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ABSTRACT 

 

Increasing release of harmful metal(II)/metal(III) into the environment has led to a search 

for ligands with high sensitive and selective abilities to detect these ions. Studies on 

metal(II) are known but there is need for ligands that can sense its presence at low 

concentration. Also, studies on metal(III) are limited due to its poor coordination with 

ligands. Information on the use of multi-donor imidazole derivatives as well as pentadentate 

S-/O-bridged bis-phenol imines, with metal-chelating ability, as sensors are scarce. 

Therefore, the aim of this study was to synthesise and characterise structurally diverse 

imidazoles, imidazole-imines, bridged bis-imine ligands, their metal complexes, and 

investigate the magnetic and sensing properties of these materials. 

 

Nitro- and bis-imidazoles were prepared by one-pot reaction of appropriate aldehyde, 1,2-

dicarbonyls, aniline (nitrogen-phenyl variants) and ammonium-acetate dissolved in acetic-

acid and refluxed at 120oC for 5 hrs. Nitrogen-methyl variants were prepared by 

methylation of the nitrogen-hydrogen imidazoles, using methyl-iodide and potassium 

carbonate. Imidazole-amines were prepared by catalytic hydrogenation of the nitro-

imidazoles for 2 hrs. Tridentate-imidazole-imines were prepared by condensation of 

salicylaldehyde/ pyridine-2-carboxaldehyde with appropriate imidazole-amines, while the 

pentadentate S-/O-bridged-imines were prepared by condensation of salicylaldehyde/its 

derivatives with bis(2-aminophenyl)sulphide/bis(2-aminophenyl)ether. Metal complexes 

were prepared by reacting the imines with cobalt acetate and copper acetate, separately. The 

compounds were characterised by elemental analysis, Mass, NMR and IR spectroscopies, 

X-ray crystallography and magnetic measurements. Sensing properties of the ligands were 

determined using fluorescence measurements to detect metal(II) and metal(III). 

 

Nine nitro-imidazoles (N1 – N9), seven bis-imidazoles (BI1 – BI7), nine imidazole-amines 

(A1 – A9), nine nitrogen-nitrogen-oxygen imines (I1 – I9), eight pentadentate-imines (H2S1-

7 – H2O1) and forty-three metal complexes were obtained. Elemental and mass analysis of 

some representatives: BI1 [C,(81.99%), H(5.13%), N(10.66%); m/z = 515.22], I9 

[C(83.10%), H(4.78%), N(8.61%); m/z = 489], H2O1 [C(76.13%), H(4.88%), N(6.80%); 



 

vii 
 

m/z = 408], Co2S52 [C(39.31%), H(1.71%), N(3.48%), S(4.03%); m/z = 1616.5] agreed with 

proposed molecular formula C36H27.5N4O0.75, C34H23N3O, C26H20N2O3, and 

C52H28Br8Co2N4O4S2, respectively. In pentadentate-imines, phenanthrene and naphthalene 

substitutions resulted in downfield-shift of OHphenolic, while p-methyl/bromo substitution 

resulted in upfield-shift. Ligands exhibited C=Nimine bands around 1591-1617 cm-1 and 

OHphenol bands around 3371-3383 cm-1. In the complexes, these bands shifted to 1577-1605 

cm-1 and disappeared, respectively, suggesting coordination through Nimine and Ophenol 

atoms. Distorted tetrahedral/square-planar, trigonal-bipyramidal and octahedral geometries 

were observed in the complexes. The magnetic susceptibility (cm3Kmol-1) for the dinuclear 

Co(II) [4.09-5.20], dinuclear Cu(II) [0.82-0.86] and trinuclear Cu(II) [1.18-1.21] complexes 

were larger than expected [3.75, 0.75 and 1.125, respectively], indicating orbital 

contribution. Extension of π-conjugation at positions 4 and 5 of the imidazole resulted in 

higher quantum-yields (4-10 folds), while substitution at the nitrogen-hydrogen position 

resulted in lower quantum-yields (4-10 folds). Among the imidazole-imines, I9 exhibited 

the best selectivity for Zn2+ with Limit of Detection (LOD) 4.45 nM. Donor-acceptor 

capabilities (O-H···N), in the pentadentate-imines, enabled excited state intramolecular 

proton transfer behaviour and H2O1 exhibited best selectivity for Al3+ with LOD 5.48 nM. 

 

Structures of substituted imidazoles and bridged bis-phenol imines with their cobalt(II) and 

copper(II) complexes were established. Structural variation aided different magnetic 

properties and excellent detection for aluminium(III) and zinc(II). 

 

Keywords:  N-/S-/O-donor ligands, Excited State Intramolecular Proton Transfer, Al3+ 

sensing, Zn2+ sensing, oxo-bridged complexes. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Background to the study 

Organic and inorganic materials continue to show great potentials in various fields 

and have been used for flame retardation (He et al., 2020), light emitting diodes {LED} 

(Zhong et al., 2020; Li et al., 2020; Worku et al., 2020), replacing glass in display and 

electronic devices (Chang, 2020), in biomedicine {including health monitoring, 

implantation, drug delivery, tissue repairs}, motion detection, human-machine interfaces 

(Duan et al., 2020; Park et al., 2020; Lee et al., 2021), gas adsorption (Liu et al., 2014), 

light-emitting electrochemical cells (Fresta et al., 2018; Keller et al., 2014; Keller et al., 

2016), elastic infrared {IR} transmitting materials (Kuwabara et al., 2020), thermally 

activated delayed fluorescence {TADF} emitters (Linfoot et al., 2014), visualisation and 

quantification of mechanical stress (Yamamoto et al., 2021) and oxygen evolution reaction 

(Anamika et al., 2020). While inorganic materials have the extra advantage of magnetic, 

optical, thermal and mechanical properties (Park et al., 2020; Fresta et al., 2018); organic 

materials are believed to be cheaper, more available, flexible to molecular modification and 

more amenable to wider applications (Smith et al., 2017; Guo et al., 2017; Kuwabara et al., 

2020; Garnier et al., 1993). 

Materials with unique electronic and photophysical properties are of great 

importance in chemistry and materials science, where an understanding of the relationship 

between functionalisation {structural modification} and properties is key (Gowda et al., 

2011; Hrdlovic et al., 2010; Fresta et al., 2018; Kuwabara et al., 2020). Ligand choice has 

a profound role in the properties of materials as it {ligand choice} affects important 

properties such as Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular 

Orbital {HOMO-LUMO} band gap/energy (Benavent et al., 2020; Rajakannu et al., 2020), 

rigidity {which affects emission potential and efficiency}, stability, ability to extend π-

conjugation, (Yamazaki et al., 2020; Kumar et al., 2014; Kim et al., 2021), light harvesting 

(Smith et al., 2017; Guo et al., 2017), catalytic activity in chemical transformations (de 
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Azambuja et al., 2021; Tortajada et al., 2021; Khattak et al., 2019), redox potential (Timmer 

et al., 2021; Sajoto et al., 2005), molecular aggregation (Chan  et al., 2021), charge transfer 

{CT} excited state and spin-orbit coupling {SOC} properties of systems (Shi et al., 2021). 

The nature of the ligand {multidentate, bidentate or monodentate} has been observed to 

affect reaction kinetics and selectivity, increase the strength of metal-ligand binding, show 

fewer problems {isomerism, reaction of redistribution} and offer greater thermal stabilities. 

Bridging ligands are known to aid diverse topologies, properties and applications (Burrows 

et al., 2021; Wurzenberger et al., 2020; Janiak, 2003), while the use of σ-donating aquo 

ligand {in place of electron donating chlorido ligand} has been observed to result in a blue-

shift, higher oxidation potential and higher catalytic activity (Cuéllar et al., 2021). Increase 

{and decrease} in the π-system of a series of cyclometalating {C˄N} ligands produced red-

shifted emissions {although a blue-shift was expected with the reduction in the π-system} 

(Sajoto et al., 2005), while variation {arising from substituent effect} produced field-

induced slow magnetic relaxation behaviour {tBu giving the best effect} and distortion from 

ideal square-planar geometry to a seesaw geometry resulted in higher axial magnetic 

anisotropy (Zhai et al., 2021). 

Organic ligands possessing hetero-atoms are commonly known for their ease of 

preparation, commercial availability and ease of bond formation with metal ions. Schiff 

bases play an important role in inorganic chemistry, especially because of their ability to 

coordinate and form stable complexes with most transition metal ions – and these Schiff 

base complexes are increasingly utilised in the field of bioinorganic chemistry (Al-

Sha’alan, 2007; Ashiq et al., 2013). Multidentate Schiff base ligands offer variety of 

coordination property as well as bridging modes allowing for multinuclear complexes 

(Kushvaha et al., 2019). The use of nitrogen-rich azole ligands has been reported to give 

great stability in the preparation of the very sensitive silver fulminate, aid the 

electrocatalytic reduction of CO2, provide better directing ability in C-H functionalisation, 

as well as a rigid skeleton {with conjugated π-electrons} (Wurzenberger et al., 2020; 

Cuéllar et al., 2021; Mo et al., 2021; Li et al., 2021). The σ-donating ability of imidazoles 

{which destabilises the LUMO} has been found useful in tuning of emission energy (Pal et 

al., 2018). 



 

3 
 

There is increasing interest in the preparation of modified ligands with investigations 

focused on potential applications of the ligands as well as their metal complexes. 

 

1.2 Justification of Research 

An understanding of structure and property is crucial in the preparation of materials 

for the future. Molecular derivatisation brings about tuning of electrostatic environment, 

offering a systematic approach to understanding the correlation between structure and 

property. The functionalisation of molecules imparts substrate binding, thus the design and 

construction of chemosensors for selective and sensitive detection and monitoring of 

analytes, including heavy metal ions like Cd2+, Cu2+, Hg2+, Zn2+, M3+ {including Al3+} is a 

current area of interest. Ligand design and modification is also crucial in coordination 

chemistry, enabling structural tuning to optimise optical and magnetic properties of 

transition metal complexes. Systematic tuning of molecules {through elongation of 

conjugation, use of heteroatoms, peripheral substitution using electron withdrawing groups 

[EWG’s] or electron donating groups [EDG’s]} is important in the investigation of 

molecular properties, as it gives opportunity to optimise and improve the use of materials 

{for different applications} with implications in supramolecular chemistry and 

magnetochemistry. More so, the presence of heteroatoms {N, O, S} within a fluorophore 

makes it suitable for recognition of metal ions (Lin et al., 2012; Alreja and Kaur 2015). 

Reports in the use of structurally diverse ligand architectures derived from 2-(((2-

(1H-imidazol-2-yl)phenyl)imino)methyl)phenol, N-(2-(1H-imidazol-2-yl)phenyl)-1-

(pyridin-2-yl)methanimine as well as pentadentate S-/O-bridged bis-phenol imines are 

scarce; the potential photophysical properties and electronic variation in such materials 

could aid host-guest- and magnetochemistry applications. 

 

1.3 Statement of Problem 

Detrimental effects of high levels of MII/MIII cations released into the environment 

create a great need for ligands/receptors which are sensitivity to these ions and possess 

potential for selective detection/monitoring. More so, MIII cations tend to exhibit poor 

coordination {making fluorescence turn-on challenging} and comparatively few receptors 

are known for MIII {in comparison to MII}. Schiff bases possessing multiple donor sites and 

ability for chelation may be effective in tackling the problem of poor coordination. There 
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is currently a growing need for receptors with ability to sense analytes at low 

concentrations. The rich electronic properties, potential for structural modulation and 

incorporation of varieties of functionalities, make imidazoles {and by extension imidazole 

imines} useful candidates in molecular ion recognition. More so, a study on the effect of 

electron donating and electron withdrawing groups on the coordination property of oxo-

bridged complexes could provide more insight into their magnetic behaviour. 

 

1.4 Aim and Objectives of Research 

The aim of this research effort was to prepare and characterise structurally diverse 

ligand frameworks based on imidazoles, imidazole amines/imines and bridged {S/O/N=N} 

bis-phenol imines and explore the sensing potential of the prepared materials. In addition, 

the research aimed to prepare metal (Cr, Co, Ni, Cu) complexes of the ligands and 

investigate their magnetic behaviour. To achieve these aim, the set objectives are as follows: 

(i). Synthesise and characterise bis-imidazoles from 1,2-, 1,3- 1,4-dibenzaldehyde 

(ii). Synthesise and characterise imidazoles/imidazole imines from 1,2-dicarbonyls {for 

the imidazoles} and salicylaldehyde {for the imidazole imines} 

(iii). Synthesise and characterise bridged pentadentate bis-imine ligands 

(iv). Synthesise and characterise metal complexes of these ligands 

(v). Investigate the ability of the prepared ligands to detect MII/MIII cations 

(vi). Investigate the magnetic potentials of prepared complexes 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 Schiff Base 

Nitrogen containing compounds offer extraordinary structural variability and can be 

obtained from cheap natural sources. They are generally easy to synthesise/manipulate and 

possess fair stability {for example against oxidation that is a common problem in 

phosphines} (Monge et al., 2013). Excellent redox properties, observed in nitrogen 

containing compounds, play a useful role in their applications (Kumar et al., 2020). 

Schiff bases are condensation products of primary amines and carbonyl compounds 

{alkanals and alkanones} and were first reported in 19th century by Schiff Hugo Josef. The 

common structural feature of these class of compounds is the azomethine group with the 

general formula RHC=NR` {R, R` = alkyl, aryl, cycloalkyl, or heterocyclic groups, which 

may be substituted at various positions}. Since the azomethine {or imine} group replaces a 

carbonyl group (C=O), Schiff bases are considered analogues of ketones or aldehydes 

(Brodowska and Łodyga-Chruścińska 2014; Rahman et al., 2015; Ubani et al., 2015). They 

are known to exist in variety of structures, depending on the carbonyl and amine and these 

structural possibilities accounts for a great interest in them and their complexes (Anacoda 

et al., 2013; Liu and Hamon 2019). Schiff bases {like substituted benzene, biphenyls, 

stilbenes, azobenzenes, ferrocenyl} are known to constitute conjugated π-systems which 

may contain asymmetrically positioned electron-donor and electron-acceptor substituents – 

the π-system often imposes geometrical restriction and affects electronic structure. As a 

result of the charge transfer between the functional groups, a high degree of polarity exists 

within the molecules leading to variety of electronic and structural properties which are 

useful in electrooptic devices and data storage. The charge transfer property can be 

enhanced by increasing the donor-acceptor strength and increasing the length of 

conjugation (Yimer, 2015). The presence of a lone pair of electrons in a sp2 hybridized 

nitrogen atom of the azomethine group, as well as the synthetic availability of Schiff bases, 

is of considerable chemical and biological importance (Patai 1970; Babahan et al., 2013; 
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Dilmaghani et al., 2015; Khan et al., 2015), hence their use in a large number of bioactive 

compounds as well as in industry (Nakamoto, 1963; Al-Rawi et al., 2013; Alhadi et al., 

2012). The constructive physical and chemical properties as well as the large number of 

reactions that Schiff bases undergo also makes them important in organic synthesis, 

catalysis, anti-oxidative activity and anti-corrosion activity (Ashokan et al., 2014; Akbolat 

et al., 2012; Anacoda et al., 2013). The azomethine linkage {-N=CH-}, in Schiff bases, 

enables variable bonding potentiality during complex formation – the ligands are capable 

of coordinating with one or more metal ions giving rise to mono- and polynuclear 

complexes {especially when functional groups like –OH or –SH are in close proximity to 

the azomethine group} (Shrestha and Maharjan 2012; Narang et al., 2000; Rahman et al., 

2015; Chitra and Parameswari 2010; Ashokan et al., 2014; Monfared et al., 2007; Leirer et 

al., 1999). 
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2.1 Imidazoles 

Heterocyclic compounds are widely distributed in nature and are essential for life 

(Pradhan et al., 2015). These cyclic organic compounds have one or more of their carbon 

atoms replaced by such atoms as N, O, or S. They may be simple aromatic rings or non-

aromatic rings. Heterocycles containing S and/or N atoms are useful functional materials – 

the presence of the heteroatom helps to stabilise ions or ion radical species, increases π-

conjugation {decreasing columbic repulsion}, produce intermolecular interactions which 

may lead to novel molecular assemblies. Ring-fused heterocycles possessing more than one 

nitrogen atom play an important role in biochemical processes and coordination chemistry. 

These ligands can act as neutral or anionic species or bridging systems, allowing various 

modes of coordination with metals. The growing interest in heterocyclic azo chemistry is 

focused on designing new materials, theoretical calculations and applications in various 

industrial fields (Ashish et al., 2011; Mahdi et al., 2014). 

Azoles {imidazoles and triazoles} are widely studied and the imidazole ring is 

present in many medicinally active organic compounds and natural products such as 

histidine, etomidate {the R form}, cimetidine, omeprazole, ketoconazole {two 

stereochemical forms are known}, flumazenil, biotin, Lepidiline B, trifenagrel and many 

alkaloids {Fig. 2.1(a)} (Pal et al., 2011; Bandyopadhyay et al., 2011; Samanta et al., 2013; 

Wu et al., 2012; Kaur and Alreja 2015). 

Imidazole is a planar, five membered heteroaromatic molecule with pyrrole type 

and pyridine type annular nitrogen atoms. The imidazole ring is biologically relevant, 

mimicking histidine, potentially enabling it to bind with biomolecules; the ring is an 

important binding site {commonly attributed to the pyridine like nitrogen within the ring}, 

and plays an important role in the active centre of a large number of metalloproteins 

{including serum albumin, peptides, pseudo-peptides, polyamines}. In comparison to 

pyridine, its six electrons are delocalised on five atoms, resulting in higher electron density 

and stronger coordination ability (Mazlan et al., 2014; Brooks et al., 1960; Török et al., 

1998; Romero et al., 2014; Pradhan et al., 2015; Kaur and Alreja 2015; Chen, 2016). 

Imidazoles are weak π-acceptor ligands. They can serve as a base and as a weak acid {can 

acts as proton donor/acceptor and charge transfer agent}; they are susceptible to 
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electrophilic and nucleophilic attack {to form functional derivatives}; thermally stable and 

resist redox as well as acid-base conditions. They possess diverse weak interactions which 

allow binding with enzymes and receptors {including anions and cations} through hydrogen 

bonds, coordination, ion–dipole, cation–π, π–π stacking, hydrophobic effects and van der 

Waals forces. They possess extensive intramolecular hydrogen bonding and exist in two 

equivalent tautomeric forms as one of its hydrogen atoms can be located on either of the 

two nitrogen atoms {Fig. 2.1(b{i})}; the imidazolium analogues {Fig. 2.1(b{ii})} offer 

electrostatic interaction, aggregation, and self-assembly. The π-excessive and strong σ-

donor character of imidazoles make them useful in coordination chemistry (Leirer et al., 

1999; Romero et al., 2014; Ashish et al., 2011; Anderson et al., 2010; Zhang et al., 2014; 

Alabdali et al., 2014; Chen, 2016). 

Imidazole and its derivatives have potential for manifold functionalisation, as its 

ring imparts useful applications in optical and chemical sensors, fuel cell membrane, 

luminescent materials, ion-conducting electrolytes and photovoltaic materials for solar cell 

application, as well as supramolecular chemistry, agrochemicals and catalysis. They are 

known for their therapeutic properties as antimicrobial agents, anticryptococcal agents, 

cytotoxic agents and are also known to display interesting spectral, magnetic and structural 

properties (Joseyphus and Nair 2009; Zhang et al., 2014; Kaur and Alreja 2015). 

The activity of some 2,4,5-trisubstituted imidazoles 2.1(c) against some bacterial 

strains showed compound 2.1(c{ii}) had the best activity {compared to the standard, 

Ciprofloxacin}, except for P. aeruginosa {where compounds 2.1(c{iii}) and 2.1(c{v}) 

showed comparable activity with the standard}. Compound 2.1(c{iv}) showed least activity, 

generally, in comparison to the other synthesised compounds (Sarala et al., 2016). 

In a series of imidazole-based calcitonin gene-related peptide {CGRP} receptor 

antagonists {Fig 2.2(a)}, the most potent compounds {in the series} had IC50 values of 0.19 

nM and 0.39 nM. Attempts to improve the potency by substitution at the C4 and C5 position 

of the imidazole ring {Fig 2.2(b[i])} did not give an increase in potency, although 

microsomal stability was observed to increase. The introduction of pyridine ring at the N1 

position {Fig 2.2(b[ii])} showed similar activity as compounds in 2.2(a) and poor 

microsomal stability was observed (Tora et al., 2013). 
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Azomethine linkage of azoles {possessing aroyl-azolyl-ethane moiety} to pyridine-

2-carboxamidrazones has been observed to show interesting activity against bacterial and 

fungal species. In the reported use of N1-(1-aryl-2-(1H-imidazol-1-yl) and 1H-1,2,4-triazol-

1-yl)-ethylidene)-pyridine-2-carboxamidrazone derivatives as biological agents, the aryl-

imidazolyl derivatives {Fig. 2.2(c{i})} showed slight inhibition against S. aureus {MIC in 

the range 16 – 32 mg/L}, while no inhibition was observed for the triazolyl compounds 

{Fig. 2.2(c{ii})} [MIC > 128 mg/L]. Some of the reported compounds had MIC90 in the 

range 0.125 – 2 mg/L after 24 h and 0.5 – 4 mg/L after 48 h incubation time against twenty-

one {21} C. albicans clinical strains {which is remarkable, compared to the standard used 

- amphotericin B and miconazole} (Banfi et al., 2006). 
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Figure 2.1: (a) Structures of some bioactive imidazoles (b) (i). Tautomeric forms of 

imidazole (ii). Structure of imidazolium and (c) Some biologically active 2,4,5-

trisubstituted imidazoles (Sarala et al., 2016) 
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Figure 2.2: (a) - (b) Human CGRP receptor antagonist and (c) Imines used as biological 

agents. (Tora et al., 2013; Banfi et al., 2006) 
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The introduction of metal ions has been observed to show improved properties. The 

CoII, NiII and CuII complexes, of the condensation product of imidazole–2-carboxaldehyde 

and glycylglycine, showed activity of the order Cu > Co > Ni > L (Joseyphus and Nair 

2009). A comparative study of growth inhibition zones values of 2-(((2-(1H-

benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-ethoxyphenol and its complexes against E. 

