0.0050 0.0000 0.0000 0.0000 72.7327

0.5 0.0300 0.0232 0.0164 0.0096 0.0028 75.4096

0.6 0.0177 0.0109 0.0042 0.0000 0.0000 73.6115

0.7 0.0093 0.0025 0.0000 0.0000 0.0000 72.3625

0.8 0.0190 0.0122 0.0054 0.0000 0.0000 73.7928

0.9 0.0232 0.0164 0.0096 0.0028 0.0000 74.4084

1 0.0374 0.0306 0.0238 0.0170 0.0102 76.5055

1.1 0.0238 0.0170 0.0102 0.0034 0.0000 74.5076

1.2 0.0224 0.0156 0.0088 0.0020 0.0000 74.2988

1.3 0.0285 0.0217 0.0149 0.0081 0.0013 75.1924

1.4 0.0395 0.0327 0.0259 0.0191 0.0123 76.8120

1.5 0.0135 0.0067 0.0000 0.0000 0.0000 72.9880

1.6 0.0243 0.0175 0.0107 0.0039 0.0000 74.5702

1.7 0.0404 0.0336 0.0269 0.0201 0.0133 76.9521

1.8 0.0373 0.0305 0.0238 0.0170 0.0102 76.4958

1.9 0.0357 0.0289 0.0221 0.0153 0.0085 76.2487

2 0.0124 0.0056 0.0000 0.0000 0.0000 72.8202

2.1 0.0173 0.0105 0.0037 0.0000 0.0000 73.5428

2.2 0.0195 0.0127 0.0059 0.0000 0.0000 73.8741

2.3 0.0374 0.0306 0.0238 0.0171 0.0103 76.5097

2.4 0.0230 0.0162 0.0094 0.0026 0.0000 74.3887

2.5 0.0382 0.0314 0.0246 0.0178 0.0110 76.6153

2.6 0.0131 0.0063 0.0000 0.0000 0.0000 72.9329

2.7 0.0120 0.0052 0.0000 0.0000 0.0000 72.7701

2.8 0.0234 0.0166 0.0098 0.0030 0.0000 74.4445

2.9 0.0202 0.0134 0.0066 0.0000 0.0000 73.9664

3 0.0280 0.0212 0.0144 0.0076 0.0008 75.1146

3.1 0.0128 0.0060 0.0000 0.0000 0.0000 72.8851

3.2 0.0227 0.0159 0.0091 0.0023 0.0000 74.3347

3.3 0.0127 0.0059 0.0000 0.0000 0.0000 72.8628

3.4 0.0211 0.0143 0.0075 0.0007 0.0000 74.1003

3.5 0.0326 0.0258 0.0190 0.0122 0.0054 75.7936

3.6 0.0202 0.0134 0.0066 0.0000 0.0000 73.9723

3.7 0.0264 0.0196 0.0128 0.0060 0.0000 74.8784

3.8 0.0355 0.0287 0.0219 0.0151 0.0084 76.2294

3.9 0.0395 0.0327 0.0259 0.0191 0.0123 76.8079

4 0.0190 0.0122 0.0054 0.0000 0.0000 73.7893

4.1 0.0351 0.0283 0.0215 0.0147 0.0079 76.1608

4.2 0.0239 0.0171 0.0103 0.0035 0.0000 74.5155

4.3 0.0240 0.0172 0.0104 0.0036 0.0000 74.5336

4.4 0.0125 0.0057 0.0000 0.0000 0.0000 72.8352

4.5 0.0312 0.0244 0.0177 0.0109 0.0041 75.5982

4.6 0.0251 0.0183 0.0115 0.0048 0.0000 74.6996

4.7 0.0299 0.0231 0.0163 0.0095 0.0028 75.4051

4.8 0.0357 0.0289 0.0221 0.0153 0.0085 76.2581

4.9 0.0377 0.0309 0.0241 0.0173 0.0105 76.5468

5 0.0257 0.0189 0.0121 0.0053 0.0000 74.7801

Deltas for Asian Option 

Strike Prices

Table 4.1: Delta AO Data
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We discretize

(
1

T

∫ T

0

STdτ −K) = (
1

m

m∑
j=1

Sτj −K), 0 = τ0 < τ1 < τ2 < · · · < τn = T

So we have

∆2 =
e−rT

2S0σT
EQ[(

1

m

m∑
j=1

Sτj −K)(S2
T − T )]

=
e−rT

2S0σT
[(

1

m

m∑
j=1

(Sj + aSjh−K)(Sj + aSjh)2 − T )]

Let CB = [Max(Si−K), 0]1Si>Sj i 6=j, i,j=1,2,...n be the pay o� process of a Best of

Asset call option and suppose V (τ) represent the option value at time τ , τ ∈ [0, T ],

then the measures of changes in V in terms of the initial price of the asset is given

as

∆3 =
∂V

∂s

=
e−rT

S0σT
E[(Max(Si −K))BT ]

=
e−rT

S0σT
[(Max(Sj + aSjh−K))B0]

4.9.2 Gamma

Let CE = max[(ST −K), 0] be the pay o� process of an European call and suppose

V (τ) represent the option value where τ ∈ [0, T ], then the measures of changes in

V with respect to the chnges in delta is given as

Γ =
∂2V

∂S2

Γ1 =
e−rT

S2
0

E[(ST −K)+)
1

(σT )2
(B2

T − T )
1

2
− BT

σT
]