Coli, S. aureus, B.  subtilis and P.  Fluorescence indicated that the metal complexes 

exhibited slightly higher anti-bacterial activity than the free ligands (Sunitha et al., 2012). 

In the area of organic transformation, a series of chiral imidazole-imines and 

imidazole-amides have been employed in asymmetric catalysis of Henry reaction {Scheme 

2.2(a)}. The enantiomeric excess {ee} observed were generally very low {≤ 15}, although 

the amines {Scheme 2.2(a{i}) and (a{ii})} were found to be more efficient than the less 

nucleophilic amides {Scheme 2.2(a{iii}) and (a{iv})}, the attained ee increased throughout 

along with an increased bulk of the R group (Sívek et al., 2008). In another report, chiral 

NHC ligands were deployed in the asymmetric allylic alkylation between (E)-1,3-

diphenylprop-3-en-1-yl acetate and dimethylmalonate {Scheme 2.2(b)} with ee in the 

range 0 – 92%. [Pd(η3-C3H5)Cl]2 was employed as the palladium source in the catalytic 

reaction, while the complex {Scheme 2.2(b{i})} was prepared by reaction of appropriate 

ligand {Scheme 2.2(b{ii})} with [PdCl2(MeCN)2]. Increase in the steric bulk of the NHC 

substituent increased the ee, while increase in reaction time did not affect the ee {although 

it increased the conversion rate} (Bonnet et al., 2003). 
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Scheme 2.2: (a) Henry reaction catalysed by chiral imidazole-imines and imidazole-amides 

(b). Chiral imidazole catalysed asymmetric allylic alkylation between (E)-1.3-

diphenylprop-3-en-1-yl acetate and dimethylmalonate 
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The excellent fluorogenic and chromogenic properties of imidazoles allows them to 

be useful in the sensing of analytes. The spirolactam form of rhodamine dyes is non-

fluorescent and colourless, while the amide form is known to be fluorescent and coloured. 

Exploring this knowledge and incorporating imidazole into the rhodamine skeleton, a turn-

on fluoride ion sensor RDF-1 {Scheme 2.3(a)} has been reported. The UV-vis absorption 

study {in 3:7 MeCN/H2O} of RDF-1 carried out with several anions {F-, Cl-, Br-, I-, CN-, 

AcO-, H2PO4
-, SCN-, P2O7

4- , NO3
-, NO2

-} in 20 mM N-2-hydroxyethylpiperazine-N'-2-

ethanesulfonic acid (HEPES) buffer {pH 7.4} solution did not show any observable 

absorption except for F- at 528 nm when the colour changes from colourless to pink 

{indicating a change from the lactam form to the amide form of rhodamine}. Excitation at 

500 nm did not show any fluorescence emission for all the other anions except F- at 557 

nm. Density Functional Theory {DFT} calculations indicated deprotonation of the 

imidazole N-H and formation of N-F bond. The RDF-1 was utilised for fluorescence 

imaging of fluoride in HeLa cells under physiological conditions (Gandhi and Duraisamy 

2013). An imidazole-based imine ligand {Scheme 2.3(b)} has been found to exhibit a 

colour change from yellow to orange in the presence of Fe2+/Fe3+ {although Cu2+ interferes 

with the process} and a “turn-on” effect in the presence of Al3+ and pyrophosphate. The 

ligand had detection limits of 0.32 µM {Fe2+}, 0.27µM {Fe3+} and 20.5 µM {Al3+}. The 

association constant in the presence of Fe3+ {2.8 x 104 M-1} was found to be twice that of 

Fe2+ {1.4 x 104 M-1} (Jo et al., 2017). 

The solid-state photoluminescent study, at room temperature, of a Zn(II) mixed 

ligand complex of 1,3,5-tris(1H-imidazol-4-yl)benzene {H3L} and 1,4-

benzenedicarboxylic acid {H2pbdc}, [Zn2(H2L)(pbdc)(µ2-OH)].2H2O, showed intense 

fluorescent emission at 410 nm {λex = 348 nm}, while the ligands showed weak emissions 

at 408 nm {λex = 360 nm} for H3L and 390 nm {λex = 355 nm} for H2pbdc, suggesting 

intraligand fluorescence originated from the coordination interactions between the metal 

atom and the ligand, with enhanced conformational rigidity and decreased nonradiative 

energy loss (Chen et al., 2012). 
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Scheme 2.3: (a) Structure of RDF-1 used for selective fluoride ion detection (b) Sensing 

property of the imidazole imine ligand 
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By incorporating the binding ability of imidazole ring, fluorogenic behaviour of 

quinoxaline ring and redox potential of ferrocene, two tricyclic bis(heteroaryl) imidazole 

bearing ferrocenyl-quinoxaline compounds {Fig. 2.3(a)} have been prepared. The 

compounds absorbed in the 280 nm {X = O}, 285 nm {X = N} and 325 nm regions {in both 

compounds}. These bands moved to lower wavenumbers {≈ 272 nm and 324 nm with a 

shoulder at ≈ 385 nm} in the presence of metal ions. Fluorescence studies {in MeCN} 

showed the compound with X = O discriminated between Cd2+ and Zn2+ (Alfonso et al., 

2015). Two 2-pyridin-2-yl-benzimidazole compounds (6-Br-ppmbi and 6-Br-Me2-ppmbi; 

{Fig. 2.3(b)}) have also been prepared, where 6-Br-ppmbi exhibited strong emission at 390 

nm (λex = 320 nm) and its fluorescence emission was observed to decrease drastically upon 

interaction with Fe2+. The compound {6-Br-ppmbi} showed low affinity for Fe2+ (with 

dissociation constant, Kd of 1.06 x 102) and good selectivity for Fe2+ over other divalent 

ions (Ca2+, Co2+, Cu2+, Hg2+, K+, Mg2+, Na+, Ni2+ and Zn2+) studied (Lee et al., 2012). 

Three {3} purine-based imine ligands {Fig. 2.3(c{i}) – (c{iii})} have been studied 

for their Zn2+ selectivity. All three compounds exhibited selectivity for Zn2+ over other 

cations studied {Ca2+, Mg2+, Cu2+, Fe3+, Ni2+, Co2+, Hg2+, K+, Ag+, Na+, Mn2+, Cd2+} with 

a red shift in fluorescence emission and turn-on effect in the presence of Zn2+. The 

fluorescence of Fig. 2.3(c{i}) is quenched in the presence of Cu2+, Co2+ and Fe3+ - ascribed 

to the affinity of Cu2+ and Co2+ towards imidazole ring and quenching effect of Fe3+. A 

photo-induced electron transfer {PET} mechanism is proposed for all three compounds 

(Pratibha et al., 2017). A family of imine-linked ligands, incorporating salicylaldehyde and 

an aliphatic alkene group {Fig. 2.3(c{iv}) – (c{vi})}, in which the chelate ring of the –OH 

group and the sp2 nitrogen donor aided good selectivity for Zn2+ {in comparison to the 

compounds without –OH group or sp2 nitrogen atom} have been reported. Compound 

2.3(c{iv}) exhibited dual channel emission with a weak emission at 355 nm and a moderate 

emission at 440 nm due to existence of the receptor in keto and enol tautomeric forms as a 

result of Excited State Intramolecular Proton Transfer {ESIPT} involving the –OH group 

and the sp2 nitrogen of the imine linkage. The similarity in the absorption spectra of the free 

ligand as well as in the presence of Zn2+ suggested changes in fluorescence {upon binding} 

was due to excited state phenomenon. NMR studies in DMSO-d6:D2O {95:5, v/v}, on 

addition of Zn2+, showed a shift in signal {up to ∆δ = 0.22} corresponding to –CH=N as 
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well as shifts in the aromatic signals {up to ∆δ = 0.1} providing insight into the importance 

of the sp2 nitrogen. The signal of the –OH group could not be studied. The fluorescence 

enhancement upon bonding with Zn2+ was proposed to be due to a combination of ESIPT 

and PET mechanisms (Saluja et al., 2014). A water soluble {H2O/HEPES, pH 7.20} β-

cyclodextrin based imine ligand {Fig. 2.3(c{vii})} with potential for ESIPT has also been 

studied for selective detection of Zn2+. The compound exhibited weak fluorescence and in 

the presence of Zn2+ ion an increase in fluorescence {with a blue shift in emission 

wavelength} was observed with a change in colour from green to light blue, however, weak 

fluorescence increase was also observed for Al3+ and Cd2+ ions. More so, EDTA could not 

quench the fluorescence of the vii-Zn complex suggesting irreversibility of the bonding. 

The blue shift in emission wavelength was ascribed to chelate induced fluorescence 

enhancement {CHEF} and PET process (Liu et al., 2015). 
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Figure 2.3: (a). Structure of tricyclic bis(heteroaryl)substituted ferrocenyl-imidazo-

quinoxalines (b). Structure of 6-Br-ppmbi and 6-Br-Me2-ppmbi and (c) Structures of 

purine-based imine ligands, salicylaldehyde imine/amine ligands and β-cyclodextrin based 

imine ligand. 
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An N,O- phenanthrene based imidazole ligand {Fig. 2.4(a)} has been reported for 

the selective detection of Cu2+ ion. The electronic absorption spectrum of the ligand, in 

H2O/MeCN (8:2 v/v), showed three bands at 259, 351 and 366 nm. Upon interaction with 

Cu2+ a new band (attributed to charge-transfer transition) at 396 nm was observed. The 

ligand showed strong emission at 435 nm, which was almost completely quenched in the 

presence of Cu2+ ion – an observation that was ascribed to reverse PET from the 

phenanthrene moiety to the phenolic oxygen and the imidazole nitrogen atoms due to 

decrease in electron density upon complexation. In the presence of Zn2+ and Cd2+, however, 

the strong ligand fluorescence intensity was retained {ligand could not distinguish these 

ions} (Anbu et al., 2012). Modified versions of 2.4(a) involving N,O- imidazole based 

ligand (without the phenanthrene in the structure, {Fig. 2.4(b)}) as well as N,S- imidazole 

based ligands {Fig. 2.4(c) and (d)} have also been deployed for the selective detection of 

Cu2+ ion. Unlike in the case of Fig. 2.4(a), a turn-off was observed in the modified variants. 

The observed fluorescence quenching was attributed to the paramagnetic nature of the Cu2+ 

which allowed it to participate in energy (or electron) transfer processes via a non-radiative 

deactivation channel, suggestive of a PET mechanism. The selectivity for Cu2+ ion was lost 

when the Br atoms in 2.4(c) and (d) were replaced with –CH3 group (Kaur and Alreja 2015; 

Giri and Patra 2015). 
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2.3 Fluorescent/Luminescent Materials 

 

The generation and processing of signals play an important role in the design and 

development of sensors, optical or electronic devices. Electroluminescence devices 

{including light emitting diodes (LEDs), organic light emitting diodes (OLEDs), light-

emitting electrochemical cells (LECs), dye-sensitised solar cells (DSSCs), sensors} find 

great application in different areas. 

The need for fast and reliable detection of chemical species has led to increase in 

the design and development of sensors. Sensors play a vital role in many aspects of human 

life, industrial processes, food/pharmaceutical inspection, biomedicine, environmental 

monitoring etc. In households they are used for detection of carbon monoxide (CO), smoke; 

in industry they are used for process (temperature, pressure flow) monitoring. Sensors are 

used chiefly to measure analytes (qualitatively or quantitatively). 

High levels of such substances as fluoride, phosphate, nitrate, cyanide, 

nitroaromatics; organic substances like 2-Methyl-2,4-pentanediol (MPD), alcohols, 

aldehydes, ketones are known to pose great challenges to man and the environment. Various 

methods such as atomic absorption spectroscopy (AAS), inductively coupled plasma mass 

spectroscopy (ICP-MS), anodic stripping voltammetry, flame photometry, solid-phase 

micro extraction (SPME), selective electrode detection, gas chromatography-mass 

spectrometry (GC-MS) and gas chromatography with flame ionisation detection (GC-FID), 

and Liquid chromatography/mass spectrometry (LC/MS) with electro spray ionisation have 

been employed in the detection of substances since they are able to detect {these 

substances} at low concentration, but these techniques tend to be time consuming, 

expensive, and require highly trained personnel (Zhu et al., 2014; Thanayupong et al., 

2017). Similarly, in spite of the fact that positron emission tomography and magnetic 

resonance imaging (MRI) have been used for the detection of tumours, optical fluorescence 

imaging has been found to offer a better advantage of dramatic amplification in signal upon 

detection of some biological features (Urano, 2008). 

With the great interest in analyte (cations, anions, gases) recognition and 

monitoring, recent efforts have been directed at inexpensive methods which are portable 

and show good sensitivity or selectivity. The design and development of sensors is an area 
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of material science that continues to gain prominence. Fluorescence spectroscopy has 

emerged a useful tool for detection as fluorescent sensors are often inexpensive, convenient, 

selective, sensitive and offer possibility for naked eye detection {useful for onsite analysis} 

– this high sensitivity, ease of handling and real time monitoring with fast response time of 

fluorescent sensors makes photoluminescence a more attractive method for sensing than 

other techniques (Mariappan et al., 2014; Thanayupong et al., 2017; Anbu et al., 2012). 

Fluorescent chemosensors are capable of sensing chemically, environmentally and 

biologically significant analytes. The high sensitivity of fluorescent sensors is commonly 

based on changes in intensity, energy transfer, shift in wavelength {excitation and 

emission}, optical changes and lifetime (Giri and Patra 2015). Generally, in order to 

maximise spatial resolution, fluorescence enhancement sensors {turn-on sensors} are 

preferred to fluorescence quenching sensors {turn-off sensors} (Alreja and Kaur 2015; 

Mariappan et al., 2014). 

Fluorescent sensors have been reported for fast detection of measles virus, SARS-

CoV-2 (Mayall et al., 2020; Hussein et al., 2021), gaseous molecules {including 3-hydroxy-

2-butanone, hydrogen, nitrogen-dioxide, methanol} (Chen et al., 2020; Alenezy et al., 

2020; Lee et al., 2021; Kumar et al., 2020), evaluation of wound infections (Thet et al., 

2020), sweat analysis (Xu et al., 2020, Choi et al., 2020; Hussain and Park 2020), 

monitoring and quantification of antibiotics, superoxide {O2
-}, peroxynitrite {ONOO-} 

(Wu et al., 2020; Cabrellon et al., 2020; Li et al., 2013; Li et al., 2021), disease monitoring 

(Kim et al., 2020; He et al., 2020; Si et al., 2020), detection of the neurotransmitter 

Epinephrine (Wang et al., 2021), tracking lysosomal changes (Chao et al., 2021), 

determination of food quality (Liu et al., 2020; Zhang et al., 2020), monitoring of 

physiological pH {for proper body and cellular functions} (Ryan et al., 2020; Benitez-

Martin et al., 2020), monitoring the effect of oxidative stress on heart failure (Yao et al., 

2021), monitoring miRNA in urine for early warning of prostate cancer (Kim et al., 2021), 

evaluating abuse of psychoactive drugs (Garrido et al., 2020), assessment of drug induced 

liver injury (Chen et al., 2021), detection of barium daughter ions (Thapa et al., 2021) and 

polymer aging (Zhang et al., 2020). 
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Figure 2.5: (a) NHC-based electrochemical biosensor {SAM = self-assembled-monolayer} 

for measles detection (b) Coumarin based sensor for O2
- quantification (c) Benzothiazoline-

triphenylphosphonium based sensor for O2
- quantification (d) Ratio-pHCL1 for food 

detection (e) Indole based sensor for pH monitoring (f) Cyano-pyran for lysosomal tracking 

(g) Bis-coumarin for heart failure detection 
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Different materials have been explored in various analyte recognition/detection. 

These include nanomaterials (Radhakrishnan et al., 2020; Wu et al., 2020, Luo et al., 2020);  

metal complexes including metal-organic frameworks {MOF’s} (Saha et al., 2013; Chen 

et al., 2017; Louie et al., 2009; Zhang et al., 2015; Leo et al., 2020; Zheng et al., 2020; 

Wang et al., 2021; Qin et al., 2021; Li et al., 2021); polymers (Bronson et al., 2005; 

Prabhakaran et al., 2007; Wang et al., 2020; Singh et al., 2015); small molecules (Eseola et 

al., 2018; Dessingou et al., 2005; Meng et al., 2017; Long et al., 2017). 

Organic materials with favourable light and thermal stability, electron accepting 

properties, photoelectric properties, strong luminescence efficiency, ability to bind 

substrate(s) and high fluorescence quantum yield are highly sort after, especially in the field 

of molecular recognition. Simple organic compounds are of great interest especially due to 

their relative ease of preparation. Those possessing functional groups or heterocyclic rings 

are known to provide binding sites for selective and effective analyte recognition, thus 

acting as sensors. Highly substituted (tri- and tetra-) imidazoles with donor–acceptor π 

conjugation offer many optoelectronic applications such as Non-Linear Optics (NLO), Dye 

Sensitized Solar Cells (DSSC), OLEDs, and molecular switches. The amphoteric nature the 

imidazole ring can also impart selective and effective anion and/or cation and even neutral 

organic molecules receptor system (Molina et al., 2012; Sarala et al., 2016; Sinha et al., 

2019). Fused angular and linear heterocyclic compounds also show interesting 

photophysical properties. The presence of π–π*, σ–π* and n–π* electronic state, in 

conjugated systems, help in fluorescence behaviour. The strong σ–π* and π–π* electron 

donor groups (-OCH3, -CH-CH=CH-CH-) have been reported to give rise to longer 

emission wavelengths, while the +I effect of -CH3 group resulted in lower emission 

wavelength. The presence of the –OCH3 group increases the electron density and lowers 

the electron hole gap leading to higher overlap of the HOMO-LUMO orbitals. Aromatic 

ligands are also known to provide sterical rigidity as well as chemical stability, and π 

electron rich aromatic ligands impacts luminescent properties (Kumar et al., 2017; Zhang 

et al., 2015). Small molecules (especially conjugated ones) are known to be emissive in 

nature and find great use as sensors (Shigemoto et al., 2020). 
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Figure 2.6: Examples of coumarin-, azole-, binaphthol based small molecules used as 

sensors. 
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Scheme 2.4: (a) Examples of imine based small molecules used as sensors (b) Structure of 

fluorescein and its derivatives used for tumour sensing. 
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The use of fluorescein (an electron donor-fluorophore acceptor system) derivatives 

in tumour imaging (Scheme 2.4{b}) has been reported (Urano, 2008). The derivatives were 

obtained by replacement of the -COOH group of fluorescein with –CH3 or –OCH3 (for TG-

βGal) or an esterase-sensitive moiety for (AM-TG-βGal) – the esterase-sensitive moiety is 

observed to enable easy leaching of product from the cancer cell. The fluorescence quantum 

efficiency of TG-βGal increased 420-fold (from 0.002 to 0.84) with formation of a green 

colour, while the efficiency of AM-TG-βGal increased ~97 fold (from 0.009 to 0.87) with 

same colour formation. 