so,

Γ1 =
e−rT

S2
0

[(Sj + aSjh−K)
1

(σT )2
(B2

0 − T )
1

2
− B0

σT
]
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Investment 

Period

GAMMA  

AO
75 80 85 65 70

0.1 0.00586 81.05977 86.46376 91.86774 70.25180 75.65579

0.2 0.00627 81.92658 87.38835 92.85012 71.00303 76.46480

0.3 0.00479 78.82418 84.07913 89.33408 68.31429 73.56924

0.4 0.00575 80.82543 86.21380 91.60216 70.04871 75.43707

0.5 0.00610 81.58271 87.02156 92.46040 70.70501 76.14386

0.6 0.00631 82.01356 87.48113 92.94870 71.07842 76.54599

0.7 0.00631 82.01384 87.48143 92.94902 71.07866 76.54625

0.8 0.00551 80.32591 85.68097 91.03603 69.61579 74.97085

0.9 0.00607 81.51709 86.95157 92.38604 70.64815 76.08262

1 0.00425 77.67325 82.85147 88.02969 67.31682 72.49504

1.1 0.00497 79.19676 84.47654 89.75632 68.63719 73.91697

1.2 0.00440 78.00062 83.20066 88.40070 67.60054 72.80058

1.3 0.00592 81.18862 86.60119 92.01377 70.36347 75.77604

1.4 0.00582 80.99184 86.39130 91.79075 70.19293 75.59238

1.5 0.00595 81.26720 86.68502 92.10283 70.43158 75.84939

1.6 0.00422 77.61263 82.78680 87.96098 67.26428 72.43845

1.7 0.00617 81.71433 87.16195 92.60957 70.81908 76.26671

1.8 0.00643 82.26512 87.74946 93.23380 71.29644 76.78078

1.9 0.00648 82.36746 87.85863 93.34979 71.38514 76.87630

2 0.00478 78.79094 84.04367 89.29640 68.28548 73.53821

2.1 0.00545 80.20118 85.54792 90.89467 69.50769 74.85443

2.2 0.00638 82.17125 87.64934 93.12742 71.21509 76.69317

2.3 0.00633 82.05893 87.52953 93.00012 71.11774 76.58834

2.4 0.00654 82.49329 87.99284 93.49239 71.49418 76.99374

2.5 0.00560 80.51346 85.88103 91.24859 69.77833 75.14590

2.6 0.00416 77.48301 82.64855 87.81408 67.15194 72.31748

2.7 0.00417 77.50571 82.67276 87.83981 67.17162 72.33867

2.8 0.00554 80.39073 85.75011 91.10949 69.67196 75.03134

2.9 0.00584 81.03049 86.43253 91.83456 70.22643 75.62846

3 0.00482 78.87610 84.13451 89.39292 68.35929 73.61770

3.1 0.00468 78.58049 83.81919 89.05789 68.10309 73.34179

3.2 0.00474 78.71794 83.96580 89.21366 68.22221 73.47008

3.3 0.00443 78.05708 83.26089 88.46469 67.64947 72.85328

3.4 0.00496 79.17241 84.45057 89.72873 68.61609 73.89425

3.5 0.00603 81.42658 86.85502 92.28346 70.56970 75.99814

3.6 0.00514 79.55143 84.85486 90.15829 68.94457 74.24800

3.7 0.00435 77.88240 83.07456 88.26672 67.49808 72.69024

3.8 0.00512 79.50684 84.80729 90.10775 68.90593 74.20638

3.9 0.00479 78.81229 84.06644 89.32060 68.30399 73.55814

4 0.00631 82.02360 87.49184 92.96008 71.08712 76.55536

4.1 0.00615 81.68273 87.12824 92.57376 70.79170 76.23721

4.2 0.00432 77.83437 83.02333 88.21228 67.45645 72.64541

4.3 0.00617 81.72938 87.17801 92.62663 70.83213 76.28076

4.4 0.00600 81.36322 86.78743 92.21165 70.51479 75.93900

4.5 0.00638 82.16102 87.63843 93.11583 71.20622 76.68362

4.6 0.00584 81.02305 86.42459 91.82612 70.21998 75.62151

4.7 0.00511 79.48972 84.78903 90.08835 68.89109 74.19040

4.8 0.00540 80.10461 85.44491 90.78522 69.42399 74.76430

4.9 0.00460 78.40960 83.63690 88.86421 67.95498 73.18229

5 0.00630 81.98528 87.45096 92.91665 71.05391 76.51959

Asset Prices

Table 4.3: Gamma Data AO
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Data.pdf

Investment 

Period
GAMMA 75 80 85 65 70

0.1 0.0096 80.98696 86.3861 91.78523 70.1887 75.58783

0.2 0.0101 81.88494 87.34394 92.80293 70.96695 76.42594

0.3 0.0088 79.48733 84.78649 90.08564 68.88902 74.18818

0.4 0.0099 81.44507 86.87475 92.30442 70.58573 76.0154

0.5 0.0098 81.36035 86.78438 92.2084 70.5123 75.93633

0.6 0.0099 81.4794 86.91136 92.34332 70.61548 76.04744

0.7 0.0084 78.69437 83.94066 89.18695 68.20179 73.44808

0.8 0.0081 78.11943 83.32739 88.53535 67.7035 72.91147

0.9 0.0087 79.2378 84.52032 89.80284 68.67276 73.95528

1 0.0093 80.2893 85.64192 90.99453 69.58406 74.93668

1.1 0.0094 80.65512 86.03212 91.40913 69.9011 75.27811

1.2 0.0079 77.74239 82.92522 88.10805 67.37674 72.55957

1.3 0.0100 81.72414 87.17242 92.62069 70.82759 76.27587

1.4 0.0103 82.23878 87.72137 93.20396 71.27361 76.7562

1.5 0.0093 80.35018 85.70686 91.06354 69.63682 74.9935

1.6 0.0094 80.57521 85.94689 91.31857 69.83185 75.20353

1.7 0.0086 79.04386 84.31346 89.58305 68.50468 73.77427

1.8 0.0094 80.50705 85.87418 91.24132 69.77277 75.13991

1.9 0.0104 82.49459 87.99422 93.49386 71.49531 76.99495

2 0.0091 79.99371 85.32663 90.65954 69.32788 74.6608

2.1 0.0085 78.80156 84.05499 89.30843 68.29468 73.54812

2.2 0.0101 81.90093 87.36099 92.82105 70.9808 76.44086

2.3 0.0091 80.04279 85.37898 90.71517 69.37042 74.70661

2.4 0.0098 81.26768 86.68553 92.10337 70.43199 75.84984

2.5 0.0079 77.72188 82.90334 88.0848 67.35897 72.54042

2.6 0.0087 79.14127 84.41736 89.69344 68.5891 73.86519

2.7 0.0082 78.30243 83.52259 88.74275 67.86211 73.08227

2.8 0.0098 81.30424 86.72452 92.1448 70.46367 75.88395

2.9 0.0092 80.09849 85.43839 90.77829 69.41869 74.75859

3 0.0087 79.31725 84.60506 89.89288 68.74161 74.02943

3.1 0.0088 79.34755 84.63739 89.92723 68.76788 74.05772

3.2 0.0090 79.71457 85.02888 90.34318 69.08596 74.40027

3.3 0.0090 79.8896 85.21558 90.54155 69.23766 74.56363

3.4 0.0091 80.03076 85.36614 90.70152 69.35999 74.69537

3.5 0.0101 81.94876 87.41201 92.87526 71.02226 76.48551

3.6 0.0092 80.16069 85.50474 90.84878 69.4726 74.81665

3.7 0.0102 82.12967 87.60498 93.08029 71.17904 76.65435

3.8 0.0086 79.05725 84.32773 89.59821 68.51628 73.78676

3.9 0.0101 81.99592 87.46231 92.92871 71.06313 76.52952

4 0.0085 78.87228 84.13044 89.38859 68.35598 73.61413

4.1 0.0086 78.93677 84.19922 89.46167 68.41187 73.67432

4.2 0.0098 81.254 86.67094 92.08787 70.42014 75.83707

4.3 0.0101 81.97298 87.43785 92.90271 71.04325 76.50812

4.4 0.0101 81.99033 87.45635 92.92237 71.05828 76.5243

4.5 0.0090 79.87201 85.19681 90.52161 69.2224 74.5472

4.6 0.0090 79.86076 85.18482 90.50887 69.21266 74.53671

4.7 0.0080 77.85162 83.04172 88.23183 67.4714 72.66151

4.8 0.0092 80.24856 85.59847 90.94837 69.54876 74.89866

4.9 0.0093 80.46057 85.82461 91.18864 69.73249 75.09653

5 0.0092 80.24274 85.59225 90.94177 69.5437 74.89322

Asset Prices

Table 4.4: Gamma Data BOA
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Figure 4.4: Gamma BOA Graph