A CN- ion turn-on sensor based on dicyanovinyl phenylacetylene (Scheme 2.5), 

with phenyleneethynylene as a fluorogenic rod attached to dicyanovinyl group, has been 

reported. The triphenylamine core of the compound acts as an electron donor, while the 

dicyanovinyl function acts as an electron acceptor (via its π-conjugation). The electronic 

absorption of the compound, measured in MeCN/HEPES buffer pH 10 (9:1 v/v), showed 

two bands at 368 nm and 450 nm. Upon excitation at 368 nm, the compound showed 

maximum emission at 460 nm with a quantum efficiency of 0.8% - the low efficiency was 

attributed to intramolecular charge transfer (ICT) process. Upon addition of CN- ion (10 

µM), the quantum efficiency increased to 200% due to disruption of ICT and the yellow 

colour of the receptor changed to colourless then green at the λem(max). Anions such as 

AcO-, Br-, Cl-, F-, HCO3
-, H2PO4

-, IO3
-, NO2

-, NO3
-, OH-, SCN- and SO4

2- did not show 

significant changes to the fluorescence emission signal (Thanayupong et al., 2017). Using 

an anthraquinone macrocyclic crown-ether like compound (Scheme 2.6{a}), intense 

fluorescence enhancement in the presence of Cu2+ has been observed. The Cu2+ ion caused 

immediate formation of an intense yellow emission (at excitation of 360 nm), which was 

found to be dependent on the amount of water present in the solvent (Mariappen et al., 

2014). A “turn-off” effect (attributed to the paramagnetic nature of the Cu2+ centre) was, 

however, observed for a naphthalene-based imine (Scheme 2.6{b}) with a monoboronic 

acid group as the binding site (Li et al., 2014). 
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Scheme 2.5: Turn-on mechanism of the CN- ion sensor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 
 

 

 

 

 

 
 

           
 

Scheme 2.6: (a) Anthraquinone crown-ether ligand and (b) Naphthalene-based imine with 

boronic acid binding site for Cu2+ sensing. 
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A 1,10-phenanthroline based fluorescent sensor has been designed and used for the 

selective recognition of Cu2+, Zn2+ and I- ions. The oxygen (of the amide) and the nitrogen 

(of the phenanthroline and pyridine) are believed to aid the detection of the Cu2+ and Zn2+ 

ions, by chelation (Scheme 2.7{a}), while the N-H (of the amide) aids in the detection of 

I- ion (Scheme 2.7{b}). The absorption spectra of the fluorophore (in DCM) showed little 

changes upon addition of 100 equivalent of different cations (Na+, K+, Mg2+, Al3+, Ni2+, 

Cu2+, Fe2+, Fe3+, Zn2+, Cd2+, Co2+ and Mn2+), while two emission peaks (at 351 and 368 

nm) were observed upon excitation at 265 nm. Complete fluorescence quenching was 

observed upon addition of 100 equivalent of Cu2+ ion. The addition of same amount of Zn2+ 

resulted in quenching (through oxidative PET), accompanied by a red shift – in contrast to 

other metal ions tested under the identical conditions. The binding constants, Ka, calculated 

were 2.6 x 109 M–1 and 7.9 x 108 M–1 for Cu2+ and Zn2+ ions, respectively, while the limit 

of detection (LOD) was estimated to be 0.48 and 0.78 µM, respectively. Fluorescence 

studies with I- ion showed almost complete turn-off (with no obvious change observed for 

F-, AcO-, Cl- Br-, I-, SO4
2-, CN-, H2PO4

- and HSO4
- ions), with Ka of 1.05 x 103 M-1 and 

estimated LOD of 30 µM. The Job’s plot suggested the formation of 1:2 and 1:1 

stoichiometry between chemosensor and Cu2+/Zn2+ and I- ions, respectively (Alreja and 

Kaur 2015). 
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Scheme 2.7: Proposed mechanism for a phenanthroline based turn-off sensor. 
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2.4 Cation Sensing 

The design and preparation of chemosensors for selective and efficient detection of 

species with biological and chemical importance is an active research area. Cations play 

key roles in many transformations in the human body {biological metabolism} as well as 

in the environment. They are non-biodegradable and are extensively used in consumer 

products and industry (Yannone et al., 2012; Kenney and Rosenzweig 2012; Turner, 2017; 

Malinowski et al., 2020; Gulcin and Alwasel 2022). 

Cations are known to be important in cellular metabolism {Zn2+}, electron transfer 

{Fe3+, Cu2+}, oxyhaemoglobin generation {Fe3+}; signal transduction, transformation of 

melanin, generation of energy {Cu2+}; enzyme catalysis and activation {Fe3+, Cu2+, Cr3+}; 

metabolism of fats, carbohydrates, proteins and nucleic acids {Cr3+}. Abnormal {high or 

low} levels of these ions however result in unpleasant and detrimental effect on the 

environment and human health including diabetes, heart disorder, liver damage, kidney 

damage, anaemia, dementia, osteoporosis, hemochromatosis, Huntington’s disease, 

Alzheimer’s disease, Parkinson’s disease, renal failure, gastrointestinal upset, metallic taste 

in the mouth, blood in the urine and lethargy, plant death and soil pollution (Zhou et al., 

2008; Sahoo and Crisponi 2019; Kilic and Bozkurt 2018; Das et al., 2019; Goswami et al., 

2013; Saluja et al., 2014; Liu et al., 2015; Singh et al., 2007; Shahid et al., 2017; Liao et 

al., 2017; Kim et al., 2013; Roy and Rajak 2017; Mustafa and Komatsu 2016; Valle et al., 

2009; Poschenrieder et al., 2019; Sangireddy et al., 2017). 

Although aluminium is not known to have any essential function in living systems, 

it is useful in other human endeavours such as medicine, cosmetics and food technology. 

Al(III) can enter the human body through food and drinking water and excessive exposure 

is known to cause Parkinson’s disease, dementia, Alzheimer’s disease, damage to the 

central nervous system and osteoporosis. According to the World Health Organisation 

{WHO}, the average human intake of aluminium is about 3 – 10 mg day-1, the tolerable 

weekly intake is 7 mg kg-1 body weight and recommended detection limit, in drinking water, 

is 7.41 μM (Bhattacharjee et al., 2014; Rondeau et al., 2009; Inan-Eroglu and Ayaz 2018; 

Jang et al., 2018). Development of fluorescence sensors for Al3+ is seriously hindered 

because of the strong hydration, poor coordination, and lack of spectral characteristics of 

Al3+ ions (Fan et al., 2014). 

https://sciprofiles.com/profile/1155172
https://sciprofiles.com/profile/76706
https://sciprofiles.com/profile/author/NkR5M3phTURhTGtSWkY1STgxU05Ma0N4OUZPNVlQL2Q5empXYkEwSTVIaz0=


 

34 
 

Zn(II) is the second most abundant transition metal ion in vivo and has the ability to 

act as a regulatory ion in metalloenzymes regulation, in many channel receptors and in cell 

metabolism. It is essential for proper cellular metabolism and important for fertility in males 

and females. It is present in RNA polymerase enzymes and important to major biological 

processes like gene transcription, immune function, brain function {where it serves as a 

neurotransmitter/modulator}; and hundreds of proteins {including zinc fingers and catalytic 

enzymes} depend on Zn2+ for their function, hence alteration in concentration of Zn2+ can 

result in protein malfunction which may lead to interruption in the absorption of iron {Fe}, 

magnesium {Mg} and copper {Cu} as well as affect the immune system, central nervous 

system, reproductive system and human growth/development (Pratibha et al., 2017; Saluja 

et al., 2014). The d10 electronic configuration of Zn2+ makes it magnetically inactive, thus 

detection {of Zn2+} by fluorescence spectroscopy is attractive. More so, interference from 

ions such as Cu2+, Hg2+ and Cd2+ occurs commonly with receptors {used for Zn2+ binding} 

(Anbu et al., 2012; Liu et al., 2015). Zn2+ {with an ionic radius of 0.74Å} is a harder centre 

than Cd2+ {ionic radius of 0.97Å} – the larger size of Cd2+ has been observed to aid better 

coordination in receptors (Costero et al., 2004). 

The diversity and function of these ions in daily activities has led to an increase in 

the development of materials for monitoring and detection of these ions. Early efforts in 

Zn2+ detection/monitoring focused largely on materials derived from di-2-picolylamine 

{DPA} skeleton {Fig. 2.7(a)}. This N-based donor majorly displays PET mechanism and 

tend to have high sensitivity and selectivity for Zn2+, but many of the reported compounds 

are competed for by other ions, especially Cd2+, and require lengthy synthesis (Nolan et al., 

2004; Komatsu et al., 2005; Lu et al., 2007; Liu et al., 2013; Louie et al., 2009). Materials 

based on such scaffolds as acridine, quinoline, pyrazine/pyrazole, fluorene octopamine, 

rhodamine, pyrimidine, 1,10-phenanthroline, oxazole and thioether {Fig. 2.7(b)} have also 

been reported although competition from Cd2+ is still observed and some still require 

lengthy synthesis. In addition to PET, other mechanisms including CHEF, ESIPT have also 

been observed in these systems (Ciupa et al., 2012; Zhang et al., 2013; Song et al., 2013; 

Visscher et al., 2016; Roy et al., 2016; Kang and Kim 2018; Fan et al., 2014; Mati et al., 

2014; Song et al., 2014; Tang et al., 2017; Xu et al., 2014; Naskar et al., 2017; Patra et al., 

2016; Ravikumar and Ghosh 2011). A large number of trivalent cation {M3+} receptors 



 

35 
 

{Fig. 2.8} have been reported to date {although relatively fewer than for M2+}, many of 

which simultaneously detect Al3+, Cr3+ and Fe3+ (Wang et al., 2013; Goswami et al., 2013; 

Wang et al., 2014; Samanta et al., 2014; Singh et al., 2015; Samanta et al., 2016; 

Janakipriya et al., 2017; Dey et al., 2017; Alam et al., 2017; Zhan et al., 2019b; Kilic and 

Bozkurt 2018; Xu et al., 2014; Venkateswarulu et al., 2014; Presti et al., 2016; Meng et al., 

2017; Jang et al., 2018; Wang et al., 2016; Jang et al., 2018; Liu et al., 2015; Lisowski and 

Hutchison 2009; Wang et al., 2019), but there is an increase in the search for receptors with 

ability to detect these ions singly and although receptors for Al3+ are known {Fig. 2.9}, 

competition from some trivalent cations as well as divalent cations {e.g Co2+, Cu2+, Hg2+, 

Zn2+} has been observed (Gupta et al., 2014; Manjunath et al., 2015; Simon et al., 2016; 

Qin et al., 2016; Kang et al., 2017; Gupta et al., 2018; Yue et al., 2018; Tian et al., 2018; 

Wang et al., 2018; Peng et al., 2020; Berrones-Reyes et al., 2019; Huang et al., 2019; Zeng 

et al., 2019b; Zeng et al., 2019a; Wang et al., 2019; Bai et al., 2019; Fan et al., 2019; Das 

et al., 2019; Zhan et al., 2019a; Li et al., 2019; Kumar et al., 2020; Durai et al., 2020; 

Erdemir and Malkondu 2021; Aydin et al., 2021; Liu et al., 2021; Chemate and Sekar 2015; 

Wang et al., 2019; Kundu et al., 2019; Wang et al., 2019; Liu et al., 2020). 
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Figure 2.7: Structures of some (a) DPA based sensors (b) other scaffolds for Zn2+ sensing. 
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Figure 2.8: Structures of some receptors for M3+ 
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Figure 2.9: Structures of some receptors for Al3+ 
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2.5 Molecular Variation and Effect on Spectroscopic and Sensing Properties 

The systematic optimisation of sensors is an active area of research. The properties 

of materials are greatly influenced by their structures, spatial arrangement of the molecules, 

the steric and electronic properties of attached functional groups, as well as the nature of 

the metal ions {in the case of inorganic materials}. Fluorescence properties are commonly 

modified through electronic effects as well as conformational changes. Desirable 

properties, such as selectivity for analyte(s) and intensity of the fluorescence activation, can 

be achieved by the introduction of functional groups which modify receptors/ligands 

electronic structure. Interplay of intermolecular interactions {π-π stacking, ion-π, hydrogen 

bonding}, electronic structures, ground and excited states of fluorescent materials have 

been found to impart greatly their behaviour; it can also act as a guide in the design of 

fluorescent materials. Molecular alterations targeting the donor {where the HOMO is 

localised} and/or the acceptor {where the LUMO is localised} sites affect the optical and 

electronic properties of materials. Electron-donating or-withdrawing groups {especially 

those possessing varying degrees of sterical demands} have different effects on the energies 

of the HOMO and LUMO, thus enabling modulation of energy gap, producing subtle or 

large changes in such properties as charge transport, quantum yield and redox potential. 

(Bartholomew et al., 2000; Solomatina et al., 2020; Santos et al., 2020; Longo et al., 2016; 

Varghese et al., 2013; Renak et al., 1999; Yamashita and Abe 2014; McLay et al., 2021; 

Shi et al., 2021; Timmer et al., 2021; Kim et al., 2019; Sajoto et al., 2005; 

Sukpattanacharoen et al., 2020; Kowalcyzk et al., 2010; Costero et al., 2004). 

Alkyl substitution has been shown to affect solubility and melting point (suggesting 

good thermal durability). It has also been observed to allow control of the mesoscopic 

organisation of molecular layers resulting in elegant self-assembly properties (Garnier et 

al., 1993; Ebata et al., 2007; Hirase et al., 2014). Low-lying HOMO levels as well as large 

HOMO-LUMO energy gaps have been reported to give great stability in heteroarenes, even 

with linearly arranged fused rings {which commonly results in reduced stability} present 

in the molecule (Yamamoto and Takimiya 2007). The use of bulky electron donors (methyl, 

dimethylphenyl, methylphenyl and phenyl) have been shown to be useful in tuning emission 

colour, without greatly affecting the quantum yield (Kim et al., 2019). Delocalisation of π-
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electrons {or π-conjugation} has been observed to give improved charge transport 

properties, smaller HOMO-LUMO energy gap, larger Stokes shift and longer emission 

wavelength (Garnier et al., 1993; Yamaguchi et al., 2008; Yao et al., 2021). Structural 

modification, resulting in asymmetrical HOMO, has also been observed to result in 

increased HOMO energy level, smaller emission energy and large Stokes shift (Ren et al., 

2018). 

The methylation of 3-aminoquinoline (3AQ) to give N-methylquinoli-3-amine 

(NMeAQ) has been reported to show changes in photophysical properties. The red shifted 

absorption and emission maxima observed for NMeAQ (in different solvents), is greater 

than those observed for 3AQ. The Stokes shift observed in the polar aprotic solvent (MeCN) 

is greater for NMeAQ (4,162 cm-1) than for 3AQ (3,456 cm-1), but in the case of the non-

polar n-hexane 3AQ gave a higher value (2,735 cm-1) than NMeAQ (2,475 cm-1) – a similar 

trend {in the polar aprotic and non-polar solvents} was observed for the fluorescence 

quantum yield (φf). These observations were attributed to a decrease in the hydrogen 

bonding ability of NMeAQ (Agarwal, 2011). In a series of NHC˄C ligands, the introduction 

of methyl group caused a reduction in the fluorescence quantum yield, while phenyl group 

resulted in an increase (although the Stokes shift, however, increased in both cases). The 

use of methyl substituents (on the phenyl group), however, resulted in lower quantum yields 

and Stokes shift (the dimethyl substitution producing the greatest effect) – the orthogonal 

orientation attributed to this observation (Kim et al., 2021). Similarly, replacing an -OH 

group (Fig. 2.10{a}) with methyl (Fig. 2.10{b}) has been observed to give a decrease in 

Stokes shift (Sinha et al., 2019). In a study on the effect of end-group methylation (which 

is usually compact and minimally disturbs the molecular electronic structure) as a tool for 

tuning crystal packing, intermolecular interactions, charge transport and luminescence, a 

family of furan/phenylene co-oligomers with the same conjugated core 1,4-bis(5-

phenylfuran-2-yl)benzene and methyl substituents at p- and m-positions of the terminal 

phenyls (Fig. 2.10{c}) have been synthesised and utilised. The solution absorption and 

emission spectra of the compounds were observed to be identical, with λabs 376 nm (BPFB), 

379 nm (2Me- and 4Me-BPFB), and λem 410 nm, 434 nm (BPFB); 413 nm, 438 nm (2Me- 

and 4Me-BPFB). The slight bathochromic shift for the methyl-substituted compounds was 

assumed to result from weak electron-donor effect of the methyl groups. The methyl 
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substituted compounds exhibited lower photoluminescence (PL) quantum yields 76% 

(2Me-BPFB) and 80% (4Me-BPFB), in comparison to BPFB {90%}. Solid state spectra 

studies of the compounds showed more pronounced red shift in λem, 498 nm (BPFB), 502 

nm (2Me-BPFB); 495 nm and 521 nm (4Me-BPFB) - partially due to higher polarisability 

of the molecular environment in crystals, while the quantum yields are higher for the methyl 

substituted compounds, 76% (2Me-BPFB) and 80% (4Me-BPFB), in comparison to BPFB 

{45%} (Kazantsev et al., 2017). 

The nature of substituents has been observed to affect substrate affinity with the 

order Ph ≈ H > Me > iPr > Me2. In comparison to Fig. 2.10 d{i} – {vi}, the possibility of 

favourable pre-organisation in Fig. 2.10 d{vii} – {ix} provided better affinity and 

selectivity [Fig. 2.10 d{viii} and d{ix} showed better affinity than d{vii}] – it is believed 

that cation – π interaction contributed to complex stabilisation (Kim and Ahn 2000). The 

introduction of methyl groups onto a guest molecule improved the anion binding efficiency, 

hence sensing behaviour, of 1,3-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzene (Fig. 

2.10{e}). The ligand exhibited fluorescence quenching upon interaction with several anions 

(F-, Cl-, Br-, I-, CH3COO-, NO2
-, BF4

- and HSO4
-), with the F- showing the largest turn-off 

and binding constant (Ka) of 502.79 M-1 {other anions have Ka values in the range 18 to 

242 M-1} (Chetia and Iyer 2014). Structural modifications involving pyridine nitrogen 

position as well as change in carbon chain length in Fig. 2.10(f{i}) resulted in better 

selectivity for Cd2+ over Zn2+ (Lu, C., et al 2007). The inhibition of C-C rotation, upon 

generation of unsymmetrical analogues to Fig. 2.11(a{i}) {increasing coplanarity} as well 

as conversion of electron donor {Fig. 2.11(a{ii})} to electron acceptor {Fig. 2.11(a{iii})} 

has resulted in improved F- sensing {turn-off} ability – (a{iii}) > (a{ii}) > (a{i}) (Zhang 

and Liu 2017). The reduction of the imine functionality in Fig. 2.11(b{i}) to amine Fig. 

2.11(b{ii}) caused a loss in Hg2+ sensing, while the oxidation of a pyrazoline Fig. 

2.11(c{i}) to a pyrazole Fig. 2.11(c{ii}), as well as substitution of O atom {Fig. 2.11(d{i})} 

with NH group {Fig. 2.11(d{ii})}, have resulted in reversal in Cd2+ and Zn2+ sensing {in 

both cases, {i} showed higher intensity in the presence of Cd2+ while {ii} showed higher 

intensity with Zn2+} (Udhayakumari and Velmathi 2013; Ciupa et al., 2012; Zhang et al., 

2013). 
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Figure 2.10: (a) – (c) Structure of some synthesised and studied furan/phenylene co-

oligomer (d). Tris(oxazolines) with 2,4,6-alkylbenzene framework for n-BuNH3
+ sensing 

(e). Interaction between 1,3-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)benzene and 

anions (f). Effect of pyridine nitrogen position and carbon chain length on Cd2+ and Zn2+ 

sensing 
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Figure 2.11: (a). Bisimidazoles for F- sensing (b). Imine/amine for Hg2+ sensing (c). 

Pyrazoline and pyrazole receptors for Cd2+ and Zn2+ sensing (d). Phenanthro[9,10-

d]imidazole frameworks for Cd2+ and Zn2+ sensing 
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Studying the effect of amino groups at position C2 and C6 of a purine based imine 

ligand, an increase in the association constant was observed when the amino groups were 

at position C2 and C6 (Ka = 5.9 x 105 M-1) in comparison to when the amino group was at 

position C2 alone (1.33 x 105 M-1) – this was attributed to increase in electron density on 

the purine N3 nitrogen. A higher Ka value (1.4 x 106 M-1) was observed when the amino 

group was at the C6 position alone. The position of the amino group, however, did not affect 

the emission wavelength of the compounds (all emit at 488 nm at λex = 345 nm), but slightly 

affected their fluorescence quantum yield {φf} (Pratibha et al., 2017). Computational 

studies on the optical properties of four triarylamine-based (TAA) donor molecules showed 

slight changes in absorption and emission maxima upon substituting one of the phenyl rings 

in Fig. 2.12(a) with methyl, α-napthyl, and β-napthyl. A blue shift was observed for the 

methyl (515 nm) and the α-napthyl (544 nm) substituents, while the β-napthyl molecule 

exhibited a red shift (559 nm), when compared to the phenyl substituent (552 nm). A similar 

trend was observed for the emission maxima. The least Stokes shift was observed for the 

methyl substituted compound (899 cm-1) while the α-napthyl substituted compound showed 

the highest Stokes shift (1,288 cm-1). The substitution of the phenyl with a methyl increased 

the face to face π-π packing and allowed a good π-orbital overlap (Alberga et al., 2017). On 

the assumption that the conversion of the amine group in boron dipyrromethene {BDP} 

chromophore to an imine could result in increased fluorescence of BDP, two different 

classes of fluorescent dyes {derivatives of BDP and xanthenes, Fig. 2.12(b)} have been 

used as turn-off/on sensors for selective detection and monitoring of aldehydes. It was 

observed that imine formation did not greatly affect the absorption and emission energy of 

the chromophores. Emission maxima recorded in MeOH were 503 nm to 507 nm {for the 

BDP derivatives} and 576 nm to 578 nm {for the rosamine derivatives}. These observations 

were attributed to the presence of methyl groups at the C-1 and C-7 positions of BDP – 

which resulted in twisted and conjugately uncoupled π-systems of the amino benzene and 

BDP moieties. However, a 135-fold increase in fluorescence quantum yield was observed 

for the BDP systems, with a turn-on {ascribed to PET}; while a 10-fold increase was 

observed for the rosamine systems (Dilek and Bane 2016). 
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Figure 2.12: (a) Triarylamines-based (TAA) donor molecules studied (b). Structure of 

amine derivatives of BDP and rosamine and their respective imine derivatives. 
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2.6 Single Molecule/Ion Magnets (SMMs/SIMs) 

There is currently a great search for materials which show potential in the storage 

and processing of digital information. A major requirement for the storage of information 

is the ability of such materials to block magnetisation at elevated temperature. Single 

molecule magnets {SMMs} or Single ion magnets {SIMs} possess qualities which enable 

them to store information with much higher densities than conventional bulk magnets and 

allow processing of the information at unprecedented speeds (Fondo et al., 2017). Magnetic 

bistability in SIMs/SMMs arises from the degenerate (MS = ±S) spin components of the 

ground-state, with the stability of these ground-states depending on their energy difference 

to the MS = 0 or ±½ components for integer or half-integer spins, respectively (Novitchi et 

al., 2017). 