80



Let CA = [Max( 1
T

∫ T
0
STdτ − K), 0] be the pay o� process of an Asian call

option and suppose V (τ) represent the option value where τ ∈ [0, T ], then the

measures of changes in V with respect to the changes in delta is given as

Γ =
∂2V

∂s2

Γ2 =
e−rT

S2
0

EQ[(
1

T

∫ T

0

Sτdτ −K)
1

(σT )2
(B2

T − T )
1

2
− BT

σT
]

so,

Γ2 =
e−rT

S2
0

[(
1

m

m∑
j=1

(Sj + aSjh−K)
1

(σT )2
(B2

0 − T )
1

2
− B0

σT
]

Let CB = [Max(Si −K), 0]1Si>Sj i 6=j, i,j=1,2,...n be the payo� process of Best of

Assets call option and let V (τ), τ ∈ [0, T ] be the value of the option at time τ , then

the measures the sensitivity of the option with respect to changes in delta is given

as

Γ =
∂2V

∂s2

Γ3 =
e−rT

S2
0

EQ[Max(Si −K), 0]1Si>Sj i 6=j
1

(σT )2
(B2

T − T )
1

2
− BT

σT
]

so,

Γ3 =
e−rT

S2
0

[(Max(Si + aSih−K)
1

(σT )2
(B2

0 − T )
1

2
− B0

σT
]

4.9.3 Rho

Let CE = max[(ST −K), 0] be the pay o� process of an European call and suppose

V (τ) represent the option value where τ ∈ [0, T ], then the measures of changes in

V in terms of rate of interest is given as

ρ =
∂V

∂r

ρ1 =
e−rT

σ
EQ[(ST −K)+)BT ]

so,

ρ1 =
e−rT

σ
[(Sj + aSjh−K)B0]

Let CA = [Max( 1
T

∫ T
0
STdτ − K), 0] be the pay o� process of an Asian call

81



Investment 

Period
Rho AO

75 80 85 65

0.1 23.50324 80.66530 86.04298 91.42067 69.90992

0.2 25.60503 81.73443 87.18340 92.63236 70.83651

0.3 24.77652 81.31299 86.73385 92.15472 70.47125

0.4 24.30634 81.07382 86.47874 91.88366 70.26398

0.5 23.84605 80.83968 86.22899 91.61830 70.06105

0.6 26.87360 82.30057 87.78728 93.27398 71.32716

0.7 19.83352 78.79858 84.05182 89.30506 68.29210

0.8 21.10465 79.44518 84.74153 90.03787 68.85249

0.9 19.82114 78.79229 84.04511 89.29792 68.28665

1 25.16699 81.51161 86.94572 92.37982 70.64339

1.1 20.30949 79.04070 84.31008 89.57946 68.50194

1.2 18.55713 78.14931 83.35926 88.56922 67.72940

1.3 17.90155 77.81583 83.00355 88.19128 67.44039

1.4 21.71518 79.75574 85.07279 90.38984 69.12164

1.5 25.12462 81.49006 86.92273 92.35540 70.62472

1.6 25.54195 81.70235 87.14917 92.59599 70.80870

1.7 19.02609 78.38786 83.61372 88.83958 67.93615

1.8 21.99635 79.89877 85.22536 90.55194 69.24560

1.9 25.78861 81.82782 87.28301 92.73819 70.91744

2 17.78361 77.75584 82.93956 88.12328 67.38839

2.1 18.21744 77.97652 83.17495 88.37338 67.57965

2.2 22.65270 80.23264 85.58149 90.93033 69.53496

2.3 23.56811 80.69829 86.07818 91.45806 69.93852

2.4 26.78722 82.26425 87.74853 93.23282 71.29568

2.5 20.23451 79.00256 84.26940 89.53623 68.46888

2.6 24.27238 81.05654 86.46031 91.86408 70.24900

2.7 20.87497 79.32835 84.61690 89.90546 68.75123

2.8 24.84238 81.34649 86.76959 92.19269 70.50029

2.9 18.25818 77.99724 83.19706 88.39687 67.59761

3 17.22561 77.47199 82.63679 87.80159 67.14240

3.1 17.70554 77.71612 82.89720 88.07827 67.35397

3.2 19.32828 78.54158 83.77768 89.01379 68.06937

3.3 18.10042 77.91699 83.11146 88.30593 67.52806

3.4 22.87646 80.34646 85.70289 91.05932 69.63360

3.5 19.15119 78.45150 83.68160 88.91170 67.99130

3.6 22.91781 80.36750 85.72533 91.08317 69.65183

3.7 20.81256 79.29660 84.58304 89.86948 68.72372

3.8 17.68191 77.70411 82.88438 88.06465 67.34356

3.9 18.11692 77.92538 83.12041 88.31544 67.53533

4 21.69441 79.74518 85.06153 90.37787 69.11249

4.1 23.77200 80.80201 86.18881 91.57561 70.02841

4.2 23.89300 80.86356 86.25446 91.64537 70.08175

4.3 25.39652 81.62837 87.07026 92.51215 70.74458

4.4 22.01752 79.90954 85.23684 90.56414 69.25493

4.5 19.11216 78.43164 83.66042 88.88919 67.97409

4.6 25.63496 81.74966 87.19964 92.64961 70.84970

4.7 25.31413 81.58646 87.02555 92.46465 70.70826

4.8 23.06762 80.44370 85.80662 91.16953 69.71788

4.9 22.43941 80.12415 85.46576 90.80737 69.44093

5 27.23274 82.45160 87.94837 93.44514 71.45805

Asset Prices

Table 4.5: Rho AO Data
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Data.pdf

Investment 

Period
Rho 75.0000 80.0000 85.0000 65.0000 70.0000

0.1000 46.7697 80.0003 85.3337 90.6671 69.3336 74.6670

0.2000 51.0455 81.5868 87.0260 92.4651 70.7086 76.1477

0.3000 49.7324 81.0996 86.5062 91.9129 70.2863 75.6930

0.4000 50.1767 81.2645 86.6821 92.0997 70.4292 75.8468

0.5000 48.0856 80.4886 85.8545 91.2204 69.7568 75.1227

0.6000 51.6405 81.8076 87.2614 92.7152 70.8999 76.3537

0.7000 47.1276 80.1331 85.4753 90.8175 69.4487 74.7909

0.8000 45.1046 79.3825 84.6747 89.9669 68.7982 74.0904

0.9000 42.7861 78.5223 83.7571 88.9919 68.0527 73.2875

1.0000 46.2135 79.7940 85.1136 90.4332 69.1548 74.4744

1.1000 43.4694 78.7758 84.0275 89.2792 68.2724 73.5241

1.2000 41.6191 78.0893 83.2952 88.5012 67.6774 72.8833

1.3000 40.7190 77.7553 82.9390 88.1227 67.3879 72.5716

1.4000 48.1689 80.5195 85.8875 91.2554 69.7836 75.1515

1.5000 43.6918 78.8583 84.1155 89.3728 68.3439 73.6011

1.6000 48.2264 80.5408 85.9102 91.2796 69.8021 75.1714

1.7000 52.8617 82.2607 87.7448 93.2288 71.2926 76.7767

1.8000 53.6837 82.5657 88.0701 93.5744 71.5569 77.0613

1.9000 44.6830 79.2261 84.5079 89.7896 68.6626 73.9444

2.0000 42.8151 78.5330 83.7686 89.0041 68.0620 73.2975

2.1000 49.9272 81.1719 86.5833 91.9948 70.3490 75.7604

2.2000 52.7556 82.2213 87.7028 93.1842 71.2585 76.7399

2.3000 50.3947 81.3454 86.7684 92.1914 70.4993 75.9223

2.4000 42.0627 78.2539 83.4708 88.6877 67.8200 73.0370

2.5000 40.7869 77.7805 82.9659 88.1512 67.4098 72.5951

2.6000 44.9500 79.3252 84.6135 89.9018 68.7485 74.0368

2.7000 39.8561 77.4351 82.5975 87.7598 67.1105 72.2728

2.8000 48.2570 80.5522 85.9223 91.2925 69.8119 75.1820

2.9000 46.6462 79.9545 85.2848 90.6151 69.2939 74.6242

3.0000 49.7869 81.1198 86.5278 91.9358 70.3039 75.7119

3.1000 47.7984 80.3820 85.7408 91.0996 69.6644 75.0232

3.2000 46.0944 79.7498 85.0664 90.3831 69.1165 74.4331

3.3000 40.9523 77.8419 83.0313 88.2208 67.4630 72.6524

3.4000 41.6225 78.0906 83.2966 88.5026 67.6785 72.8845

3.5000 43.1386 78.6531 83.8966 89.1402 68.1660 73.4095

3.6000 46.4774 79.8919 85.2180 90.5441 69.2396 74.5657

3.7000 47.4271 80.2442 85.5939 90.9435 69.5450 74.8946

3.8000 45.3666 79.4797 84.7784 90.0770 68.8824 74.1811

3.9000 51.4185 81.7252 87.1736 92.6219 70.8285 76.2769

4.0000 45.7540 79.6235 84.9317 90.2400 69.0070 74.3153

4.1000 51.8787 81.8960 87.3557 92.8154 70.9765 76.4363

4.2000 41.8341 78.1690 83.3803 88.5916 67.7465 72.9578

4.3000 52.2042 82.0167 87.4845 92.9523 71.0812 76.5489

4.4000 42.8204 78.5350 83.7707 89.0063 68.0637 73.2993

4.5000 40.7257 77.7578 82.9416 88.1255 67.3901 72.5739

4.6000 49.7816 81.1179 86.5257 91.9336 70.3022 75.7100

4.7000 52.2116 82.0195 87.4875 92.9554 71.0836 76.5515

4.8000 53.1822 82.3796 87.8716 93.3636 71.3957 76.8876

4.9000 49.2101 80.9058 86.2995 91.6932 70.1184 75.5121

5.0000 41.5088 78.0483 83.2516 88.4548 67.6419 72.8451

Asset Prices

Table 4.6: Rho BOA Data
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and suppose V (τ) represents the option value where τ ∈ [0, T ], then the measures

of changes in V in terms of rate of interest is given as

ρ =
∂V

∂r

ρ2 =
e−rT

σ
EQ[(

1

T

∫ T

0

Sτdτ −K)BT ]

so,

ρ2 =
e−rT

σ
[(

1

m

m∑
j=1

(Sj + aSjh−K)B0]

Let CB = [Max(Si−K), 0]1Si>Sj i 6=j, i,j=1,2,...n be the payo� process of Best

of Assets call option and let V (τ), τ ∈ [0, T ] be the value of the option at time τ ,

then the measures the sensitivity of the option with respect to changes in the rate

of interest is given as

ρ =
∂V

∂r

ρ3 =
e−rT

σ
E[Max(Si −K), 0]1Si>Sj i 6=jBT ]

so,

ρ3 =
e−rT

σ
[(Max(Si + aSih−K)B0]

4.9.4 Theta

Let CE = max[(ST −K), 0] be the pay o� process of an European call and suppose

V (τ) represents the option value, at time τ , τ ∈ [0, T ], then the measures of changes

in V in terms of expiration time is given as

Θ =
∂V

∂T

Θ1 =
e−rT

σT
E[(ST −K)+)(κ− σ2

2
)BT ]

so,

Θ1 =
e−rT

σT
[(Sj + aSjh−K)(κ− σ2

2
)B0]

Let CA = [Max( 1
T

∫ T
0
STdτ − K), 0] be the pay o� process of an Asian call

and suppose V (τ) represent the option value where τ ∈ [0, T ], then the measures
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Investment 