One of the determining factors of SMMs or SIMs being used as the smallest 

component of data storage is the size of the barrier to reversal of the magnetisation, Ueff. A 

high value of Ueff suggests a highly efficient SIM/SMM. The Ueff has a direct relationship 

with the anisotropy and spin of molecular magnets (Eq. 2.1 and 2.2). 

   

where S = spin of the metal ion; D = axial zero-field splitting (ZFS) parameter. The 

inclusion of a non-zero, rhombic zero-field splitting (E term) removes the degeneracy of 

the ±MS levels in zero field for an integer spin system, unlike for a half-integer spin system. 

 

The consideration that molecular magnets require high uniaxial anisotropy and well-

defined large spin ground states led to the preparation of complexes with high total spin, 

with manganese clusters {exhibiting ferro- and antiferromagnetic exchange} dominating 

(Barra et al., 1999; Hendrickson et al., 2001; Brockman et al., 2002; Brechin et al., 2003; 

Chakov et al., 2006; Sun et al., 2009; Langley et al., 2010; Kushch et al., 2012; Nguyen et 

al., 2016; Craig and Murrie 2015). A mixed-valent dodecanuclear manganese(III,IV) 

complex [Mn12O12(OAc)16(H2O)4].2AcOH.4H2O (Mn12ac) is among the first reported. This 

material was observed to have preferential direction for the resultant magnetisation arising 

https://pubs.rsc.org/en/results?searchtext=Author%3AEuan%20K.%20Brechin
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from the precession of the spin in a magnetic field, caused by the anisotropy associated with 

the metal ions in the complex. At low temperature, by flipping the orientation of the field, 

this preferential direction can be reversed; that is, switched from lying along the (+) z-axis 

to lying along the (-) z-axis (Sessoli et al., 1993; Chakov et al., 2006; Craig and Murrie 

2015; Vallejo et al., 2013). 

The observation that D has an inverse relationship to S2 (Eq. 2.1 and 2.2) gave 

indications that Ueff has little or no effect on the ground-state total spin and although a large 

number of polynuclear materials {with high S values} have been reported (Brockman et al., 

2002; Chakov et al., 2005; Langley et al., 2010; Hewitt et al., 2010; Wei et al., 2011; 

Kushch et al., 2012; Cornia et al., 2014; Nguyen et al., 2016), this strategy often results in 

materials with low magnetic relaxation barrier {and difficulty in increasing the barrier} due 

to the absence of Ising-type magnetic anisotropy (Fondo et al., 2017; Huang et al., 2014). 

Due to the above challenge other strategies have been adopted to aid understanding and 

possibly improve the properties of materials with slow magnetic relaxation. These include 

use of (i) f-block ions (ii) mixed 3d-4f ions (iii) other 3d ions {in addition to Mn}. While 

the 3d-4f clusters consist only of di-, tri- and polynuclear materials; the use of f-block and 

3d ions also includes mononuclear materials. 

A growing realisation that anisotropy is the crucial factor in the design of magnetic 

materials raised keen interests in materials with single metal centres, SIMs (Fondo et al., 

2017; Huang et al., 2014). Single-ion anisotropy is known to originate from strong spin 

orbit coupling {SOC} and crystal field effect as the magnetic anisotropy {in SIMs} is 

observed to depend in the interaction between the metal centre and the ligand field, causing 

a preferential orientation of the magnetic moment, hence coordination geometry has a 

strong influence on the SIM properties (Liu et al., 2013). 

 

2.6.1 Magnetic behaviour of f-block ions 

The observation that f orbitals are essentially degenerate, with large SOC, has led to 

a search for suitable f-block ions in the preparation of SIMs/SMMs. Late f-block metals 

{especially lanthanides} known for their high magnetic moments, large magnetic 

anisotropies {arising from unquenched orbital angular momentum} and strong SOC are 

very suitable candidates (Xiang et al., 2017; Demir et al., 2017). Dysprosium(III) {DyIII} 
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ions dominate, in this area, chiefly because of tendency to exhibit large magnetic 

anisotropy, its Kramer’s ion {possessing an odd number of unpaired electrons with a doubly 

degenerate ground state} property as well as the large energy gap between its ground state 

and its first excitation level. The Kramer’s ion property ensures the degeneracy of ±MJ 

ligand-field states {which arise from the effect of the ligand-field symmetry on the ground 

J state} is guaranteed in the absence of a direct-current (dc) magnetic field. More so, 

quantum tunnelling of magnetisation (QTM) is formally forbidden for complexes with odd 

electron count, although axial magnetic anisotropy, hyperfine or dipole-dipole coupling 

may still result in a non-zero tunnelling contribution (Novikov et al., 2015; Demir et al., 

2017; Chen et al., 2020). 

A NCN pincer type ligand DyIII complex {DyNCN, Fig. 2.13(a)} has been prepared 

and the observed χMT value of 13.8 cm3Kmol-1 {at room temperature} agreed with expected 

value for g = 4/3 of the 6H15/2 ground state of a single DyIII ion. The χMT value decreased 

gradually on lowering of temperature – as a result of depopulation of the sub-states. The 

compound exhibited field induced slow magnetic relaxation with effective relaxation 

barrier {Ueff} of 233 cm-1 and relaxation time (τo) of 6 x 10-10 s – the relaxation occurred 

through Orbach process {via the second excited state} at high temperatures, and through 

QTM at low temperatures. On diluting the compound with LuIII {Dy0.05Lu0.95NCN} the τo 

at low temperatures was two orders of magnitude slower than DyNCN – suggesting choking 

of the ground state quantum tunnelling pathway, but the magnetic dilution did not affect the 

τo at higher temperature (Guo et al., 2014). In the case of two DyIII complexes (prepared 

from hydrazone imines Hhmb and H2hmt {where Hhmb = N′-(2-hydroxy-3-

methoxybenzylidene)benzohydrazide; H2hmt = N′1,N′4-bis(2-hydroxy-3-

methoxybenzylidene) terephthalohydrazide} [Fig. 2.13(b) and (c)]), The DyIII ions in the 

prepared complexes [Dy(hmb)(NO3)2(DMF)2] and [Dy2(hmt)(NO3)4(DMF)4].DMF were in 

a distorted pentagonal interpenetrating tetrahedral geometry. The χMT (at 300 K) values of 

the mono- {13.55 cm3Kmol-1} and dinuclear {28.62 cm3Kmol-1} complexes were close to 

expected values for one {14.17 cm3Kmol-1} and two {28.34 cm3Kmol-1} uncoupled DyIII 

ions {S = 5/2, L = 5, 6H15/2, g = 4/3}. The χMT values decreased at lower temperature reaching 

12.19 cm3Kmol-1 (at 2 K) and 26.63 cm3Kmol-1 {at 1.8 K}, respectively – suggesting weak 



 

49 
 

antiferromagnetic coupling between the metal centres. However, due to the large physical 

separation between DyIII ions, the decrease was possibly due to thermal depopulation of the 

Stark sub-levels and/or presence of large anisotropy. The respective complexes had Ueff 

values of 34 K {τo = 3.2 x 10-6 s} and 42 K {τo = 1.6 x 10-6 s}, with the slight difference in 

energy barrier attributed to minor changes around the coordination environment of the metal 

ion (Lin et al., 2012). In another study of the effect of crystal field a pair of homochiral β-

diketonate ligands (+)-3-trifluoroacetyl)camphor (d-Htfc) and (−)-3-

trifluoroacetyl)camphor (l-Htfc) were used in the preparation of two enantiomeric pairs of 

DyIII mixed complexes [Dy(d-tfc)3(bpy)]2 / [Dy(l-tfc)3(bpy)]2 {bpy = 2,2′-bipyridine} and 

[Dy(d-tfc)3(phen)]·2H2O / [Dy(l-tfc)3(phen)] {phen = 1,10-phenanthroline}. The 

homochiral DyIII β-diketonate stereoisomers with the bpy ligand showed field-induced 

single-ion magnet behaviours with a two-step relaxation process. No stereoisomerisation 

was observed for the homochiral DyIII β-diketonate with the phen coligand, and it exhibited 

a single relaxation process of the magnetisation only. The anisotropy barriers of [Dy(d-

tfc)3(bpy)]2 {36.5 and 46.1 K} were slightly smaller than those of [Dy(l-tfc)3(bpy)]2 {37.0 

and 49.3 K}, while [Dy(d-tfc)3(phen)].2H2O had a larger energy barrier {30.5 K} than 

[Dy(l-tfc)3(phen)] {25.1 K}. The thermally activated two-step relaxation process of the bpy 

complexes was attributed to Orbach process (Liu et al., 2013). A similar two-step relaxation 

process had been reported for the distorted square antiprism YbIII complex 

{[Yb(L)(H2O)3(DMF)].(HL).(H2O)}n (where H2L = 4,5-bis(carboxylic)-4’,5’-

methyldithiotetrathiafulvene), with the Ueff 28 K {τo = 3.3 x 10-7 s} and 3.2 K {τo = 2.0 x 

10-4 s}. The decrease in χMT from 2.40 cm3Kmol-1 {at room temperature} to 0.99 cm3Kmol-

1 {at 2 K} was attributed to thermal population of the crystal field levels within the ground 

state multiplet 2F7/2 (Castro et al., 2016). 
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In the organometallic ErIII based compound [(Cp*)Er(COT), Fig. 2.13(d)] {where 

Cp* = C5Me5
- and COT = C8H8

2-}, the ring-shaped aromatic ligands generated higher local 

symmetry which accounted for observed magnetic properties. The out-of-phase ac 

susceptibility (χ//) of the compound {at 2 to 25 K} showed a clear frequency-dependence 

on temperature. The χ// increased on cooling {at < 10 K} suggesting QTM, due to the mixing 

of the Kramer’s ground states. Two relaxation processes {which are thermally activated} 

were observed for the compound with energy barriers 323 K {τo = 8.17 x 10-11 s} and 197 

K {τo = 3.13 x 10-9 s}. These relaxation processes were assumed to be from stable 

conformers in the crystal of the compound (Jiang et al., 2011). In the LnIII {Ln = Yb, Er, 

Dy, Gd, Eu} metal complexes of a phen based tetrazole ligand, 2-2(H-tetrazol-5yl)-1,10-

phenanthroline, with the general formulas [LnL3]·MeOH, 

[LnL2(tmh)(MeOH)].mMeOH.nH2O and [LnL2(tta)(MeOH)]·MeOH {tmh = 2,2,6,6-

tetramethylheptanoate and tta = 2-thenoyltrifluoroacetonate} (Scheme 2.8), the magnetic 

measurements on [LnL3]·MeOH {Ln = Yb, Er, Dy} revealed SMM behaviour only when 

an external dc magnetic field was applied, with Ueff values of 11.7 K {for Yb}, 16.0 K {for 

Er}, and 20.2 K {for Dy}, respectively. When one of the tridentate phen tetrazolate ligand 

was replaced by one molecule of MeOH and the β-diketonate ligands tmh {in 

[LnL2(tmh)(MeOH)]·nH2O·mMeOH} or tta {in [LnL2(tta)(MeOH)]·MeOH}, a significant 

increase in Ueff was observed – for {[LnL2(tmh)(MeOH)]·nH2O·mMeOH} the new values 

were 29.7K, 30.4 K, and 95.7 K, respectively, while for {[LnL2(tta)(MeOH)].MeOH} the 

values were 30.3 K, 25.8 K, and 76.0 K, respectively (Jiménez et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

 

 

 

Scheme 2.8: Preparation of a series of lanthanide tetrazolate complexes. 
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In the LnIII cyanoacetate based complexes {[Ln2(CNCH2COO)6(H2O)4].2H2O}n, 

(where Ln = Eu, Gd, Nd), although the Eu and Gd complexes were isostructural {with a 

different binding scheme in the case of Nd} the Eu complex showed field induced 

paramagnetism {expected for a non-magnetic ground state with mixing from higher states}, 

while the Gd complex did not display slow relaxation (at H = 0) because its low anisotropy 

barrier allowed fast spin reversal through classical processes. On application of an external 

magnetic field, however, the Gd complex induced two slow relaxation processes; caused 

by resonant phonon trapping (RPT) mechanism and lifting of the Kramer’s degeneracy on 

the ground state, respectively. Heat capacity and dc susceptibility measurements of the Nd 

complex indicated that at very low temperatures the ground state Kramer’s doublet had 

strong single ion anisotropy, with predominant anisotropy along the z-axis. Under an 

external applied field, two slow relaxation processes appeared at > 3 K – the first relaxation 

mechanism was of the Orbach type, with an activation energy U/kB = 27 K; while the slower 

relaxation was caused by the direct relaxation process from the ground state to the Kramer’s 

split levels by the applied field (Arauzo et al., 2014). 

 

2.6.2 Magnetic behaviour of mixed 3d-4f clusters 

This strategy involves exploration of strong magnetic interactions (in 3d ions) as 

well as large ground-state spin and magnetic anisotropies (in 4f ions) resulting in 3d-4f 

heteronuclear clusters – since the non-equivalent metal centres in these 3d-4f clusters give 

magnetic properties significantly different from those of homonuclear clusters as well as 

single-ion materials. Complexes such as CuII- LnIII {Ln = Gd, Dy}, CoII-LnIII {Ln = La, Gd, 

Tb, Dy, Ho}, NiII
2-LnIII

2 {Ln = Dy, Tb, Gd, Sm, Ho, Nd, Pr} and NiII-LnIII-NiII {Ln = Sm, 

Eu, Gd, Tb}  have been reported (Costes et al., 2000; Elmali and Elerman 2005; Basak et 

al., 2020; Georgopoulou et al., 2020; Shen et al., 2022). Coupling in NiII-LnIII {Ln = Gd, 

Tb, Dy, Ho} tends to be ferromagnetic (Andruh, 2011). 

In the heterodinuclear ZnII-LnIII complexes 

[ZnTb(HL)(NO3)(OAc)(H2O)](NO3)(ZnTb),{[ZnDy(HL)(NO3)(OAc)(MeOH)](NO3)}·1

¼MeOH·¼H2O (ZnDy), and {[ZnEr(HL)(NO3)(OAc)(MeOH)](NO3)}·MeOH·¾H2O 

(ZnEr); heterotrinuclear ZnII-LnIII-ZnII complexes [Zn2Dy(L)(NO3)2(OAc)2(H2O)] 

(Zn2Dy) and {[Zn2Er(L)(NO3)2(OAc)2(H2O)]}·1½H2O (Zn2Er);  as well as the 
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metalloligand [Zn2(L)(OAc)] (Zn2Dy), the observed decreases in 𝑋𝑀T value (more rapidly 

at < 50K) were attributed to the depopulation of the ±Mj sub-levels of the LnIII ion as well 

as contribution from weak intermolecular interactions. The magnetisation values (4.0 – 5.4 

Ms/NµB) obtained were lower than expected for TbIII, DyIII and ErIII ions which was 

probably due to the crystal-field effect resulting in significant magnetic anisotropy. The 

alternating current (ac) magnetic susceptibility measurements of the heterodinuclear 

complexes showed no observable in-phase (χ/) or  χ// maxima, but under a dc field ZnDy 

showed frequency and temperature dependence of the χ/ and χ// susceptibility with maxima 

for χ/ and χ// below 15 K {indicating field induced SMM}, with a Ueff of 41.05K {28.53 cm-

1}, while the ZnTb and ZnEr showed no observable maxima for χ/ and χ//, hence no slow 

relaxation of the magnetisation and therefore SMM behaviour. The dilution of ZnDy with 

YIII gave {[ZnDy0.1Y0.9(HL)(NO3)(OAc)(MeOH)](NO3)}·3H2O (ZnDyY), which was 

isostructural to ZnDy but does not show SMM behaviour, thus, SMM behaviour of ZnDy 

was of molecular origin and QTM was a result of hyperfine interactions. Zn2Dy and Zn2Er 

behaved as SMMs with Ueff of 47.69 K and 20.81 K and τo of 4.60 x 10-7 s-1 and 7.48 x 10-

7 s-1, respectively. The higher Ueff value of Zn2Dy (when compared to ZnDy) suggested 

increase in ZnII ion increased the effective anisotropy barrier of the system (Fondo et al., 

2017). In a study of some octanuclear complexes [CoIII
4DyIII

4(μ-OH)4(μ3-

OMe)4(O2CC(CH3)3)4(tea)4(H2O)4].4H2O, (CoDy1) [CoIII
4DyIII

4(μ-F)4(μ3-OH)4(o-

tol)8(mdea)4].3H2O.EtOH.MeOH, (CoDy2) [CrIII
4DyIII

4(μ-F4)(μ3-OMe)1.25(μ3-

OH)2.75(O2CPh)8(mdea)4], (CrDy1)  [CrIII
4DyIII

4(μ3-OH)4(μ-N3)4(mdea)4(piv)4] (CrDy2) { 

tea3- = triply deprotonated triethanolamine, mdea2- = doubly deprotonated N-

methyldiethanolamine and o-tol(H) = ortho-toluic acid}, it was observed that (CoDy1) did 

not display slow magnetic relaxation above 2 K, while the other compounds showed SMM 

behaviour with Ueff of 39.0 cm-1, 55.0 cm-1 and 10.4 cm-1, respectively. The observation 

suggested that the substitution of OH- (in CoDy1) with F- (in CoDy2) led to quenching of 

QTM resulting in improved SMM behaviour and the substitution of CoIII {in (CoDy2)} 

with CrIII {in (CrDy1)} led to further quenching of QTM at low temperatures. The χMT (at 

300 K) values for (CoDy1) and (CoDy2) {56.68 and 56.27 cm3Kmol-1, respectively} were 

in good agreement with the expected value of 56.68 cm3Kmol-1 for four DyIII ions – the 

CoIII ions were in a low spin d6 configuration so showed no contribution to the magnetic 



 

55 
 

susceptibility, except for small second-order Zeeman contribution. The χMT values, in both 

compounds {(CoDy1) and (CoDy2)}, decreased gradually then rapidly (below 50 K) 

suggesting weak antiferromagnetic exchange between the DyIII ions and/or large single ion 

anisotropy (Vignesh et al., 2017). In the case of the heptanuclear [CrIIIDyIII
6(µ3-OH)8(o-

tol)12(NO3)(MeOH)5].3MeOH complex, the observed χMT value {at 300 K} of 87.16 

cm3Kmol-1 agreed with the expected value {86.9 cm3Kmol-1} for one CrIII and six DyIII ions 

that are non-interacting. Similar to the octanuclear compounds {CoDy1, CoDy2, CrDy1 

and CrDy2}, the χMT value decreased gradually then rapidly {at < 50 K} to 14.37 cm3 K 

mol-1 {at 2 K} – the gradual decrease was attributed to depopulation of the excited Mj Stark 

states of the DyIII ions, while the rapid decreases indicated dominant antiferromagnetic  

exchange interaction. The χMT value at 2 K is higher than that expected for single 

paramagnetic CrIII ion suggesting there were several close highly excited states including 

that of DyIII ion {which possessed significant magnetic moment} (Vignesh et al., 2017). In 

the isomorphous heterometallic tetranuclear complexes [Dy2Co2L10(bpy)2] (DyCo), 

[La2Ni2L10(bpy)2] (LaNi), [Gd2Ni2L10(bpy)2] (GdNi), [Tb2Ni2L10(bpy)2] (TbNi), 

[Dy2Ni2L10(bpy)2] (DyNi), and [Ho2Ni2L10(bpy)2] (HoNi) {L− = 3,5-dichlorobenzoate 

anion [a bridging ligand] and bpy is a terminal bidentate ligand}; the χMT of (DyCo) 

decreased gradually {from 33.78 cm3 K mol-1 [at 300 K]} then increased sharply {to 36.40 

cm3 K mol-1 [at 2 K]} – indicating presence of some weak intramolecular ferromagnetic 

exchange between the two CoII ions mediated by the two DyIII ions. The compound (DyCo) 

had a magnetisation of 16.93 Nβ which was lower than expected (26 Nβ) due to large 

magnetic anisotropy. A similar observation {for χMT} was made for (DyNi). The Ueff of 

(DyCo) was found to be 118 K {82 cm-1} at zero Oe and 114 K {79.4 cm-1} at 1000 Oe; 

while that of (DyNi) was 105 K {73 cm-1} at zero Oe – the calculated energies of 66.1 cm-

1 and 61.0 cm-1 for the first excited spin-orbit state of DyIII in the respective complexes 

agreed with the effective energy barriers. All the other compounds generally showed a 

decrease in χMT with no increase (Zhao et al., 2014). 

Although great strides have been made in f-block materials with SIM/SMM 

properties, the magnetic hysteresis in most of the materials are observed at very low 



 

56 
 

temperatures {and not at room temperature conditions}, limiting their use in devices 

(Novikov et al., 2015; Yang et al., 2022). 

 

2.6.3 Magnetic behaviour of 3d ions 

First row transition metal (3d) ions are known to have smaller magnetic moments 

and lower SOC constants than f-block ions. More so, the ligand field in 3d ions usually 

results in the quenching of the orbital angular momentum, but low oxidation states, high 

local coordination symmetries, and low coordination numbers usually lead to weak ligand-

field and enhanced magnetic anisotropy as a result of nearly unquenched orbital angular 

momentum. A common feature of 3d transition metal ions used as SIMs is low coordination 

number (ranging from 2 to 6) of the metal centres, which affords a relatively weak ligand 

field, reducing the orbital splitting energy and increasing the magnetic anisotropy (Huang 

et al., 2014; Xiang et al., 2017; Zadrozny et al., 2013; Wu et al., 2017). Higher coordination 

number (for example eight) in late transition metals has also been observed to result in weak 

ligand field and strongly distorted coordination environment (Xiang et al., 2017). 