Period
Theta AO 75 80 85 65 70

0.1 0.33914 79.49167 84.79112 90.09056 68.89278 74.19223

0.2 0.39814 81.36756 86.79206 92.21657 70.51855 75.94305

0.3 0.32319 78.98470 84.25034 89.51599 68.45341 73.71905

0.4 0.37287 80.56415 85.93510 91.30604 69.82227 75.19321

0.5 0.42087 82.06118 87.53192 93.00267 71.11969 76.59043

0.6 0.31794 78.81779 84.07231 89.32683 68.30875 73.56327

0.7 0.33745 79.43803 84.73389 90.02976 68.84629 74.14216

0.8 0.35962 80.14290 85.48576 90.82862 69.45718 74.80004

0.9 0.35287 79.92842 85.25698 90.58554 69.27130 74.59986

1.0 0.29472 78.07945 83.28474 88.49004 67.66885 72.87415

1.1 0.34505 79.67954 84.99151 90.30348 69.05560 74.36757

1.2 0.35412 79.96797 85.29917 90.63037 69.30558 74.63677

1.3 0.39594 81.29774 86.71759 92.13744 70.45804 75.87789

1.4 0.34451 79.66241 84.97324 90.28407 69.04076 74.35158

1.5 0.31819 78.82578 84.08083 89.33588 68.31567 73.57072

1.6 0.27302 77.38979 82.54911 87.70843 67.07115 72.23047

1.7 0.29876 78.20784 83.42170 88.63556 67.78013 72.99399

1.8 0.27210 77.36025 82.51760 87.67495 67.04555 72.20290

1.9 0.32660 79.09297 84.36583 89.63870 68.54724 73.82010

2.0 0.40874 81.70466 87.15164 92.59862 70.81071 76.25768

2.1 0.41761 81.97559 87.44063 92.90567 71.04551 76.51055

2.2 0.42398 82.14293 87.61912 93.09532 71.19054 76.66673

2.3 0.28618 77.80801 82.99521 88.18241 67.43361 72.62081

2.4 0.30905 78.53526 83.77094 89.00662 68.06389 73.29957

2.5 0.39363 81.22407 86.63901 92.05394 70.39419 75.80913

2.6 0.35736 80.07114 85.40921 90.74729 69.39498 74.73306

2.7 0.41909 82.01450 87.48213 92.94976 71.07923 76.54686

2.8 0.32362 78.99841 84.26497 89.53153 68.46529 73.73185

2.9 0.41419 81.87795 87.33648 92.79501 70.96089 76.41942

3.0 0.36438 80.29423 85.64718 91.00013 69.58833 74.94128

3.1 0.38876 81.06941 86.47404 91.87866 70.26015 75.66478

3.2 0.33500 79.36027 84.65096 89.94164 68.77890 74.06959

3.3 0.31264 78.64937 83.89266 89.13595 68.16279 73.40608

3.4 0.30036 78.25871 83.47596 88.69321 67.82422 73.04146

3.5 0.31566 78.74541 83.99510 89.24480 68.24602 73.49571

3.6 0.28604 77.80375 82.99066 88.17758 67.42991 72.61683

3.7 0.38969 81.09874 86.50533 91.91191 70.28558 75.69216

3.8 0.42213 82.09438 87.56734 93.04030 71.14847 76.62142

3.9 0.36638 80.35788 85.71507 91.07227 69.64350 75.00069

4.0 0.40892 81.71013 87.15747 92.60481 70.81544 76.26278

4.1 0.30498 78.40560 83.63264 88.85968 67.95152 73.17856

4.2 0.41305 81.84140 87.29750 92.75359 70.92921 76.38531

4.3 0.31106 78.59913 83.83907 89.07901 68.11925 73.35919

4.4 0.42085 82.06061 87.53132 93.00202 71.11919 76.58990

4.5 0.39189 81.16887 86.58012 91.99138 70.34635 75.75761

4.6 0.38412 80.92177 86.31655 91.71134 70.13220 75.52698

4.7 0.42029 82.04608 87.51582 92.98556 71.10660 76.57634

4.8 0.36275 80.24225 85.59173 90.94121 69.54328 74.89276

4.9 0.35154 79.88607 85.21181 90.53755 69.23460 74.56034

5.0 0.29492 78.08583 83.29155 88.49727 67.67438 72.88011

Asset Prices

Table 4.7: Theta AO Data
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Data.pdf