The high-spin FeII {d6} complex {K[(tpaMes)Fe]}(Where H3tpaMes = Tris((5-

mesityl-1H-pyrrol-2-yl)methyl)amine), in a dc field, has been reported to have a D value of 

-39.6 cm-1 and rhombic ZFS {E} contribution of -0.4 cm-1. The theoretical Ueff value (158 

cm-1) was higher than the observed value (42 cm-1) possibly due to tunnelling effect. The 

bulkiness of the ligand promoted unusual geometry around the metal centre, with the FeII 

ion lying in a trigonal pyramidal geometry {in an N4 coordination sphere}. The observed 

rhombic contribution arose from the small structural distortion around the FeII ion, which 

lowered the three-fold symmetry. The χMT value of 3.66 cm3Kmol-1 (typical for S = 2 with 

g = 2.21) decreased below 70 K as a result of ZFS of the Ms levels – only the |Ms| = 2 levels 

are populated at low temperatures (Freedman et al., 2010). In the eight-coordinate complex 

({[FeII(L1)2](ClO4)2}, Fig. 2.14), where the FeII coordinates with four N atoms and four O 

atoms, in a highly distorted dodecahedron, the observed room temperature magnetic 

moment (5.72 µB) was significantly higher than the spin-only value (4.90 µB) for high-spin 

FeII ion and indicated large contribution from unquenched orbital angular anisotropy. The 

χMT value of 3.58 cm3Kmol-1 (at 300 K) was also significantly higher than the expected 

spin-only value (3.0 cm3Kmol-1) for S = 2, g = 2; and suggested strong SOC. The χMT 
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decreased rapidly to 2.59 cm3Kmol-1 (at 2 K) indicating strong magnetic anisotropy. The 

compound had a Ueff of 27 K with τo of 2.7 x 10-8 s (and D = -11.7 cm-1, E = 0.08 cm-1). 

The spin relaxation was suggested to be as a result of QTM {at low temperatures} and 

through Orbach mechanism {at high temperature} (Xiang et al., 2017). In the almost 

perfectly linear {bond angle of C-Fe-C = 179.2(2)o} d7 FeI compound [K(Crypt-

222)][(Fe(C(SiMe3)3)2], SOC caused  splitting of the 4E ground state into four doublets Mj 

±7/2, ±
5/2, ±

3/2 and ±½ with energy spacing ≈ 24 cm-1. The χMT at 300 K of 3.39 cm3Kmol-1 

(which was close to the values observed for the FeII in Fig. 2.14), increased upon cooling 

then it gradually decreased (at 125 K) before rapidly dropping (below 5.5 K) to 0.18 

cm3Kmol-1 (at  2 K); the temperature profile above 5.5 K suggested presence of first order 

angular momentum which enabled the compound to record a Ueff of 226 cm-1 (325 K) with 

τo of 1.3 x 10-9 s under a zero dc field (one of the highest to be observed). The spin relaxation 

was believed to occur through Orbach mechanism with QTM observed below 20 K possibly 

due to intermolecular dipolar interactions with some geometric distortions (which led to 

deviation from strict axial symmetry inducing mixing of the ground Mj ±
7/2 levels). The 

compound exhibited hysteresis at 1.8 – 6.5 K under a field of 2 T (Zadrozny et al., 2013). 

A six-coordinate, MnIII complex Ph4P[Mn(opbaCl2)(py)2] {H4opbaCl2 = N,N’-3,4-dichloro-

o-phenylenebis(oxamic acid), py = pyridine} has also been reported to possess field-

induced slow magnetic relaxation behaviour. The manganese atom showed tetragonally 

elongated octahedral coordination geometry typical for d4 MnIII ion experiencing Jahn–

Teller distortion. The N2O2 ligand formed three five-membered chelate rings that imposed 

a distortion around the metal centre giving rise to an axially elongated MnIII ion. The 

compound was observed to have a D value of -3.421(2) cm-1 and E of -0.152(2) cm-1. The 

calculated axial magnetic anisotropy (DSOC = -2.97 cm-1) was observed to be mainly as a 

result of second order SOC, with small spin-spin contribution (DSS = -0.50 cm-1). Maxima 

χ// were seen on the application of a dc field of 1000 Oe, and the Arrhenius plot gave Ueff = 

12.6 cm-1. The χMT value of 2.99 cm3Kmol-1 (at 300 K; for S = 2 with g = 2.0) decreased 

abruptly at 40 K to reach a value of 2.22 cm3Kmol-1 (at 2.0 K) and revealed occurrence of 

significant ZFS – it was assumed that superparamagnetic blocking is avoided because of 

the fast zero-field QTM (Vallejo et al., 2013). 

 



 

58 
 

 

 

 

 

 

 

 

 

 
Figure 2.14: Structure of an eight coordinate FeII complex exhibiting slow magnetisation 
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Magnetisation studies of the seven coordinate imine complexes 

[CoII(H2dapb)(H2O)(NO3)](NO3), [CoIILN5(H2O)2]Cl2·4H2O (where H2dapb = 2,6-

diacetylpyridine bis(benzoylhydrazine); LN5 = 2,13-dimethyl-3,6,9,12-tetraaza-1(2,6)-

pyridinacyclotridecaphane-2,12-diene) showed χMT values (at 300 K) of 2.63 and 2.61 

cm3Kmol-1, respectively. The values were larger than the spin-only value (1.875 cm3Kmol-

1) expected for high-spin CoII ions and fell in the range (2.1 to 3.4 cm3Kmol-1) for highly 

anisotropic CoII ions with considerable contribution from the orbital angular momentum. 

The χMT values decreased upon cooling (at 1.8 K) to 1.56 and 1.53 cm3Kmol-1, respectively, 

suggesting intrinsic magnetic anisotropy of the CoII ions. The complexes have Ueff values 

of 56.3 cm-1 (81.2 K) and 20.7 cm-1 (29.8 K), with τo of 6.0 x 10-10 s and 1.2 x 10-6 s 

respectively. The field induced slow magnetic relaxation is suggested to be as a result of 

Orbach process for the former, while for the latter it is as a result dominant optical acoustic 

Raman process (Huang et al., 2014). In a pseudo-clathrochelate CoII complex {in which a 

slight distortion resulted in the pseudo-octahedral geometry which weakens the ligand field 

and gave rise to a high-spin d7 system}, the temperature profile {with χMT of 2.87 cm3Kmol-

1 (at 300 K)} followed same trend as the pentagonal bipyramidal complexes 

{[CoII(H2dapb)(H2O)(NO3)](NO3) and [CoIILN5(H2O)2]Cl2·4H2O}, and the decreased χMT 

{upon cooling} attributed to magnetic anisotropy. The observed Ueff {152 cm-1} was 

however higher than those reported for the seven coordinate complexes, and attributed to 

Orbach relaxation process (Novikov et al., 2015). 

In the distorted pseudo-tetrahedral CoII complexes, [Co(LBr)2] and [Co(LPh)2].DCM, 

prepared from bidentate N,O type imine ligands {where HLBr = 1-[N-(4-

Bromophenyl)carboximidoyl]naphthalen-2-ol and HLPh = 1-[N-(2-

Phenylphenyl)carboximidoyl]naphthalen-2-ol} (Scheme 2.9{a}); the compounds gave χMT 

value of ≈ 2.38 cm3Kmol-1 (at 300 K, with g = 2.25) suggesting presence of SOC. The χMT 

value decreased gradually upon cooling, then rapidly (at < 50 K) reaching 0.99 cm3Kmol-1 

{[Co(LBr)2]} and 1.77 cm3Kmol-1 {[Co(LPh)2]} – this was attributed to magnetic anisotropy 

of the CoII ions and/or antiferromagnetic intermolecular exchange interactions. 

Magnetisation plot (at 2 K and 5 T) indicated saturation was not reached for both 
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compounds with magnetisation ≈ 2.0, suggesting strong ZFS effects in both complexes. The 

D values for the compounds were calculated to be 36.7 cm-1 and -39.8 cm-1, respectively. 

The larger D value of the second compound was attributed to its larger distortion from 

tetrahedral geometry, which encouraged mixing of the ground state with the excited states. 

The compounds, at 400 Oe, had Ueff of 36 cm-1 (τo = 5.6 x 10-10 s) and 43 cm-1 (τo = 8.4 x 

10-10 s), respectively (Ziegenbalg et al., 2016). The D values of the complexes (derived 

from the ligands in Scheme 2.9{a}) were similar to the D values of previously reported 

CoII complexes derived from the imidazole based N2O2 ligands {Scheme 2.9(b)} (Buchholz 

et al., 2012), but the N,O based complexes gave slightly higher Ueff values (at 400 Oe). The 

compounds (from ligands in Scheme 2.9{a}) showed no slow magnetic relaxation in the 

absence of an applied dc field, which was attributed to QTM within individual Kramer’s’ 

doublets {KDs} (Ziegenbalg et al., 2016). 

The mixed imidazole complex [CoII(dapb)(Im)2](H2O) (where H2dapb = 2,6-

diacetylpyridine bis(benzoylhydrazine); Im = imidazole) showed χMT values (at 300 K) of 

2.48 cm3Kmol-1, which was larger than the spin-only value (1.875 cm3Kmol-1) expected for 

high-spin CoII ions and fell in the range (2.1 to 3.4 cm3Kmol-1) for highly anisotropic CoII 

ions with considerable contribution from the orbital angular momentum. The χMT values 

decreased upon cooling to 1.37 cm3Kmol-1 (at 1.8 K) suggesting intrinsic magnetic 

anisotropy of the CoII ion. The complex had Ueff value of 62.3 cm-1 (89.6 K) with τo 8.7 x 

10-11 s. The field induced slow magnetic relaxation was suggested to be as a result of Orbach 

and Raman processes (Huang et al., 2014). Two six-coordinate complexes, 

[Co(Im)6](BPh4)2 and [Co(Im)6](NO3)2, showed similar trend as observed in 

[CoII(dapb)(Im)2](H2O). The cation, [Co(Im)6]
2+, in these complexes exhibited quasi-

octahedral geometry with ideal Ci and D3d symmetries, respectively. The observed χMT (at 

300 K) of 3.05 cm3Kmol-1 {[Co(Im)6](BPh4)2} and 3.25 cm3Kmol-1 {[Co(Im)6](NO3)2} 

were in the expected range - suggesting strong orbital contribution. These values decreased 

to 1.67 cm3Kmol-1 and 1.89 cm3Kmol-1 (at 2 K) for the respective complexes. Magnetic 

relaxation appeared faster in [Co(Im)6](NO3)2 than [Co(Im)6](BPh4)2, with χ// signals 

observed at 20.7 Hz {[Co(Im)6](BPh4)2} and 137.9 Hz {[Co(Im)6](NO3)2}, under a field of 

1000 Oe. The compounds showed Ueff values of 21.6 K {τo = 1.5 x 10-6 s} and 6.3 K {τo = 

4.5 x 10-5 s}, respectively (Chen et al., 2018). 
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Scheme 2.9: (a). Tautomeric Equilibrium of the ligands HLBr and HLPh (b). Imidazole based 

N,O ligands (c) Structure of [CoIICoIII(LH2)2(OAc)(H2O)](H2O)3 
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The coordination complex, [CoII(bpm)2(H2O)2][CoII(bpm)2(N3)2](ClO4)2 {where 

bpm = bis(pyrazol-1-yl)methane}, under a field of 1000 Oe gave χMT value of 6.68 

cm3Kmol-1 (at 300 K) which was expected for two single non-interacting d7 CoII ion with 

considerable contribution from orbital angular momentum. The χMT decreased slightly 

{upon cooling} due to ZFS of the CoII ion. It was observed that the CoII ion in 

[Co(bpm)2(N3)2] species was uniaxially anisotropic with a negative D value (-282.4 cm-1), 

while the CoII ion in [Co(bpm)2(H2O)2]
2- species was easy-plane anisotropic with a D = 

46.3 cm-1 and E = -27.8 cm-1. The slow magnetic relaxation, resulted from the combined 

uniaxial anisotropy and easy plane anisotropy, and gave a Ueff of 33 K, with τo of 1.5 x 10-

7 s – the fast relaxation, under a zero field, was attributed to QTM through the spin-reversal 

barrier (Zhu et al., 2014). In the dinuclear mixed valence cobalt complex 

[CoIICoIII(LH2)2(OAc)(H2O)](H2O)3, {LH4 = 2-{[(2-hydroxy-3-

methoxyphenyl)methylene]amino}-2-(hydroxymethyl)-1,3-propanediol} (Scheme 2.9(c)), 

an effective magnetic moment, μeff of 4.97 μB (at 298 K) which decreased to 3.92 μB (at 1.9 

K) was observed. The decrease was ascribed to depopulation of the magnetic energy levels. 

The magnetisation per formula unit of the compound (2.57) was much lower than the spin-

only value (3.95), while the compound had χMT values of 3.06 cm3Kmol-1 (at 300 K) and 

1.91 cm3Kmol-1 (at 2 K) - confirming the presence of a sizable magnetic anisotropy of an 

easy axis type. The ground term for the CoII ion in Scheme 2.9(c) was found to be the 

orbitally degenerate 4Eg instead of the orbital singlet 4A2g common to hexacoordinated CoII 

ions (Buvaylo et al., 2017). 

 

2.7 Effect of Ligand type and bridging on magnetic property 

The nature of ligand has great input on observed magnetic behaviours and in this 

regard a variety of ligand architecture had been explored. The introduction of substituents, 

close binding cavities, possibilities of different coordination modes (topology), ability to 

participate in hydrogen bond extension and transmit electronic effect, use of paramagnetic 

radicals, use of rigid framework have been observed to affect magnetic properties 

(Thompson et al., 1996; Hossain et al., 2002; Escuer et al., 2004; Pasán et al., 2005; Yuste 

et al., 2007; Benmansour et al., 2008; Wei et al., 2011; Gao et al., 2013; Castro et al., 2014; 
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Liu et al., 2015; Chilton et al., 2015; Ding et al., 2016; Wang et al., 2017; Plaul et al., 2018; 

Sun et al., 2019; Sherstobitova et al., 2019; Wang et al., 2019). 

Schiff base ligands with possibility of structural flexibility, chelate formation, N-

donating and π-accepting abilities have gained prominence (Aranha et al., 2007; Yue et al., 

2008; Li et al., 2010; Rigamonti et al., 2012; Dehghani-Firouzabadi et al., 2016; Wang et 

al., 2016; Cho et al., 2016; Chang et al., 2017; Huang et al., 2017; Cisterna et al., 2018; 

Pandey et al., 2019; Zolotukhin et al., 2020; Xue et al., 2021; Bazhenova et al., 2021a; 

Bazhenova et al., 2021b). Salicylaldehyde and its derivatives are prominent, especially in 

cases where phenoxido-bridging is desired, and subtle molecular modifications in these 

systems have been found to impart magnetic properties (Tuna et al., 1999; Tuna et al., 2000; 

Niu et al., 2005; Sreenivasulu et al., 2005; Kannappan et al., 2006; Roth et al., 2006; Yuan 

et al., 2007; Pang et al., 2008; Bhargavi et al., 2009; Chakraborty et al., 2009; Thakurta et 

al., 2009; Mukherjee et al., 2009; Naiya et al., 2010; Matsuoka et al., 2011; Rigamonti et 

al., 2011; Nematirad et al., 2012; Rigamonti et al., 2012; Lu et al., 2013; Wang et al., 2013; 

Sutradhar et al., 2013; Wang et al., 2013; Gao et al., 2013; Ghosh et al., 2014; Hazra et al., 

2014; Jana et al., 2014; Gildea et al., 2014; Realista et al., 2016; Pogány et al., 2018; Wang 

et al., 2019; Yu et al., 2019; Pogány et al., 2019; Muddassir et al., 2020; Basak et al., 2020; 

Chen et al., 2020; Wang et al., 2020; Georgopoulou et al., 2020; Wang et al., 2022; Shen 

et al., 2022; Yang et al., 2022). 
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Figure 2.15: Structures of some ligands used in preparation of SIMs/SMMs 
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Figure 2.16: SIMs/SMMs based ligands from Salicylaldehyde and its derivatives. 
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In addition to backbone flexibility, certain ligands are able to generate bridges in 

metal complexes. The presence of μ-bridges {in complexes} have been observed to perturb 

magnetic exchange interactions, since these bridges have the ability to induce different 

stereochemical preferences on metal ions (Cornia et al., 1995; Costes et al., 2002; Kushvaha 

et al., 2019). Weak antiferromagnetic exchange interaction {J = -1.5 to -2.1 cm-1}, in a 

series of dinuclear CoII complexes, resulted in a poor pathway provided by bridging groups 

(Tomkowicz et al., 2012); a similar effect was observed in the bpe {1,2-bis(4-

pyridyl)ethane} bridged mixed valent [{CoIICoIII(mea)3}2(bpe)3](ClO4)4.1½MeOH.1½H2O 

{J = -0.06 cm-1} as well as the oxo-bridged [Co2(μ-OPhR)(μ-1,3-O2P(OPh)2)2] {J = -1.6 

cm-1} and  [Co2(μ-OAc){μ-O(N)(O=C)2(CH2)3}(Im)4](OTf)2 {J = -1 cm-1} complexes 

(Tudor et al., 2008; Johansson et al., 2008; Brown et al., 2004), while carboxylate bridging 

in [(L)2CoII
2(µ-OAc)2](BPh4)2 , A, and [Co2(bta)(H2O)6]n.2nH2O, B, however, resulted in 

ferromagnetic exchange {J = +1.60(2) cm-1} and {J = +5.4 cm-1}, respectively. At 300 K, 

A gave μeff, in solid {and MeCN solutions at 298 K}, of 4.75 {5.05} μB, which was larger 

than expected for S = 3/2 [μso = {4S(S + 1)}1/2 = 3.87 μB], suggesting significant orbital 

contribution. The value was however close to the expected value when the spin momentum 

(S = 3/2) and the orbital momentum (L = 3) existed independently [μLS = {L(L + 1) + 4S(S 

+ 1)}1/2 = 5.20 μB] suggesting contribution of the orbital momentum typical of the 4T1g 

ground state, under pure Oh symmetry. B also recorded a μeff (4.71 μB) greater than the spin-

only value - suggesting octahedral distortion in B was not large enough to induce total 

quenching of the 4T1g ground state (Mishra et al., 2006; Fabelo et al., 2009). In the µ-aquo-

bis(µ-carboxylato) bridged complexes [M2(Im)4(OAc)4(H2O)] where M = Mn, Co, Ni, 

antiferromagnetic coupling was observed {Mn (J = -1.29 cm-1, g = 1.89); Co (J = -1.60 cm-

1, g = 2.22); Ni (J = -2.47 cm-1, g = 2.04)} (Schultz et al., 1997). The presence of a bridging 

hydroxide {in Na2[(PhSiO2)6Na4Ni4(OH)2(O2SiPh)6].16nBuOH, C} and bridging chloride 

{in Na[(PhSiO2)6Ni6(O2SiPh)6Cl].12MeOH.H2O, D} generated different magnetic 

properties. The χT value of C increased upon cooling from 5.7 emuKmol-1 {at 160 K} to 

12.5 emuKmol-1 {at 8 K} then decreased to 11.7 emuKmol-1 {at 2.3 K}; while the initial 

increase was ascribed to moderate ferromagnetic coupling, the decrease was believed to be 

as a result of ZFS. In D, however, the χT value {8.4 emuKmol-1 [at room temperature]} 

decreased upon cooling and got to zero (at O K), but the molar susceptibility increased then 
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decreased rapidly {at < 32 K} indicating antiferromagnetic interactions (Cornia et al., 

1995). Magnetic studies of an acetate bridged complex [Co2(L1)(µ-OAc)](ClO4)2·½H2O 

gave χMT of 4.23 cm3Kmol-1 {at 300 K} and µeff of 4.09 µB. Although the µeff was within 

the expected range for dinuclear CoII complexes, the χMT is higher than the expected value 

for two non-interacting high-spin CoII ions (3.74 cm3Kmol-1, g = 2.00, S = 3/2) but 

significantly lower than expected value (6.76 cm3Kmol-1, L = 3) when orbital angular 

momentum is included, suggesting only very minor orbital contributions. Upon cooling, the 

χMT decreased gradually reaching 0.025 cm3Kmol-1 at 7 K, and indicated antiferromagnetic 

coupling between the two centres. The best fit to the data gave parameters J = -14.9 cm-1 

and g = 2.16. The fitted g value was larger than the free ion g value (ge = 2.00) and was due 

to second-order effects – while the 4A2′ ground state arising from the trigonal bipyramidal 

coordination of a d7 ion had no orbital angular momentum, admixture of the excited 4E′′ 

state with the orbital angular momentum introduced second-order orbital momentum, 

resulting in a larger g value and magnetic moment (Horn Jr., et al., 2018).  In the phenoxo 

bridged complexes [LCoII(MeOH)Gd(NO3)3], E and [LCoIII(OAc)2Gd(NO3)3], F, where 

the CoII in E is five-coordinate and the CoIII in F is six-coordinate, the χMT of E {10.57 

cm3Kmol-1} was slightly larger than 9.75 cm3Kmol-1 expected for non-interacting Co (S = 

3/2) and Gd (S = 7/2) spins. Upon cooling, the χMT increased gradually to 13 cm3Kmol-1 {at 

7 K} and then abruptly decreased to 8.69 cm3Kmol-1 {at 2 K} – indicating the presence of 

a ferromagnetic interaction. In F, the χMT (7.89 cm3Kmol-1) was close to expected value 

(7.87 cm3Kmol-1) and was constant from room temperature to 2 K (Costes et al., 2002). 