Investment 

Period
Theta 75.0000 80.0000 85.0000 65.0000 70.0000

0.1000 0.8111 81.4562 86.8867 92.3171 70.5954 76.0258

0.2000 0.7546 80.1470 85.4902 90.8333 69.4608 74.8039

0.3000 0.7552 80.1607 85.5047 90.8488 69.4726 74.8166

0.4000 0.8317 81.9344 87.3967 92.8590 71.0098 76.4721

0.5000 0.6512 77.7477 82.9309 88.1140 67.3813 72.5645

0.6000 0.7311 79.6006 84.9073 90.2140 68.9872 74.2939

0.7000 0.6911 78.6733 83.9182 89.1631 68.1835 73.4284

0.8000 0.7630 80.3403 85.6963 91.0523 69.6282 74.9842

0.9000 0.7029 78.9462 84.2093 89.4724 68.4201 73.6832

1.0000 0.7521 80.0892 85.4285 90.7678 69.4107 74.7500

1.1000 0.7611 80.2966 85.6498 91.0029 69.5904 74.9435

1.2000 0.8164 81.5781 87.0167 92.4552 70.7011 76.1396

1.3000 0.6881 78.6028 83.8430 89.0832 68.1225 73.3627

1.4000 0.7550 80.1564 85.5001 90.8439 69.4689 74.8126

1.5000 0.7685 80.4678 85.8324 91.1969 69.7388 75.1033

1.6000 0.7147 79.2197 84.5011 89.7824 68.6571 73.9384

1.7000 0.7282 79.5335 84.8357 90.1379 68.9290 74.2312

1.8000 0.7848 80.8475 86.2373 91.6271 70.0678 75.4576

1.9000 0.8469 82.2868 87.7726 93.2583 71.3152 76.8010

2.0000 0.6521 77.7686 82.9532 88.1378 67.3995 72.5840

2.1000 0.6566 77.8745 83.0661 88.2578 67.4912 72.6829

2.2000 0.8352 82.0161 87.4839 92.9516 71.0806 76.5484

2.3000 0.7773 80.6716 86.0497 91.4278 69.9154 75.2935

2.4000 0.7975 81.1403 86.5497 91.9590 70.3216 75.7309

2.5000 0.7478 79.9875 85.3200 90.6525 69.3225 74.6550

2.6000 0.6908 78.6659 83.9103 89.1547 68.1771 73.4215

2.7000 0.7650 80.3883 85.7475 91.1067 69.6698 75.0291

2.8000 0.8453 82.2485 87.7317 93.2149 71.2820 76.7652

2.9000 0.8339 81.9856 87.4513 92.9170 71.0542 76.5199

3.0000 0.8501 82.3606 87.8513 93.3420 71.3792 76.8699

3.1000 0.8469 82.2876 87.7735 93.2593 71.3159 76.8018

3.2000 0.8397 82.1202 87.5948 93.0695 71.1708 76.6455

3.3000 0.8077 81.3774 86.8026 92.2278 70.5271 75.9523

3.4000 0.6645 78.0561 83.2599 88.4636 67.6487 72.8524

3.5000 0.8315 81.9285 87.3904 92.8522 71.0047 76.4666

3.6000 0.6436 77.5731 82.7446 87.9161 67.2300 72.4015

3.7000 0.7216 79.3807 84.6728 89.9648 68.7966 74.0887

3.8000 0.7067 79.0351 84.3041 89.5731 68.4971 73.7661

3.9000 0.7807 80.7524 86.1359 91.5194 69.9854 75.3689

4.0000 0.8502 82.3623 87.8531 93.3439 71.3807 76.8715

4.1000 0.7963 81.1127 86.5202 91.9277 70.2977 75.7052

4.2000 0.7605 80.2829 85.6351 90.9872 69.5785 74.9307

4.3000 0.6590 77.9302 83.1256 88.3209 67.5395 72.7349

4.4000 0.6686 78.1515 83.3616 88.5717 67.7313 72.9414

4.5000 0.8008 81.2173 86.6318 92.0463 70.3884 75.8028

4.6000 0.8532 82.4318 87.9272 93.4227 71.4409 76.9363

4.7000 0.8498 82.3526 87.8428 93.3330 71.3723 76.8625

4.8000 0.8329 81.9625 87.4267 92.8909 71.0342 76.4984

4.9000 0.7639 80.3617 85.7192 91.0766 69.6468 75.0043

5.0000 0.6513 77.7508 82.9342 88.1176 67.3840 72.5674

Asset Prices

Table 4.8: Theta BOA Data
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of changes in V in terms of expiration time is given as

Θ =
∂V

∂T

Θ2 =
e−rT

σT
E[(

1

T

∫ T

0

Sτdτ −K)))(κ− σ2

2
)BT ]

so,

Θ2 =
e−rT

σ
[(

1

m

m∑
j=1

(Sj + aSjh−K)))(κ− σ2

2
)B0]

Let CB = [Max(Si−K), 0]1Si>Sj i 6=j, i,j=1,2,...n be the payo� process of Best

of Assets call option and

Let V (τ), τ ∈ [0, T ] be the value of the option at time τ , then the measures the

sensitivity of the option with respect to changes in the time to expiration is given

as

Θ =
∂V

∂T

Θ3 =
e−rT

σT
E[Max(Si −K), 0]1Si>Sj i 6=j(κ−

σ2

2
)BT ]

so,

Θ3 =
e−rT

σT
[(Max(Si + aSih−K)(κ− σ2

2
)B0]

4.9.5 Vega

Let CE = max[(ST −K), 0] be the pay o� process of an European call and suppose

V (τ) represent the option value where τ ∈ [0, T ], then the measures of changes in

V with respect to changes in the volatility is given as

Θ =
∂V

∂σ

ϑ1 =
e−rT

2σT
E[(ST −K)+)(B2

T − T − 2BT )]

so,

ϑ1 =
e−rT

2σT
[(Sj + aSjh−K)(B2

0 − T − 2B0)]

Let CA = [Max( 1
T

∫ T
0
STdτ − K), 0] be the pay o� process of an Asian call

and suppose V (τ) represent the option value where τ ∈ [0, T ], then the measures
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Investment 

Period
Vega AO

75 80 85 65 70

0.1 1.22398 81.16197 86.57277 91.98356 70.34037 75.75117

0.2 1.09328 79.83230 85.15445 90.47661 69.18799 74.51015

0.3 0.99922 78.87532 84.13368 89.39203 68.35861 73.61697

0.4 1.09872 79.88756 85.21339 90.53923 69.23588 74.56172

0.5 1.15503 80.46044 85.82447 91.18850 69.73238 75.09641

0.6 1.20554 80.97435 86.37264 91.77093 70.17777 75.57606

0.7 1.26719 81.60154 87.04165 92.48175 70.72134 76.16144

0.8 1.29809 81.91589 87.37695 92.83801 70.99377 76.45483

0.9 1.09309 79.83028 85.15230 90.47432 69.18625 74.50827

1 1.29698 81.90462 87.36493 92.82524 70.98400 76.44431

1.1 1.10498 79.95126 85.28134 90.61143 69.29109 74.62117

1.2 1.33447 82.22313 87.70467 93.18621 71.26004 76.74159

1.3 1.36330 82.46561 87.96332 93.46103 71.47020 76.96791

1.4 0.86539 77.51385 82.68144 87.84903 67.17867 72.34626

1.5 0.98696 78.75058 84.00062 89.25066 68.25050 73.50054

1.6 0.97599 78.63903 83.88163 89.12423 68.15382 73.39643

1.7 1.01752 79.06155 84.33232 89.60309 68.52001 73.79078

1.8 0.93016 78.17277 83.38429 88.59581 67.74974 72.96126

1.9 1.24203 81.34557 86.76861 92.19164 70.49949 75.92253

2 1.36779 82.50333 88.00355 93.50378 71.50289 77.00311

2.1 0.93455 78.21743 83.43193 88.64642 67.78844 73.00294

2.2 1.32159 82.11477 87.58909 93.06341 71.16614 76.64046

2.3 1.07218 79.61763 84.92547 90.23331 69.00195 74.30979

2.4 1.21216 81.04174 86.44452 91.84731 70.23618 75.63896

2.5 1.13096 80.21563 85.56334 90.91105 69.52021 74.86792

2.6 1.15893 80.50014 85.86681 91.23349 69.76678 75.13346

2.7 0.86469 77.50663 82.67374 87.84085 67.17241 72.33952

2.8 1.03266 79.21553 84.49656 89.77760 68.65346 73.93449

2.9 1.30246 81.95394 87.41754 92.88113 71.02675 76.49034

3 1.10428 79.94414 85.27375 90.60336 69.28492 74.61453

3.1 1.12243 80.12880 85.47072 90.81264 69.44496 74.78688

3.2 1.20351 80.95365 86.35056 91.74747 70.15983 75.55674

3.3 1.22602 81.18266 86.59484 92.00701 70.35830 75.77048

3.4 1.15956 80.50657 85.87367 91.24078 69.77236 75.13946

3.5 1.27325 81.66321 87.10743 92.55164 70.77478 76.21900

3.6 1.04248 79.31549 84.60319 89.89089 68.74009 74.02779

3.7 1.20476 80.96646 86.36422 91.76199 70.17093 75.56869

3.8 0.91256 77.99368 83.19326 88.39284 67.59453 72.79410

3.9 0.96309 78.50779 83.74164 88.97550 68.04009 73.27394

4 1.09914 79.89185 85.21798 90.54410 69.23961 74.56573

4.1 1.10691 79.97096 85.30236 90.63376 69.30817 74.63957

4.2 1.24088 81.33389 86.75615 92.17841 70.48937 75.91163

4.3 1.22708 81.19348 86.60638 92.01928 70.36768 75.78058

4.4 0.97494 78.62829 83.87018 89.11207 68.14452 73.38641

4.5 0.85163 77.37381 82.53206 87.69031 67.05730 72.21555

4.6 1.15265 80.43625 85.79866 91.16108 69.71141 75.07383

4.7 1.28044 81.73632 87.18541 92.63450 70.83814 76.28723

4.8 1.37552 82.56837 88.07293 93.57749 71.55925 77.06381

4.9 1.15776 80.48826 85.85414 91.22002 69.75649 75.12237

5 1.02210 79.10807 84.38194 89.65581 68.56033 73.83420

Asset Prices

Table 4.9: Vega AO Data
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Data.pdf

75.0000 80.0000 85.0000 65.0000 70.0000

0.1 2.099709763 78.2285 83.4437 88.6589 67.7980 73.0132

0.2 2.5510197 81.5775 87.0160 92.4545 70.7005 76.1390

0.3 2.436824233 80.7301 86.1121 91.4941 69.9661 75.3481

0.4 2.075732231 78.0505 83.2539 88.4573 67.6438 72.8472

0.5 1.998531473 77.4776 82.6428 87.8080 67.1473 72.3125

0.6 2.623128541 82.1126 87.5868 93.0610 71.1643 76.6384

0.7 2.239088962 79.2627 84.5469 89.8311 68.6944 73.9786

0.8 2.430047463 80.6798 86.0585 91.4371 69.9225 75.3011

0.9 2.479653032 81.0479 86.4511 91.8543 70.2415 75.6447

1 2.648351329 82.2998 87.7864 93.2731 71.3265 76.8131

1.1 2.497353011 81.1793 86.5912 92.0032 70.3554 75.7673

1.2 2.174365323 78.7825 84.0346 89.2868 68.2781 73.5303

1.3 2.217171568 79.1001 84.3734 89.6468 68.5534 73.8268

1.4 2.081942999 78.0966 83.3031 88.5095 67.6837 72.8902

1.5 2.339690595 80.0093 85.3432 90.6772 69.3414 74.6753

1.6 2.609807248 82.0138 87.4813 92.9489 71.0786 76.5462

1.7 2.237198 79.2487 84.5320 89.8152 68.6822 73.9655

1.8 2.451604985 80.8398 86.2291 91.6184 70.0611 75.4505

1.9 2.216879727 79.0979 84.3711 89.6443 68.5515 73.8247

2 2.404187768 80.4879 85.8538 91.2196 69.7562 75.1220

2.1 2.172586255 78.7693 84.0205 89.2718 68.2667 73.5180

2.2 2.026163458 77.6827 82.8615 88.0404 67.3250 72.5038

2.3 2.476152941 81.0219 86.4234 91.8249 70.2190 75.6205

2.4 2.395564431 80.4239 85.7855 91.1471 69.7007 75.0623

2.5 2.581779047 81.8058 87.2595 92.7132 70.8983 76.3520

2.6 2.260029037 79.4181 84.7127 90.0072 68.8291 74.1236

2.7 2.07580555 78.0511 83.2545 88.4579 67.6443 72.8477

2.8 2.493575911 81.1512 86.5613 91.9714 70.3311 75.7411

2.9 2.272249398 79.5088 84.8094 90.1100 68.9076 74.2082

3 2.441451258 80.7644 86.1487 91.5330 69.9958 75.3801

3.1 2.347382396 80.0664 85.4041 90.7419 69.3909 74.7286

3.2 2.399284358 80.4515 85.8150 91.1784 69.7246 75.0881

3.3 2.028640691 77.7011 82.8811 88.0612 67.3409 72.5210

3.4 2.35668011 80.1354 85.4777 90.8201 69.4506 74.7930

3.5 2.580551524 81.7967 87.2498 92.7029 70.8904 76.3435

3.6 2.426546133 80.6538 86.0307 91.4077 69.9000 75.2769

3.7 2.168352437 78.7378 83.9870 89.2362 68.2395 73.4886

3.8 2.615006251 82.0523 87.5225 92.9926 71.1120 76.5822

3.9 2.332329475 79.9547 85.2850 90.6153 69.2940 74.6244

4 2.501337065 81.2088 86.6227 92.0367 70.3810 75.7949

4.1 2.265082961 79.4556 84.7527 90.0497 68.8616 74.1586

4.2 2.384240601 80.3399 85.6959 91.0519 69.6279 74.9839

4.3 2.208406309 79.0351 84.3041 89.5731 68.4971 73.7661

4.4 2.085795065 78.1252 83.3335 88.5419 67.7085 72.9168

4.5 2.628250995 82.1506 87.6273 93.1040 71.1972 76.6739

4.6 2.666021264 82.4309 87.9263 93.4217 71.4401 76.9355

4.7 2.034993471 77.7482 82.9314 88.1146 67.3818 72.5650

4.8 2.609196365 82.0092 87.4765 92.9438 71.0747 76.5419

4.9 2.062019252 77.9488 83.1453 88.3419 67.5556 72.7522

5 2.042181283 77.8015 82.9883 88.1751 67.4280 72.6148

Asset Prices
Investment 

Period
Vega

Table 4.10: Vega BOA Data
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of changes in V with respect to changes in the volatility is given as

ϑ =
∂V

∂σ

ϑ2 =
e−rT

2σT
E[(

1

T

∫ T

0

Sτdτ −K)(B2
T − T − 2BT )]

so,

ϑ2 =
e−rT

2σT
[(

1

m

m∑
j=1

(Sj + aSjh−K)((B2
0 − T − 2B0)]

Let CB = [Max(Si−K), 0]1Si>Sj i 6=j, i,j=1,2,...n be the payo� process of Best

of Assets call and suppose V (τ) represent the option value where τ ∈ [0, T ], then

the measures the sensitivity of the option with respect to changes in the volatility

is given as

ϑ =
∂V

∂σ

ϑ3 =
e−rT

2σT
E[Max(Si −K), 0]1Si>Sj i 6=j(B

2
T − T − 2BT )]

so,

ϑ3 =
e−rT

2σT
[(Max(Si + aSih−K)(B2

0 − T − 2B0)]

4.10 Discussion

In this section, we analyse and discuss the results obtained for the various Greeks

and their implications to an investors

4.10.1 Delta

Delta values are always between −1 and 1.The delta value of a Call option stands

between 0 and 1, while the delta values of a Put option always stands between 0

and −1. When delta value of a Call option is between 0 and 0.5, delta is said to be

strong and consequently, risk is minimized. But when delta value of a Call option

is between 0.5 and 1, delta is said to be weak and consequently, risk is high.