The magnetic interaction in oxo-bridged complexes tend to be imparted by the 

structural properties of the metal-oxygen (M2O2) core, coordination geometry (metal ions), 

the M-O-M angle, the M-O bond distances, the M···M separation, presence of co-

ligands/secondary bridging groups and the out-of-plane shift of the phenyl group (Bhargavi 

et al., 2009; Chakraborty et al., 2009; Rigamonti et al., 2012; Arora et al., 2012; Lu et al., 

2013; Hazra et al., 2014; Niu et al., 2015; Huang et al., 2017; Basak et al., 2020). In CoII 

complexes, Co-O-Co bond angles less than 98o commonly results in ferromagnetic 

exchange {via orthogonal magnetic orbitals}, while larger bond angles {commonly greater 

than 100o} tend to result in antiferromagnetic coupling (Tomkowicz et al., 2012; Arora et 
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al., 2012; Horn Jr., et al., 2018; Kushvaha et al., 2019); while in NiII complexes, Ni-O-Ni 

angles less than or equal to 90o tend to exhibit ferromagnetic exchange coupling while those 

with Ni-O-Ni angles greater than 90o tend to exhibit antiferromagnetic exchange (Jiang et 

al., 2005; Mukherjee et al., 2009; Biswas et al., 2012; Niu et al., 2015), with stronger/more 

intense coupling observed as the angle increases (Niu et al., 2015) – although this effect 

becomes less important when such factors as steric effect or structural changes become 

more important (Ball, 1969). In CuII complexes, Cu-O-Cu angle of 106o has been reported 

to exhibit antiferromagnetism while 98o resulted in ferromagnetism (Bertrand and Kelley 

1970; Youngme et al., 2008). More so, the coupling strength tend to vary with bridge type 

{µ-O2->µ-OH->µ-H2O}. Temperature has also been observed to affect exchange 

interactions in oxo-bridged complexes; a cubane type CuII complex, with Cu-O-Cu angles 

in the range 88° – 106°, has been found to exhibit ferromagnetism {until 7 K} and 

antiferromagnetism {at < 7 K} (Thakurta et al., 2009). 
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Figure 2.17: Examples of oxo-bridged complexes 
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2.8 Synthesis of Imidazoles 

Imidazole synthesis usually consists of cyclocondensation reactions. One strategy 

involves the reaction of α-diketones and α-haloketones with formamide, while another uses 

a base-promoted reaction of tosylmethyl isocyanides and aldimines or imidoyl chlorides 

(Kamijo and Yamamoto 2007). Depending on the desired functionality, substitution pattern 

and diversity, substituted imidazoles can be prepared by: (i) a scaffold approach, (ii) a 

sequential condensation approach or (iii) a one-pot multi-component reaction {MCR’s} 

(Gelens et al., 2006). The MCR strategy can increase dramatically the variety of 

substituents in a product and has potent applicability in the construction of a library of 

compounds bearing wide array of substitution while keeping a common structural scaffold 

(Kamijo and Yamamoto 2007). 1,2-diketones are commonly employed in the synthesis of 

4,5-substituted imidazoles, with ammonium acetate used in most cases as the nitrogen 

source (Scheme 2.10{a}). 

2,4,5-triarylimidazoles are an important group of substituted imidazoles showing 

biological activities, material properties and use in synthetic application (Samanta et al., 

2013; Wu et al., 2012). In a preparation aimed at avoiding the use of a solvent, catalyst and 

solid surface, a variety of 2,4,5-triarylimidazoles were prepared by mixing 1,2-diketones, 

aromatic aldehydes, and ammonium acetate {NH4OAc} in 1:1:3 ratio by direct heating at 

130oC for 3 – 6 h. The experimental procedure involved mixing benzil, aromatic aldehyde, 

and NH4OAc in a round-bottom flask fitted with a CaCl2-guard tube and the flask was 

heated in an oil bath at 130oC (Scheme 2.10{b}). The reaction mixture was observed to 

melt and after some time (≈ 1 – 3 h) solids were formed. On complete solid formation, the 

reaction was cooled to room temperature and water was added. The resulting solid mass 

was crushed and filtered, and the residue was washed with water and then dried. The crude 

product obtained was crystallised from ethanol {EtOH} in 45 – 90% yields (Samanta et al., 

2013). In another procedure, a slight modification in the reactant ratio was used (benzil {as 

the 1,2-diketone}), substituted benzaldehyde and NH4OAc {in 1:1:4}, with EtOH as 

reaction medium. The mixture obtained was refluxed at 140ºC for 6 h, cooled and washed 

three times with hot water. The solution was evaporated to dryness and the solid formed 

washed with methanol {MeOH} and recrystallised in hot MeOH. Final drying of the solid 
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under vacuum gave desired product in 67 – 87% yield (Sarala et al., 2016). A procedure 

involving the use of water {as the best solvents} in the synthesis of triarylimidazoles and 

tetra-substituted imidazoles has also been reported (Wu et al., 2012). The general protocol 

(Scheme 2.10{c}) involved irradiation of a mixture of benzimidazolium salt, arylaldehyde 

(in 1:2 molar ratio), 10% aqua NaOH and water at 350 W for 5 min in a microwave 

synthesizer. Acetic acid was then added until pH of 6 – 7, then NH4OAc (10 mmol) and 

aldehyde (5 mmol) were added. The mixture was irradiated again for 5 min and allowed to 

cool to 0ºC. The solid formed was filtered and the crude product recrystallised from EtOH 

to yield the desired tri-substituted imidazoles (in 95% yield). Similar systems, without the 

imidazolium salt, have been reported in 80 – 99% yield [Scheme 2.11{a}] (Wolkenberg et 

al., 2004). A mixture of CHCl3/AcOH {as the best solvent} has also been used in the four 

component, microwave assisted, preparation of a series of mono-, di-, tri- and tetra-

substituted imidazoles (Scheme 2.11{b}). Products were obtained in <10 to 90% yields 

(Gelens et al., 2006). 
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Scheme 2.10: (a) Synthesis of a substituted imidazole (b) Solvent-free, catalyst-free 

synthesis of 2,4,5-triarylimidazoles (c) Microwave assisted synthesis of 2,4,5-

triarylimidazoles and tetra-substituted imidazoles by Wu, L and colleagues. 
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Scheme 2.11: (a) Microwave assisted organic synthesis of tri-substituted imidazoles by 

Wolkenberg, S. E and colleagues. (b) One-pot microwave synthesis of mono-, di-, tri-, and 

tetra-substituted imidazoles by Gelens, E and colleagues. (c) – (d) Synthesis of 2,4(5) 

substituted imidazoles 
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In a reported synthesis of 2,4-disubstituted imidazoles (Scheme 2.11{c}), the best 

yield was obtained when benzene, THF and dichloromethane {DCM} were used as solvent. 

The products were obtained without the use of acid catalyst and at room temperature 

(Bandyopadhyay et al., 2011). In another protocol (Scheme 2.11{d}), the use of a sonicator 

was required to achieve the preparation of desired products – the process involved 

ultrasonic irradiation of a solution of phenylglyoxal monohydrate in MeOH, followed by 

slow addition (syringe) of a MeOH solution of appropriate aldehyde and NH4OAc (over 15 

min). The resulting mixture was irradiated for 25 – 60 min and the MeOH evaporated under 

reduced pressure. The crude mass obtained was extracted with ethyl acetate and the 

combined organic layer washed with brine and water successively and dried over anhydrous 

sodium sulphate. The extract was then concentrated and the crude product purified using 

flash chromatography {neutral alumina, 1% triethylamine in MeOH} to afford pure 

compounds in 57 – 73% yield (Bandyopadhyay et al., 2014). 

Some other cycloaddition reactions, for the preparation of imidazoles have been 

reported with transition metal and transition metal-based catalyst required for the 

transformations. A palladium catalysed multi-component reaction of imines and acid-

chloride has been reported for the preparation of tetra-substituted imidazoles – the 

procedure was found to require bulky phosphine ligands, 4 atm of carbon monoxide (CO), 

an additive {LiCl was found to be the best}, and a temperature of 45oC (Siamaki and 

Arndtsen 2006). The procedure in Scheme 2.12 was used in the synthesis of a pyridinyl 

imidazole (Scheme 2.13) which has been shown to be a potent p38 Mitogen Activated 

Protein (MAP) kinase inhibitor (Lee et al., 1994). A palladium(0)- catalysed amino Heck 

reaction of amidoximes has also been used in the synthesis (Scheme 2.14) of 2-substituted 

1-benzyl-4-methylimidazoles (Zaman et al., 2005). 
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Scheme 2.12: (a) Preparation of imidazoles from imines and acid-chlorides (b) Preparation 

of a potent p38 MAP kinase inhibitor (c) Pd-catalysed intramolecular amino-Heck reaction 

of amidoximes derived from amino-acids. 
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A silver acetate catalysed cyclodimerisation, in a one pot sequential cascade process 

(Scheme 2.13{a}), has been used in the preparation of imidazoles in 88 – 90% yield (Grigg 

et al., 1999). The use of 10 mol% AgOTf/20 mol% Et3N was observed to give incomplete 

reaction (even after 96 h), with other conditions kept constant (when R = Me). A similar 

protocol has been reported by Kamijo and Yamamoto (2007) with Cu2O and phen used as 

catalyst (Scheme 2.13{b}). In an attempt to prepare 1,2-substituted imidazoles, with the 

intention of skipping the formation of amidine intermediates (Scheme 2.13{c}), a Cu(I)- 

induced addition of amines to nitriles has been reported – the best results were obtained 

when the Cu(I)-promoted formation of the amidine intermediates was carried out in the 

absence of solvent followed by cyclisation with trifluoroacetic acid {TFA} or hydrochloric 

acid {HCl} in MeOH. The cyclisation step could be done with or without the Cu salts in 

the reaction mixture. The “one-pot” synthesis {with the Cu salt in the mixture} appeared 

convenient {the Cu salt is removed after cyclisation} (Frustos et al., 2005). In the 

thiazolium catalysed preparation of di-, tri- and tetra-substituted imidazoles (Scheme 

2.13{d}), the procedure for the tetra-substituted variants provided a way of setting the 

regiochemistry of the substituents in a single step and allowed the use of functional groups 

which are sensitive to acidic and basic environments (Frantz et al., 2004). 
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Scheme 2.13: (a) Ag-catalysed homodimerisation of isocyanides (b) Cu-catalysed cross-

cycloaddition of isocyanides. (c) Preparation of 1,2-substituted imidazoles involving 

formation of amidine intermediate. (d) Thiazolium catalysed preparation of substituted 

imidazoles 
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2.9 Synthesis of Imidazole-Imines 

The reported preparation of a series of imidazole imines of 1-(3-

aminopropyl)imidazole (Apim, Fig. 2.18{a}) {using salicylaldehyde and a selection of 

imidazole aldehydes}, required refluxing of equimolar amounts of the amine and carbonyl 

compounds for 3 h in dry MeOH, followed by stirring overnight at room temperature. The 

oily material obtained, after solvent reduction, yielded solids after leaving to stand for 2 h 

to 2 months {in 73 – 95% yield} (McGinley et al., 2013). In the synthesis of a series of 

Schiff bases (Fig. 2.18{b}) derived from the condensation of imidazole-2-carboxaldehyde 

with 4-aminoantipyrine, L-phenylalanine, glycylglycine and 2-amino-3-carboxyethyl-4,5-

dimethyl thiophene, respectively, it was observed that a base (KOH) is required for the 

imine formation in all cases except for the imine formed from 4-aminoantipyrine – the 

products were obtained in 76 – 78% yield. The imine obtained from L-phenylalanine acted 

as a tridentate monoanionic ligand, while the imines obtained from glycylglycine and 2-

amino-3-carboxyethyl-4,5-dimethyl thiophene had bidentate behaviour (Joseyphus et al., 

2014; Joseyphus et al., 2015; Joseyphus and Nair 2009; Joseph et al., 2017). In another 

preparation involving the condensation of imidazole–2-carboxaldehyde with 4- 

aminoantipyrine, 1g of anhydrous K2CO3 was added to an equimolar mixture of the 

reactants and refluxed for 42 h. The resulting solution was concentrated, allowed to cool 

and the solid obtained was filtered, washed with cold EtOH and dried to afford a red solid 

in 35% yield (Pearl et al., 2014). 
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Figure 2.18: (a) Structure of Apim and its imine analogues (b) Structures of some 

imidazole-imines obtained from imidazole–2-carboxaldehyde (c) 2-(((2-(1H-

benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-ethoxyphenol (d) 2-((1H-

benzo[d]imidazol-4-ylimino)methyl)phenol and (e) inah. 
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In the preparation of 2-(((2-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-

ethoxyphenol {Fig. 2.18(c)} an equimolar EtOH mixture of 2-(2-aminophenyl)1-H-

benzimidazole and 3-ethoxysalicylaldehyde (with a drop of AcOH) was heated on a steam 

bath for 45 – 60 min. The reaction mixture was left to stand at room temperature for 24 h, 

and the yellow solid product obtained dried under vacuum at room temperature (Sunitha et 

al., 2012). The imine 2-((1H-benzo[d]imidazol-4-ylimino)methyl)phenol {Fig. 2.18(d)}, 

obtained from 1H-benzo[d]imdazol-4-amine and 2-hydroxybenzaldehyde, was prepared in 

similar fashion as the imine in {Fig. 2.18(c)}. After refluxing for 3 h {at 45oC}, the resulting 

solution was left to evaporate, by slow diffusion, in air for a week. The crystals collected 

were washed several times with EtOH, recrystallised from hot EtOH and dried in vacuum 

desiccator (Chaudhary and Mishra 2013). In the prepration of the oxime-histamine ligand 

(inah, {Fig. 2.18{e}), a suspension of histamine (4 mmol) in absolute EtOH was stirred 

with NaOH (8 mmol), and warmed at 323 K for 30 min. The NaCl precipitate was filtered 

off and the free histamine solutions added to a solution of 2-isonitrosoacetophenone in 

EtOH (Hung and Ferreira 2010). 

In the two-step synthesis for 2-(E)-(1H-benzo[d]imidazole-2-yly diazenyl)-5-((E)-

benzylideneimino)phenol (BIADPI) {Scheme 2.14[a] – [b]}, the first step involved the 

preparation of the imine {3-(benzylidene amino)phenol} by condensation of equimolar 

amounts of benzaldehyde and 3-amino phenol in the presences of 5 drops of glacial AcOH, 

as a catalyst {Scheme 2.14(a)}. The mixture obtained was refluxed for 5 h at 60oC, cooled 

to room temperature and the dark yellow solid filtered and recrystallised in absolute EtOH. 

The second step {Scheme 2.14(b)} involved coupling of benzimidazolediazonium chloride 

with the imine {3-(benzylideneimino)phenol}. The precipitate obtained was filtered and 

washed with distilled water and EtOH and recrystallised from EtOH and dried in oven at 

50oC for several hours. The desired product was obtained in 79% yield (Al-Adilee, 2015). 

A similar coupling reaction has been used in the preparation of 2-[-2-(6-nitro 

benzothiazolyl)azo]imidazole (NBTAI) {Scheme 2.14(c)} and (E)-N-(1-(4-((E)-(4,5-

diphenyl-1H-imidazol-2-yl)diazenyl)phenyl)ethylidene)-4-methylaniline {Scheme 2.14(d) 

– (e)} – the preparation of NBTAI involved 6-nitro benzothiazole chloride and an imidazole 

{in alkaline alcoholic solution} (Al-Adilee et al., 2013; Mahdi et al., 2014). 
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Scheme 2.14: (a) – (b) Two step synthesis of 2-(E)-(1H-benzo[d]imidazole-2-yly diazenyl)-

5-((E)-benzylideneimino)phenol (BIADPI). (c) Preparation of 2-[-2-(6-nitro 

benzothiazolyl)azo]imidazole (NBTAI). (d) – (e) Two step synthesis of (E)-N-(1-(4-((E)-

(4,5-diphenyl-1H-imidazol-2-yl)diazenyl)phenyl)ethylidene)-4-methylaniline. 
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2.10 Synthesis of Metal Complexes of Imidazole-Imines 

In the preparation of metal complexes of a bidentate neutral imidazole ligand {Fig. 

2.19(a)}, a MeOH solution of equimolar amounts of the ligand and metal chloride salts was 

stirred for 3 h, the solid obtained was washed with ether and EtOH and dried over anhydrous 

CaCl2. The four coordinate complexes obtained had the formula MLCl2 {M = Co, Ni, Cu, 

Zn} (Joseyphus et al., 2014). Similar protocol was used in the preparation of six coordinate 

metal complexes {Fig. 2.19(b)} of a ligand derived from the condensation of imidazole-2-

carboxaldehyde with L-phenylalanine (Joseyphus et al., 2015). In a bid to study the effect 

of incorporating imidazoles in 1,2-diimine ligands, a series of bis-imidazole complexes 

{[Re(BIIM)(CO)3Cl] where BIIM = (BzImH)2Py, Me4BiImH2 and BiBzImH2 (Fig. 2.19(c) 

– (e)} were prepared. Equimolar amounts of the ligands and Re(CO)5Cl were refluxed in 

toluene for 10 min. After cooling and filtering, the brown residue obtained was washed with 

toluene and Et2O, taken up in acetone and precipitated by addition of n-hexane to afford 

microcrystalline brown materials in 19 – 33% yield (Leirer et al., 1999). 

In the preparation of mixed ligand complexes of salicylaldehyde-4-methyl-3-

thiosemicarbazone {a tridentate O,N,S Schiff base} and imidazoles, DCM solution of 

imidazole {or benzimidazole} was added to an EtOH {absolute} solution of appropriate 

metal salts {in equimolar amounts}; the mixture obtained was heated for 15 min followed 

by the addition of a hot EtOH solution of the O,N,S ligand. The solid obtained after volume 

reduction and cooling was filtered and dried. A large excess of the imidazole/benzimidazole 

was required for the formation of desired products (Mazlan et al., 2014). 
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Figure 2.19: Structures of (a) – (b) some imidazole-imine complexes (c) – (e) BIIM ligands. 
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In the preparation of metal complexes of the azo based Schiff base ligands BIADPI 

{Scheme 2.14(a) – (b)} and NBTAI {Scheme 2.14(c)}, ethanolic solution of the ligands 

were mixed with appropriate metal chloride salts in 1:2 (M:L) molar ratio {except for the 

ZnII-complex of BIADPI which was in 1:1 molar ratio}, hot NH4OAc buffer solution was 

required for the NBTAI based complexes. The mixtures obtained were refluxed {in the case 

of BIADPI} or heated at 50 – 60 ºC {in the case of NBTAI} for 30 – 40 min, cooled and 

filtered. The crude materials were washed with distilled water and hot EtOH and dried to 

afford desired products (Al-Adilee, 2015; Al-Adilee et al., 2013). The metal complexes of 

2-(((2-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-ethoxyphenol (Fig. 2.18{c}) 

{upon reaction with metal salt, MX2, where M= NiII, CoII, CuII, ZnII, MnII and VOIV; 

X=Cl/SO4/acetates}, as well as the NiII and CuII complexes of 2-((1H-benzo[d]imidazol-4-

ylimino)methyl)phenol (Fig. 2.18{d}) were synthesised using similar protocol as the 

complexes of BIADPI, but refluxing was done for 4 – 5 h and the M:L ratio used was 1:1 

(Sunitha et al., 2012; Chaudhary and Mishra 2013). 

The mononuclear {[Cu(inah)(H2O)(NO3)]} and binuclear 

{[Cu2(inah)2(ClO4)2](H2O)2} CuII complexes of inah (Fig. 2.18{e}) have been prepared 

under different conditions – while the mononuclear complex was prepared under acidic 

condition {pH = 5; with room temperature stirring for 30 min}, the dinuclear complex was 

prepared under alkaline condition {pH = 10; with refluxing for 3 – 4 h} (Hung and Ferreira 

2010). The chelate complexes of (E)-N-(1-(4-((E)-(4,5-diphenyl-1H-imidazol-2-

yl)diazenyl)phenyl)ethylidene)-4-methylaniline were also synthesised under different pH 

conditions {pH = 7 for HgII; pH = 7.5 for CuII, ZnII and CdII; pH = 9 for CoII and NiII} 

(Mahdi et al., 2014). 

The hydrothermal preparation of the coordination polymers [Pb2(L)4(H2O)].4H2O 

and [Ni(L)2(H2O)2].2H2O (where HL = 3,5-di(1H-imidazol-1-yl)benzoate) has been 

reported to require equimolar amounts of the ligand {HL}, NaOH and the respective metal 

nitrate salts {with water as the reaction solvent}. The mixture was sealed in an autoclave at 

180oC for 3 days and the crystals obtained were washed with water and EtOH and dried to 

give 38% yield {NiII complex} and 47% yield {PbII complex} (Su et al., 2011). A similar 

hydrothermal procedure has been reported for the mixed ligand complexes of 1,3,5-tris(1H-

imidazol-4-yl)benzene (H3L), with oxalic acid (H2ox), 1,4-benzenedicarboxylic acid 
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(H2pbdc), 1,2-phenylenediacetic acid (H2obea), and 1,4-phenylenediacetic acid (H2pbea). 

The complexes, [Mn(H3L)(ox)].H2O, [Zn2(H2L)(pbdc)(µ2-OH)].2H2O, 

[Co(H3L)(obea)].3H2O, [Ni(H3L)(pbea)], [Co(H3L)(pbea)(H2O)2] and [Co4(H2L)2(pbea)3], 

were obtained in 42 – 72% (Chen et al., 2012). 