In table 4.1, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, but we used di�erent values for K,

that is K = 71, K = 72, K = 73, K = 74, and K = 75. When K is allowed to

96



take di�erent values, and the the value of Sj is taken randomly, it was observed

that delta is higher when K is the smallest. Delta is better when it value increases

from zero towards 0.2.

In table 4.2, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. The result here indi-

cate that, if K is �xed and we allowed Sj to take di�erent values, it was observed

that delta is higher at 0.1502 when the asset values are high at 82.1524, 87.6293,

93.1061, 71.1988 and 76.6756. This is expected for a Call option because, as the

underlying asset value increases, the di�erence between the underlying asset value

and the strike price increases also. This is what an investor wants since this in-

crement is likely to be positive.This positive di�erence is like making pro�t on the

investment.

4.10.2 Gamma

In table 4.3, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71.

Gamma is the derivative of delta with respect to the underlying asset. This

means that, the value of gamma is expected to be less when compare with cor-

responding values of delta. It can be observe that, 0.00654 is the highest value of

gamma,and this value is obtained when the underlying asset value is highest at

82.4939, 87.99284, 93.49239, 71.49418 and 76.99374. When the value of Gamma

reduces over the investment period compare to the value of delta, and the gamma

value is between 0 and 0.1, then gamma is strong. If gamma is strong, then risk is

minimal.

In table 4.4, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71.

Gamma is the derivative of delta with respect to the underlying asset. This means

that, the value of gamma is expected to be less when compare with corresponding

values of delta. It can be observe that, 0.0104 is the highest value of gamma,and this

value is obtained when the underlying asset value is highest at 82.49459, 87.99422,

93.49386, 71.49531 and 76.99495. When the value of Gamma reduces over the in-

vestment period compare to the value of delta, and the gamma value is between 0

and 0.1, then gamma is strong. If gamma is strong, then risk is minimal.

This is expected for a Call option because, as the underlying asset value increases,
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the di�erence between the underlying asset value and the strike price increases also.

This is what an investor wants since this increment is likely to be positive.This pos-

itive di�erence is like making pro�t on the investment.

4.10.3 Rho

Rho measured the e�ect of changes in the interest rate on the value of the option.

When the interest rate is high, the holder of a Call is happy because the condition

is favourable to him or her. This is because, the value of Call will increase, but this

position is not favourable to the holder of a Put option. This high interest rate will

lead to high value of rho, and this is only attainable when undelying asset value is

high compare to the strike price.

In table 4.5, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Rho is highest with value

27.23274. This value is obtained when the underlying asset values are respectively

82.45160, 87.94837, 93.44514, and 71.45805. The di�erence between these values

and the strike price is the highest, and when this happened, the holder of a Call

option is at advantage because the condition is favourable.

In table 4.6, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Rho is highest with value

53.6837. This value is obtained when the underlying asset values are respectively

82.5657, 88.0701, 93.5733, 71.5569, and 77.0613. The di�erence between these val-

ues and the strike price is the highest, and when this happened, the holder of a

Call option is at advantage because the condition is favourable.

4.10.4 Theta

Theta measures the e�ect of changes on the option with respect to the time to

expiration. The value of theta is expected to lies between 0 and 1 for a Call option

and between −1 and 0 for a Put option. Theta is expected to increase for option

that is in the money, that is when the underlying asset value is greater than the

strike price. As the di�erence between the underlying asset value and the strike

price increases, the value of theta is also expected to increase.
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In table 4.7, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Theta is highest

with value 0.42398. This value is obtained when the underlying asset values are

respectively 82.14293, 87.61912, 93.09532, 71.19054 and 76.66673 . The di�erence

between these values and the strike price is the highest, and when this happened,

the holder of a Call option is at advantage because the condition is favourable.

In table 4.8, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Theta is highest

with value 0.8501. This value is obtained when the underlying asset values are re-

spectively 82.3606, 87.8513, 93.3420, 71.3792 and 76.8699 . The di�erence between

these values and the strike price is the highest, and when this happened, the holder

of a Call option is at advantage because the condition is favourable.

4.10.5 Vega

Vega measures the e�ect of changes in the option with respect to the volatility.

Vega takes positive values when volatility is high. When this happened, the �nan-

cial market is said to be highly volatile. This condition is favourable to a holder of

a Call option. This is because, increase in volatility leads to increase in the option

value, and the increase in the option value is due to increase in the value of the

underlying asset compare to the strike price.

In table 4.9, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Vega value is highest at

1.37552 when the underlying asset values becomes 82.56837, 88.07293, 93.57749,

71.55925 and 77.06381.

In table 4.10, we used the following values for the computation, σ = 0.2, r = 0.01,

S0 = 70, κ = 0.3, h = 0.1, B0 = 0.5, T = 5, and K = 71. Vega value is highest

at 2.66602 when the underlying asset values becomes 82.4309, 87.9263, 93.4217,

71.4401 and 76.9355.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Introduction

In this section, we summarise our results and conclude as folows;

5.2 Summary

Delta:

• Changes in the option value with respect to changes in the value of the

underlying asset.

• The value of delta is such that −1 ≤ ∆ ≤ 1.

• ∆ of a call stand between 0 and 1 while for put, it stands between 0 and −1.

• As the underlying prices increases, ∆ also increase towards 1.

• if the value of the underlying asset Increase, call is positive and put is negative.

Gamma

• This measure the changes in delta.

• Gamma is positive for long position and negative for short position.

• Gamma is smallest for deep out of money option and deep in the money

option.

• As the market move higher,delta becomes more negative.

Rho

• This measure the changes in option value with respect to changes is interest

rate.

• Increase in interest rate make call expensive and put less expensive.
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Theta

• This measure the changes in option value with respect to the expiration time

T.

• Theta decreases for out of the money option.

• Theta is least at the money.

• As theta decreases, it has negative e�ect on a holder with a long position.

• If T increases, call is positive and put is negative.

Vega

• This measure the changes in option value with respect to the volatility.

• Increase in the volatility increase the option value and it end up in the money.

• The writer is favoured when volatility falls and Vega becomes negative. This

is because a writer want price to decline.

• Long call is favourable when the volatility rise.

5.3 Recommendation

In this work, the theory of Malliavin calculus was used to obtained the sensitivities

of options with multiple underlying assets with non-smooth payo�. We assume that

the underlying asset used in this work has a dynamics with constant drift which

represent the interest rate and constant volatility. For future research, random drift

and random volatility may be consider. Also, we could consider the possibility of

having correlation among the underlying assets vis a vis the possibility of using it

to analyse risk.
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