Two polyoxometalate-based inorganic–organic hybrid compounds (Hervé-

sandwich-type polytungstoantimonates), 

Na9[{Na(H2O)2}3{M(C4H6N2)}3(SbW9O33)2].28H2O (M = Co, Mn) have been prepared by 

heating a mixture of a solution of SbCl3 (in HCl) and Na2WO4.2H2O (in deionised water), 

at 80oC for about 15 minutes, followed by the addition of solution of appropriate metal salt 

and methylimidazole (with pH adjusted to 7.45 at room temperature, by addition of 1M 

HCl). The solution obtained was then heated to boiling for 3 h, left to cool, filtered and the 

filtrate allowed to slowly evaporate at room temperature for 7 days, resulting in crystalline 

product (51% yield for Co and 49% yield for Mn). It was observed that methylimidazole 

with low concentration could not substitute coordinated water attached to the magnetic 

metal clusters (because of coordination competition between water and organic ligand) and 

that reaction time, temperature and ionic strength are key factors to obtain crystals in higher 

yield (Chen et al., 2011). 

In the preparation of mononuclear complexes of Bis(1-methylimidazol-2-yl)ketone 

{bik} and bis(1-methylimidazol-2-yl)glyoxal {big} (Fig. 2.20), one equivalent of 

[Os(Cym)Cl2]2 was reacted with two equivalents of the respective ligand in MeCN under 

argon. Due to the heat sensitivity of big, [(big)Os(Cym)Cl](PF6) was synthesized at 60oC 

whereas [(bik)Os(Cym)Cl](PF6) was prepared under reflux conditions. The addition of 

NH4(PF6) was required to precipitate the desired compounds {as PF6 salts} (Sarper et al., 

2010). 
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Figure 2.20: Structure of bik and big and their Osmium complexes 
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2.11 Characterisation of Imidazole-Imines and Their Metal Complexes 

 

2.11.1 1H-NMR, 13C-NMR and Mass spectroscopy (MS) Data 

The 1H-NMR spectrum of 2-(E)-(1H-benzo[d]imidazole-2-yly diazenyl)-5-((E)-

benzylideneimino)phenol (BIADPI), measured in CDCl3, showed peaks at δ = 6.51 – 6.54 

ppm (phenol ring); δ = 6.77 ppm (N-Hbenzimidazole); δ = 6.78 ppm (OH); δ = 7.27 – 7.28 ppm 

(phenyl ring); δ= 7.58 ppm (phenyl ring of benzimidazole); δ = 8.57 ppm (azomethine 

proton). The MS data of ligand (BIADPI) showed peaks at m/z values of 341.30 (M+), 239, 

211, 159, and 139 (the fragmentation pattern is shown in Scheme 2.15{a}) (Al-Adilee, K. 

J. 2015). The 1H-NMR data of 2-(((2-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-

ethoxyphenol, recorded in CDCl3, showed a singlet at δ = 7.3 ppm (due to the imine proton, 

CH=N), δ = 6.9 – 7.4 ppm {due to phenyl ring}, δ = 7.9 ppm {due to benzimidazole}, and  

δ = 10 ppm {due to N-H} (Sunitha et al., 2012). In the NMR data of some 2,4,5-

triarylimidazoles {Scheme 2.15(b) – (d)}, the N-H peak was not observed (in CDCl3) for 

one of the structures { Scheme 2.15(b)}, while for the other two structures it was observed 

at δ 12.40 ppm (in CDCl3) and 12.49 ppm (in d6-DMSO), respectively. The phenyl protons 

were observed in the range δ 7.19 – 7.86 ppm (with J values 7.2 – 8.4 Hz). The methyl 

group was observed at δ 2.38 ppm {Scheme 2.15(b)}, δ 3.84 ppm {Scheme 2.15(c)} and 

the O-H at δ 9.24 ppm {Scheme 2.15(c)}. The 2H singlet of the –OCH2O– group of Scheme 

2.15(d) appeared at δ 6.08 ppm. The 13C NMR (75 MHz, CDCl3, δ/ppm) of Scheme 2.15(b) 

showed peaks at 146.2, 138.9, 132.9, 129.6, 128.6, 127.8, 127.4, 127.1, 125.2, 21.3 

(Samanta et al., 2013). The 1H NMR of compound Scheme 2.15(e)  {recorded in CDCl3} 

showed the aromatic protons at δ 6.83 – 7.91 ppm (with  J values 8.3 – 8.5 Hz), the methyl 

protons resonate at δ 3.81 and 3.82, 3.81 ppm, the N-H proton was not observed; the 13C 

NMR (also in CDCl3 δ/ppm) shows peaks at 160.4 (Ar-O), 159.2 (Ar-O), 144.9 (C=N), 

129.3, 127.5, 123.4, 114.2, 113.9, 55.3 (OCH3), 55.2 (OCH3) (Wu, L., et al 2012). When 

DMSO-d6 was used {in place of CDCl3} the aromatic N-H was observed at δ 11.8 – 12.8 

ppm, the aromatic protons at δ 6.6 – 7.6 ppm and the C=N (13C nmr) at δ 147 – 158 ppm 

(Sarala et al., 2016). 
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 Scheme 2.15: (a) Fragmentation pattern of 2-(E)-(1H-benzo[d]imidazole-2-yly diazenyl)-

5-((E)-benzylideneimino)phenol (BIADPI). (b) – (e) Structure of some 2,4,5-

triarylimidazoles 
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All proton signals of the imidazole rings, as well as the methyl protons, of 

[(bik)Os(Cym)Cl](PF6) {Fig. 2.20(a)} were observed to shift downfield {with respect to 

free bik}. In contrast, the proton signals on the cymene ligand shifted upfield relative to the 

precursor. On complexation, one pair of imidazole–H signals of big in the aromatic region 

was seen at an upfield position, whereas the other pair was downfield {in comparison to the 

free ligand}. The methyl protons (of the imidazole nitrogen) resonated downfield with 

respect to free big. As observed for bik, complexation of big resulted in an upfield shift of 

the cymene proton signals when compared to the precursor (Sarper et al., 2010). 

 

2.11.2 Infrared (IR) spectroscopy 

The IR spectrum of 2-(E)-(1H-benzo[d]imidazole-2-yly diazenyl)-5-((E)-

benzylideneimino)phenol (BIADPI) showed a band at 3323 cm-1 assigned to its 

benzimidazole N-H vibration. The band was observed to be retained in the metal complexes 

indicating the N-H was not involved in bonding. The phenolic (O-H) band at 3650 cm-1; 

imine (C=N) band at 1620 cm-1; and the azo (-N=N-) band at 1481 cm-1 were observed to 

shift (in varying degrees) in the metal complexes, indicating the ligand coordinates as a 

tridentate system. New bands were also observed in the region 447 – 424 cm-1, assigned to 

M-O and M-N bonds in the metal complexes (Al-Adilee, 2015). In the study of the infrared 

absorption of 2-[-2-(6-nitro benzothiazolyl)azo]imidazole (NBTAI) and its metal 

complexes with CoII, NiII, CuII, ZnII, CdII and HgII; the ligand showed bands at 3437 cm-1 

due to the υ(N-H) of imidazole ring; 1615 cm-1 and 1518 cm-1 due to υ(C=N) of thiazole 

and imidazole rings; 1459 cm-1 assigned to the υ(N=N) azo group; 1335 cm-1 and 840 cm-1 

assigned to the υ(C-S) of the thiazole ring. In the metal complexes the bands at 3437 cm-1, 

1615 cm-1, 1335 cm-1 and 840 cm-1 remained unchanged {suggesting N-H group, (C=N) 

and (C-S) of thiazole ring are not involved in coordination}; the υ(C=N) band of the 

imidazole ring was observed at 1517 – 1490 cm-1; the υ(N=N) band shifted to 1435 – 1415 

cm-1 with decreased or increased intensity. New absorption bands in the range of 520 – 447 

cm-1 {assigned to υ(M-N)} were also observed. The broad bands at 3332 – 3280 cm-1 

observed in the CoII, CuII, CdII and HgII complexes suggested presence of water molecules. 

Thus, the IR spectra data suggested the ligand behaved as a bidentate chelating agent 

coordinating through the nitrogen atom of azo group nearest to thiazole ring and N3 atom 
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of imidazole ring to give five membered chelate ring (Al-Adilee et al., 2013). The IR 

spectrum of the ligand obtained from imidazole-2-carboxaldehyde and glycylglycine 

showed the azomethine (C=N) band at 1631 cm-1, the imidazole nitrogen at 1612 cm-1 and 

the peptide band at 1538 cm-1. These bands shifted to lower values upon complexation, 

showing involvement of the azomethine nitrogen, imidazole nitrogen and peptide linkage 

in coordination. The asymmetric carboxyl stretching υasym(COO-) shifted to higher 

frequency, while the symmetric carboxyl stretching υsym(COO-) shifted to lower frequency, 

indicating linkage between the metal ion and carboxylato oxygen. These asymmetric and 

symmetric stretching vibrations {of the carboxylato group}, in the complexes, showed 

separation (∆υ) greater than 200 cm-1, indicating monodentate binding in the complexes. 

The IR bands at 1364 – 1378 cm-1 were assigned to the presence of free NO3
-. The broad 

bands observed at 3400 – 3443 cm-1 in the complexes were attributed to O–H stretching of 

lattice water molecules. The new bands observed at 520 – 567 and 434 – 463 cm-1 

corresponded to υ(M–O) and υ(M–N) stretching, respectively. Thus, the ligand acted as a 

tetradentate molecule – binding through imidazole nitrogen, azomethine nitrogen, amide 

nitrogen and carboxylato oxygen (Joseyphus and Nair 2009). In the study of the IR 

spectrum of 2-(((2-(1H-benzo[d]imidazol-2-yl)phenyl)imino)methyl)-6-ethoxyphenol and 

its metal complexes, the free ligand showed bands at 1618 cm-1 (C=N stretching vibration) 

and 3350 cm-1 (N-H stretching vibration of benzimidazole moiety). In the metal complexes 

the C=N band shifted {indicating coordination through the imine} and the broad peaks at 

3354 – 3423 cm-1 indicated the presence of coordinated water molecules {which was also 

corroborated by rocking (O-H) vibrations at 800 – 880 cm-1}. The M-N bands were 

observed at 450 – 480 cm-1 and the V=O band {of the Vanadyl complex} at 985 cm-1 

(Sunitha et al., 2012). The IR spectral analyses of [(bik)Os(Cym)Cl](PF6) and 

[(big)Os(Cym)Cl](PF6) {Fig. 2.20} revealed sharp carbonyl (C=O) absorption bands at 

1648 cm-1 and 1673 cm-1, respectively. These values indicated a shift to higher 

wavenumbers when compared with the observed values for the free ligands {1637 cm-1 for 

bik and 1662 cm-1 for big}. DFT calculation of the HOMO of big indicated anti-bonding 

character over the carbonyl system. Electron density shifted from the HOMO orbital to the 

metal centre upon complexation increasing the carbonyl bond order (Sarper et al., 2010). 

The IR spectrum of 2-((1H-benzo[d]imidazol-4-ylimino)methyl)phenol showed a broad 
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band around 3350 cm-1, medium intensity bands at 1625 cm-1 and in the region 3600 – 3640 

cm-1 which were attributed to N-H stretching vibration of benzimidazole moiety, the imine 

and the phenolic OH groups, respectively. The metal complexes showed shift of the imine 

band to 1607 – 1590 cm-1 (indicating involvement of the imine nitrogen in coordination). 

New bands at 446 – 409 cm-1 assignable to νM-N vibration and νM-O vibration were also 

observed (Chaudhary and Mishra 2013). 

 

2.11.3 Electronic spectra and Magnetic measurement Data 

The UV–vis spectrum of the imine ligand obtained from imidazole–2-

carboxaldehyde and glycylglycine showed a band at 320 nm assigned to π – π* transition 

of the azomethine chromophore. On complexation, this band shifted to lower wavelength, 

suggesting coordination of azomethine nitrogen with the metal. The CoII and NiII complex 

showed a band at 545 nm and 581 nm, respectively, due to 4A2(F)→4T1(F) {CoII-complex} 

and 3T1(F)→3T1(P) {NiII-complex} transitions, suggestive of tetrahedral geometry. The 

CuII complex showed absorption at 640 nm indicating square-planar geometry. The plot of 

magnetisation (M) versus applied field (H) for the CoII and NiII complexes showed 

hysteresis loop at room temperature and gave a saturation magnetisation of 0.20 emu g-1. 

Also, they showed coercivities of 316 and 287 Oe, respectively. The low saturation 

magnetisation and the presence of coercivities for the samples indicated the complexes were 

weakly ferromagnetic. The CuII complex did not show a hysteresis loop at room 

temperature, indicating that the CuII complex was paramagnetic (Joseyphus and Nair 2009). 

The electronic spectral (in DMSO) and observed magnetic moment of the CoII, NiII, CuII, 

ZnII, MnII and VOIV complexes of 2-(((2-(1H-benzo[d]imidazol-2-

yl)phenyl)imino)methyl)-6-ethoxyphenol showed the following: the CoII complex had three 

bands at 11001, 27548 and 29498 cm -1 which were attributed to 4T1g(F)→4T2g(F) (v1), 

4T1g(F)→4A2g(F) (v2) and 4T1g(F)→4T1g(P) (v3) transitions, respectively, and a magnetic 

moment 4.28 B.M which suggested octahedral geometry; the NiII complex also showed 

three bands at 22371, 30303 and 32894 cm-1 which were assigned to 3A2g→
3T2g(F) (v1), 

3A2g→
3T1g(F) (v2) and 3T2g→

3T1g(P) (v3) transitions, respectively, and a moment of 3.10 

B.M which also suggested an octahedral field; the CuII complex had a broad band at 14556 

cm -1 mainly due to 2Eg→
2T2g

 transition which suggested an octahedral geometry. The 
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observed magnetic moment value was 1.67 B.M; the MnII complex showed bands at 34482, 

33333 and 31645 cm-1, which were assigned to 6A2g→
4A2g(P), 6A1g→

4T1g(P), 6A1g→
4Eg(D) 

transitions, respectively, and a magnetic moment value of 5.47 B.M which corroborated an 

octahedral nature; the VOIV complex showed three transitions at 28409, 32894 and 34129 

cm-1 assigned to 2Eg→
2B2g, 

2B1g→
2B2g and 2A1g→

2B2g, respectively, characteristic of an 

octahedral geometry; the ZnII complex showed no d-d bands {as expected for a d10 system} 

and was found to be diamagnetic in nature and on the basis of analytical, conductance and 

spectral data, it was assigned an octahedral geometry (Sunitha et al., 2012). The result of 

the electronic and magnetic measurements for the metal complexes of the ligand obtained 

from the condensation of imidazole-2-carboxaldehyde with 2-amino-3-carboxyethyl-4,5-

dimethyl thiophene showed the CoII complex had an absorption peak at 605 nm, assigned 

to 4A2(F)→4T1(P), and a magnetic moment of 4.66 B.M corresponding to tetrahedral 

geometry. Similarly, the NiII and CuII complexes displayed one absorption peak {broad for 

CuII} at 482 nm and 661 nm, respectively, due to d-d transitions and were both assigned a 

square-planar geometry. The ZnII complex displayed diamagnetism, and a tetrahedral 

geometry was predicted (Joseph et al., 2017). The electronic spectrum of 2-[-2-(6-nitro 

benzothiazolyl)azo]imidazole (NBTAI) in absolute EtOH (at 10-3M) revealed three 

absorption bands at 387 nm (25840 cm-1), 291 nm (34364 cm-1) and 263 nm (38023 cm-1) 

assigned to n→π*, π→π* and n→σ* transitions, respectively. The electronic spectrum of 

its CoII complex showed three absorption bands at 974 nm (10235 cm-1), 629 nm (15898 

cm-1) and 350 nm (26571 cm-1) assigned to 4T1g(F)→4T2g(F) (v1), 
4T1g(F)→4A2g(F) (v2) and 

4T1g(F)→4T1g(P) (v3) transitions, respectively as well as a magnetic moment of 5.07 B.M 

which corresponded to three unpaired electrons, and suggested a distorted octahedral 

structure (Z-out) and sp3d2 hybridisation. The NiII complex showed three absorption bands 

at 977 nm (10235 cm-1), 636 nm (15723 cm-1) and 589 nm (16978 cm-1) assigned to  

3A2g(F)→3T2g(F) (v1), 
3A2g(F)→3T1g(F) (v2) and 3A2g(F)→ 3T1g(P) (v3) transitions, 

respectively with a magnetic moment of 3.18 B.M which suggested two unpaired electrons 

in a high spin regular octahedral geometry and sp3d2 hybridisation. The CuII complex 

showed a broad band around at 623 nm (16051 cm-1) due to 2Eg →
2T2g transition and a 

magnetic moment of 1.64 B.M which suggested one unpaired electron in a distorted 

octahedral structure (Z-out or Z-in) and sp3d2 hybridisation. The spectra of the ZnII, CdII and 
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HgII complexes did not show any d-d transitions and the respective absorption bands at 521 

nm (15194 cm-1), 518 nm (15305 cm-1) and 537 nm (16622 cm-1) are assigned to Metal-

Ligand Charge Transfer {MLCT} transition. The complexes were found to be diamagnetic 

and an octahedral geometry was proposed for all three (Al-Adilee et al., 2013). Under 

similar solvent condition {as NBTAI}, the electronic spectral of the ligand BIADPI also 

displayed three bands at 249 nm (40161 cm-1), 326 nm (30675 cm-1) and 450 nm (22222 

cm-1) characteristic of π→π* and n→π* transitions. The band at 450 nm shifted to longer 

wavelength (with increasing intensity) in the metal chelate – which may be as a result of 

the donation of the lone pair of electrons of nitrogen of benzimidazole molecule and lone 

pair of nitrogen atom azo group (which is the nearest phenolic ring to metal ion) {Fig. 

2.21(b) – (c)}. The cobalt complex showed three absorption bands at 901 nm, 598 nm and 

482 nm assigned to 1A2g→
1T2g(v1), 

1A2g→
1T1g(F)(v2) and 1A2g→

1T1g(P)(v3) transitions, 

respectively. The magnetic moment of this complex showed diamagnetic low spin 

behaviour indicating CoII was oxidised to CoIII upon complexation with the BIADPI - 

suggesting an angular octahedral geometry (with sp3d2 hybridisation). The NiII complex 

showed three bands at 910 nm (very weak and broad) attributed to 3A2g(F)→3T2g(v1) 

transition; 491 nm due to 3A2g→
3T1g(F)(v2) transition; and 410 nm assigned to 

3A2g→
3T1g(P)(v3) transitions. Its magnetic moment of 3.28 B.M was attributed to the 

presence of two unpaired electrons (suggesting a high spin, octahedral geometry, with sp3d2 

hybridisation). The CuII complex showed a broad band at 589 nm assigned to 2Eg→
2T2g 

transition corresponding to a distorted octahedral geometry around the CuII ion. A magnetic 

moment of 1.78 B.M was observed.  The ZnII, CdII and HgII complexes of BIADPI showed 

similar electronic properties as their NBTAI counterparts {no d-d transitions} and the 

absorption bands at 536 nm, 528 nm and 575 nm, respectively, were assigned to MLCT 

transition. They were also diamagnetic, but the ZnII complex had a different structures {in 

comparison to its NBTAI counterpart} – while the CdII and HgII complexes were octahedral 

{Fig. 2.21(b)}, the ZnII had a tetrahedral geometry {Fig. 2.21(c)} (Al-Adilee, 2015). 
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Figure 2.21: (a) Proposed structure of the metal complexes of NBTAI (b) – (c) Proposed 

structural formula for the metal chelate of BIADPI 
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2.11.4 Thermogravimetric Analysis (TGA) and Differential Temperature Analysis 

(DTA) 

 

TGA of [Pb2(L)4(H2O)].4H2O showed weight loss (5.67%) observed at 100 to 

130oC attributed to coordinated and uncoordinated water, while the remaining residue 

decomposed at 320oC. The loss of coordinated and uncoordinated water (10.87%) observed 

for [Ni(L)2(H2O)2].2H2O occurred at ≈ 165oC, while the remaining residue decomposed at 

265oC. These observations showed that although the complexes had the same ligand, they 

had different stability (Su et al., 2011). Thermal stability studies of the complexes 

[Mn(H3L)(ox)].H2O, [Zn2(H2L)(pbdc)(μ2-OH)].2H2O, [Co(H3L)(obea)].3H2O, 

[Ni(H3L)(pbea)], [Co(H3L)(pbea)(H2O)2], and [Co4(H2L)2(pbea)3] showed that 

[Mn(H3L)(ox)].H2O had a weight loss of 4.17% around 180°C corresponding to the release 

of free water molecules (calc. 4.12%), and decomposed at 360°C; [Zn2(H2L)(pbdc)(μ2-

OH)].2H2O showed a weight loss of 5.81% in the temperature range of 240 – 305°C, which 

corresponds to the loss of the coordinated water molecules (calc. 5.78%), and further weight 

loss was observed at about 410°C; [Co(H3L)(obea)].3H2O showed a weight loss of 9.01% 

at 110°C {liberation of the free water molecules} and decomposed at about 405°C; 

[Co(H3L)(pbea)(H2O)2] showed a total weight loss of 6.49% in the temperature range of 

195 – 255°C, attributed to the loss of coordinated water molecules (calc. 6.39%), and the 

residue was stable up to about 470°C. No obvious weight losses were found for complexes 

[Ni(H3L)(pbea)] and [Co4(H2L)2(pbea)3] before the decomposition of the framework 

occurred at about 220 and 380°C, respectively (Chen et al., 2012). The TG curve of 

Na9[{Na(H2O)2}3{Co(C4H6N2)}3(SbW9O33)2].28H2O exhibited three steps of weight loss. 

The first (10.46%) from 22oC to 336oC indicated loss of all lattice and coordinated water; 

the second {2.73%} from 336oC to 377oC, was assigned to loss of two methylimidazoles; 

and the last weight loss {1.43%} from 377oC to 504oC was attributed to loss of one 

methylimidazole. The TG curve of the manganese variant, 

Na9[{Na(H2O)2}3{Mn(C4H6N2)}3(SbW9O33)2].28H2O, also showed three steps of weight 

loss in similar ranges, with same reasons accounting for the observed mass losses (Chen et 

al., 2011). Thermal decompositions of the metal complexes of the ligand obtained by 

condensation of imidazole–2-carboxaldehyde and glycylglycine showed the CuII complex 
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underwent decomposition in three different steps. The first weight loss of 5.10% {50 – 

128oC} indicated dehydration and release of loosely bound lattice water. The Differential 

Scanning Calorimetry {DSC} curve of the CuII-complex showed an endothermic peak at 

121oC {due to evaporation of lattice water}. The second weight loss of 72.34% {128 – 

197oC} showed partial separation of ligand and NO3
-. The DSC curve gave a broad 

endothermic peak with an onset temperature at 195oC, due to evaporation of Schiff base – 

the decomposition above 195oC was likely due to NO3
-. Final decomposition occurred 

above 340oC {metal oxide was formed}. The DSC curve in the temperature range 340 – 

400oC showed an endothermic peak {metal oxide formation}. Similar TGA and DSC results 

were obtained for the CoII and NiII complexes (Joseyphus and Nair 2009). 

 

2.12 Theoretical Background 

 

2.12.1 Theory of Sensors 

 

The detection and monitoring of chemical species is of great importance in a lot of 

areas including environmental, medicinal/biological and security. A chemical sensor is a 

molecule which signals the presence of matter or energy. They are molecular receptors 

capable of generating analytically useful signals upon binding to specific guests, that is, 

they are capable of molecular recognition and signal transduction (Wong et al., 2017; 

Kanagaraj et al., 2014; Treto-Súarez et al., 2019). Chemosensors commonly consists of two 

essential components: 

 

 A receptor or ion recognition unit (ionophore), which binds substrates, and  

 A transducer or fluorogenic unit (fluorophore), which reports the binding event through 

an observable change (as an optical or electrochemical signal). It may also be called the 

active unit. 

 Some sensors may have a third component called the linker, which can impart the 

geometry of the host as well as the electronic interactions between the receptor and the 

transducer. 

 

The substrate/guest may cause an optical change by a change in absorbance, which 

allows colourimetric determination using UV/vis spectroscopy, or by emission 
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enhancement or quenching, which allows measurement of emission wavelength and 

intensity by fluorescence spectroscopy. In the case of an electrochemical change, the 

substrate causes a change in current or redox potential, which is measured by a voltammeter. 

The character of the transducer makes a sensor behave as a redox or photoactive system 

(Wong et al., 2017; Lau et al., 2011; Costero et al., 2004). 

Fluorescence spectroscopy involves the use of a fluorophore as the transducer and, 

in comparison to other analytical techniques, offers high sensitivity, fast response time and 

is relatively inexpensive (Wong et al., 2017). Fluorescent materials are characterised by 

good optical properties, high stability to light and chemical agents and high quantum yield 

(Yamanoi et al., 2016). Desired colours for excitation and emission help in the choice of 

fluorophore. For instance, intracellular studies preclude the use of excitation wavelengths 

below 340 nm, while tissue experiments prefer wavelengths in the red region (de Silva et 

al., 2009). 

 

2.12.2 Mechanisms of Detection 

A variety of photophysical mechanism for signal transmission employed by sensors 

includes hydrogen-bonding interactions, excited-state intramolecular charge transfer 

{ESICT}, excited-state intramolecular proton transfer {ESIPT}, intramolecular charge 

transfer {ICT}, photo-induced electron transfer {PET}, excimer/exciplex formation, 

Förster resonance energy transfer {FRET}, proton-coupled electron transfer {PCET}, 

metal-ligand charge transfer {MLCT}, aggregation induced emission {AIE} and 

aggregation caused quenching {ACQ} among others (Thanayupong et al., 2017; 

Kowalcyzk et al., 2010; Alreja and Kaur 2015; Wong et al., 2017). 

 

2.12.2.1 Photo-induced Electron Transfer (PET) 

PET sensors are commonly electron donor-acceptor systems with a receptor-linker-

fluorophore system operating as a “turn-off/on” or an intensity-based probe {Fig. 2.22(a) – 

(b)}. They commonly exhibit little or no spectral shift with increase or decrease in emission 

intensity. Upon excitation, the PET process occurs from the receptor HOMO to the HOMO 

of the excited fluorophore (which is vacated by the irradiation). This photoexcitation is 

localised on the acceptor (i.e fluorophore), as the HOMO of the donor (in the absence of an 
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analyte) lies above that of the acceptor, with possibility of electron transfer from the donor’s 

(or receptor’s) HOMO to the acceptor’s HOMO. The previously excited electron is unable 

to return to its original ground state and a back donation occurs to the receptor leading to 

quenching (“turn-off”) of fluorescence - the electron transfer process competes favourably 

with radiative decay to the ground state, substantially diminishing the fluorescence quantum 

yield. On binding of the receptor with a cation/analyte, the redox potential is raised, and 

electrons are donated from the receptor to the cation/analyte. This process lowers the energy 

of the receptor HOMO below that of the fluorophore HOMO {Fig. 2.22(c) – (d)}, 

preventing electron transfer and favouring fluorescence – the excited electron in the LUMO 

of the fluorophore returns to its original ground state with fluorescence enhancement (“turn-

on”). Thus, for a “turn-off”, the excited state energy of the fluorophore needs to be sufficient 

to provide the reduction potential of the fluorophore as well as the oxidation potential of 

the receptor; while in a ‘turn-on’, the excitation of the fluorophore results in fluorescence 

only because the PET process is arrested by the arrival of the analyte at the receptor site (de 

Silva et al., 2009; Kowalczyk et al., 2010; Wong et al., 2017; Kaur and Alreja 2015). PET 

occurs if the oxidation potential of a receptor is smaller in magnitude than that of the 

fluorophore. The analyte to be detected determines the choice of the receptor and the spacer 

must be short enough to permit reasonably fast PET rates in the ‘off’ state of the sensor (de 

Silva et al., 2009). 

PET can be harnessed to influence fluorescence, by structural modification to 

include hydrophilic (for proper orientation) and hydrophobic (as electron donor) terminals 

in the sensor molecule (de Silva, 2012). The lone pair on a nitrogen atom could quench 

emission of a fluorophore via PET; with restoration of fluorescence when the nitrogen atom 

is involved in complexation (Geue et al., 2003). 
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Figure 2.22: Illustration of the “on” state (a) and “off” state (b) for analyte binding 

involving PET mechanism and Energy diagrams depicting relative energetic dispositions 

of the frontier orbitals in the analyte-free (c) and the analyte-bound (d) situations. 
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Figure 2.23: Examples of PET based sensors 
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2.12.2.2 Intramolecular Charge Transfer (ICT) 

 

The presence of electron donating and electron accepting groups within a 

conjugated π-system of the fluorophore and receptor of a molecule is observed to lead to 

ICT. An increase in the electron donating ability of the electron donating group {EDG} 

results in a red-shift (in absorption and fluorescence response), while a decrease in the 

electron donating ability of the EDG results in a blue-shift. The observed charge transfer 

process involves redistribution of electron density from the electron donating moiety to the 

electron acceptor resulting in a dipole moment within the molecule. Upon analyte binding, 

the dipole moment increases or decreases – this increase or decrease depends on the nature 

of the analyte and the electrostatic relationship between the receptor and the fluorophore. 

An increase in dipole moment is usually accompanied by increase in molar absorptivity 

with a red-shift in absorption and fluorescence {since enhanced conjugation stabilises the 

excited state more than the ground state}; a converse observation {decrease in molar 

absorptivity with a blue-shift} is observed when the dipole moment decreases {reduced 

conjugation destabilises the excited state more than the ground state} (Wong et al., 2017; 

Lu et al., 2007). 

ICT based molecules tend to display solvent dependent tendencies (especially with 

respect to fluorescence emissions), hence the charge transfer pathways depend greatly on 

solvent polarity {the arrangement of solvent molecules around the dipole can provide added 

stabilisation} (Wong et al., 2017; Benitez-Martin et al., 2020; Solomatina et al., 2020). 
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Figure 2.24: Frontier orbital energy diagrams of ICT in a state of (a) reduced dipole 

moment and (b) increased dipole moment. (c) Examples of ICT based and (d) FRET 

based sensors  
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2.12.2.3 Förster Resonance Energy Transfer (FRET) 

 

This is a non-radiative transfer of energy from an excited energy donor fluorophore 

to an energy acceptor through long range dipole-dipole interactions. The acceptor 

undergoes excitation, during the FRET process, and the fluorescence emission from the 

original excited fluorophore is not observed. In a suitable fluorophore the wavelength of 

the emitted light is far red-shifted from the original excitation wavelength of the donor 

(Wong et al., 2017). The FRET process depends on: 

 

 spectral overlap between the emission profile of the donor and the absorption profile of 

the acceptor 

 the distance between the donor and acceptor units (ideally 10 – 100 Å) 

 the orientation of the dipole moments of the donor and acceptor 

 

When there is negligible overlap between the absorption and emission of a 

fluorophore unit or absence of separate interacting and proximal donor-acceptor pair in the 

system FRET mechanism is not proposed (Giri and Patra 2015). 

 

2.12.2.4 Excited State Intramolecular Proton Transfer (ESIPT) 

 

ESIPT involves very slight movement of a light hydrogen atom without energy 

barrier, typically on an ultra-fast (femto- to picosecond) time scale. The proton transfer 

(arising from the energy band gap between the local and relaxed excited states) process 

usually involves hydrogen bond (commonly in a five- or six-membered ring), with the 

donor and acceptor groups in proximity. It is very common in aromatic compounds 

possessing phenolic hydroxyl group and with possibility of intramolecular hydrogen bond 

to a nearby heteroatom (typically at < 2 Å) of the same chromophore (Yang et al., 2016; 

Zhang et al., 2016). 

In the ground state of benzazole derivatives, two distinct intramolecular hydrogen 

bonded rotamers {Fig. 2.25(a) and (b)} have been described, with only Fig. 2.25(b) 

observed to undergo ESIPT to give the phototautomer Fig. 2.25(c). The ground state energy 

of Fig. 2.25(b) is lower than that of Fig. 2.25(a), hence it is more stable (Wong et al., 2009). 
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In protic solvents, the intramolecular hydrogen bond is competed for by the intermolecular 

hydrogen bonding of the -OH group with the solvent molecules resulting in the inhibition 

of tautomer formation and ESIPT process {Fig. 2.25(d)}. 

ESIPT based molecules are known to be sensitive to solvent polarity, type of solvent 

as well as hydrogen bonding. The ability of ESIPT based molecules to form intramolecular 

hydrogen bonds allows such molecules to exist in the keto (K) and enol (E) tautomeric 

forms. ESIPT is characterised by a four level photophysical process involving ground and 

excited states of the two tautomers, spectral sensitivity to surrounding medium and a large 

Stokes shifted fluorescence (blue fluorescence) in the E and K tautomeric forms. It works 

on the basis that the ground state of the energy acceptor is not populated. The energy transfer 

originates from the interaction of an excited state donor with an acceptor in its electronic 

ground state. Compounds exhibiting ESIPT are commonly characterised by a fast E to K 

intramolecular phototautomerisation and demonstrate a high energy ultra-violet (UV) E 

absorption coupled with tuneable K emission. In the ground state, ESIPT molecules exist 

in the cis-enol (E) form (in which intramolecular hydrogen bond is formed) and 

tautomerise, upon photoexcitation, to the cis-keto (K) form (E*→K*) via an extremely fast 

and irreversible ESIPT process – the population of the singlet excited enol (E*) form leads 

to the ultrafast ESIPT process and formation of the excited cis-keto (K*) form {which is 

stabilised by hydrogen bonding). The excited K form (K*) decays radiatively to the 

intermediate ground state K and the E form is instantaneously recovered. The predominant 

absorption from E and emission from K* results in an anomalously large Stokes shift, 

typically of about 200 nm {however, short wavelength emissions can be observed for Fig. 

2.25(a)} (Saluja et al., 2014; Park et al., 2009; Suban et al., 2009; Wong et al., 2009; 

Wilbraham et al., 2015). A Stokes shift of 4500 cm-1 has been observed to be too small to 

cause ESIPT (Suban et al., 2009; Zheng et al., 2020). The lower wavelength emission, of 

an ESIPT molecule, has been assigned to the E form while the higher wavelength emission 

was assigned to the K form (Saluja et al., 2014). 

In the usual ESIPT process, phototautomerisation is assigned to relaxation from the 

excited keto tautomer, however a system has been reported with relaxation occurring from 

the primary excited enol state {represented with broken line arrow in Fig. 2.25(e)}, the 

reported compound is observed to have low Stokes shift {27 nm} (Eseola et al., 2009). Dual 
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fluorescence (common in systems in which the enol form is stable enough) observed in 

certain ESIPT based molecules, has been ascribed to the long wavelength emission of Fig. 

2.25(b) and the short wavelength of Fig. 2.25(a). One of the emission bands, of the dual 

fluorescence, usually arises from the enol form while the other is from the keto form. The 

dual fluorescence depends on the molecular structure and such external factors as solvent 

polarity and temperature. 

ESIPT based molecules are of great interest and are useful as laser dyes, 

photostabilisers, fluorescent probes in biology and for electroluminescent devices (as light 

emitting materials). 
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Figure 2.25: (a) – (d) Structural representation of benzazole derivatives (e) Characteristic 

Four-Level Photocycle Scheme of ESIPT process 
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Figure 2.26: Examples of ESIPT based molecules 
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2.13 Determination of binding stoichiometry and binding constant 

 

In host-guest chemistry, Job’s plot (or continuous variation method) has emerged 

the most employed method in the determination of the binding ratio between analyte and 

sensor. Fluorescence or absorption titration data are fitted to appropriate binding models to 

obtain appropriate binding ratio {Ligand:Analyte - 1:1, 1:2, 2:1} (Fig. 2.27). This method 

(Job’s plot) has however been observed to give curves that do not fit expected outcomes 

(usually when more than one complex is involved), hence other techniques such as 1H 

NMR, mass spectrophotometry have been used to help elucidate binding stoichiometry 

(Hibbert and Thordarson 2016; Ulatowski et al., 2016; Shigemoto et al., 2020; Song et al., 

2013). 

The binding constant of receptors can be calculated by the Benesi-Hildebrand 

equation for 1:1 stoichiometry (Equation 2.3) and 1:2 stoichiometry (Equation 2.4) using 

the equations below (Benesi and Hildebrand 1949). From Eq. 2.3, a linear relationship on 

plotting 1/Fo–F against function of 1/[analyte] supports 1:1 stoichiometry, while from Eq. 

2.4, a linear graph obtained from plotting log (F-Fo/F∞-Fo) against logC indicates 1:2 

stoichiometry. 

 

 
 

where Fo and F represent the fluorescence emission of sensor in the presence and 

absence of analyte respectively. Fmin is the saturated emission of sensor in the presence of 

excess amount of analyte. [analyte] is the concentration of analyte added. Ka is the binding 

constant.  

 

 
where F is the emission intensity of a chemosensor at various concentrations of 

metal ions. Fo and F∞ are the limited values of F at zero and saturated concentration of metal 

ions, respectively. n is the number of metal ion bound by the chemosensor. C is the 

corresponding concentration of metal ions. Ka is the association constant of chemosensor 

with metal ions. 
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Figure 2.27: Job’s plot representation for (a) 1:1 (b) 1:2 and (c) 2:1 binding ratio 
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The limit of detection (LOD) for metal ions is calculated from fluorescence titrations 

of metal ions, and using the expression: 

                                               LOD = 3σ/s                                         Equation 2.5 

where σ = standard deviation of response and s = slope of the calibration curve. 

 

Linear regression graphs of titrations are used to calculate standard deviation and slope of 

linear response (Alreja and Kaur 2015). 

 

2.14 Calculation of fluorescence quantum yield (Φf) 

The fluorescence quantum yield (Φf) can be determined in dilute solutions with an 

absorbance below 0.1 at the excitation wavelength with different substances used as 

standard {e.g Quinine Sulfate (Φ = 0.57), Anthracene in ethanol (Φ = 0.27), Rhodamine 

6G} (Dilek and Bane 2016). 

The relative quantum yields are obtained by calculating the area under corrected 

emission spectrum of the sample and comparing these areas with the area under corrected 

emission spectrum of a standard solution of the reference standard. The relative quantum 

efficiencies of fluorescence can be obtained with the following equation: 

 

Φs = Φr (As/Ar)[{(1 – 10-Abr)/(1 – 10-Abs)}](ƞs/ƞr)
2                     Equation 2.6 

where s and r represent the analyte and reference solutions respectively, Φ = 

quantum yield, A = area under the emission curve, Ab = absorbance at the excitation 

wavelength and ƞ = refractive index of solvent used. 

 

2.15 Slow Magnetic Relaxation 

 

Materials which exhibit or have potential for slow magnetic property have been 

called SMMs or SIMs {or in some cases MSMMs} depending on the number of metal ions 

present in the system (Craig and Murrie 2015). SIMs/SMMs are useful for understanding 

the quantum phenomenon, with potential applications in quantum computing, spintronics 

and high-density storage device, hence the interest by scientist from diverse fields including 

materials science (Zhu et al., 2014; Zhao et al., 2014). At low temperatures, they have the 

ability to retain spin information for long periods of time and have been found to be useful 

in high-density information storage, although systems with shorter relaxation times may be 

useful in quantum computing and spin-based electronics (Demir et al., 2017). In a simple 
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term, a SMM has a large total spin (ST) ground state and an easy-axis (z) magnetic 

anisotropy, which partially lifts the 2ST + 1-fold degeneracy of its ground state in zero 

magnetic field and in comparison to classical nanomagnets, SMMs offer a range of 

advantages including but not limited to (i) they consists of single, sharply defined sizes, (ii) 

they can undergo systematic changes {in the ligand and the metal ions}, (iii) they can 

dissolve in a large array of solvents (Hendrickson et al., 2001; Cornia et al., 2014). 

SIMs/SMMs are molecular complexes which possess an axially bistable magnetic 

moment, purely of molecular origin and show slow magnetic relaxation and magnetic 

hysteresis, especially when a magnetising field is removed, below a certain temperature {at 

which digital information can be stored for 100 s} called the blocking temperature, TB 

(Andruh, 2011; Zhu et al., 2014; Guo et al., 2014; Jiménez et al., 2016; Vingesh et al., 

2017). The SIM/SMM behaviour is as a result of the existence of an anisotropic energy 

barrier Ueff which prevents magnetisation reversal below TB when the polarising magnetic 

field is removed (Jiménez et al., 2016). The observed superparamagnet-like behaviour 

generally results from the presence of large spin ground state {ST} and Ising-type 

magnetoanisotropy {D}. An anisotropic axis, in a “hard plane”, is found in many SMMs 

and alignment of this axis with the magnetic axis of a metal ion {with maximum gz value} 

results in Ising-type anisotropy. The easy axis can also act as a plane {“easy plane”} for 

magnetisation with gz < gx ≈ gy (Hendrickson et al., 2001; Lin et al., 2012; Gebrezgiabher 

et al., 2020). For a SIM/SMM to function effectively as a means of data storage there must 

be a barrier {arising from magnetic anisotropy} to the re-orientation of the molecule’s 

magnetisation, to prevent a loss of information. When the spin ground state of a molecule 

is S > ½, then zero-field splitting (ZFS) may arise if the symmetry is lower than cubic. The 

symmetry lowering may lead to the separation of excited states, which can then mix through 

SOC. In a situation where ZFS parameter is negative {that is, D < 0} an “easy-axis” 

magnetic anisotropy is said to occur, while for a positive ZFS parameter {that is, D > 0} an 

“easy-plane” anisotropy is said to occur { Fig. 2.28} (Goswami and Misra 2012). 
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Figure 2.28: (a) Representation of the “easy” axis and “hard” plane (b) Splitting of an S = 

2 state into its constituent MS levels, induced by negative axial ZFS (c) generated double-

well for (i) positive D and (ii) negative D, with the barrier to relaxation shown as Ueff. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 
 

 

2.15.1 Relaxation Processes in SIMs/SMMs 

 

 Processes that have been observed to induce loss of magnetisation include: (i) 

Orbach, (ii) Raman and (iii) direct and quantum tunnelling {Fig. 2.29}. While (i) and (ii) 

are temperature dependent {and tend to dominate at high temperatures}, (iii) is not {and 

tend to dominate at low temperatures} (Novikov et al., 2015; Castro et al., 2016). In Orbach 

processes, absorption of a phonon is observed to result in excitation to a real state, followed 

by phonon emission and relaxation; while in Raman processes, phonon absorption causes 

excitation of a spin to an imaginary {or virtual} state, followed by relaxation and phonon 

emission. Direct processes, however, involves the flipping of the spin of a molecule, 

followed by phonon emission. Thus, while Orbach and Raman processes are two phonon 

processes, direct process is a one phonon process involving relaxation of spin-lattice. 

Quantum tunnelling involves spin flipping by tunnelling from an MS state on one side of a 

barrier to a resonant MS state on the opposite side {e.g from the MS = +1 level to the MS = -

1 Fig. 2.28[c]} (Frost et al., 2016; Gebrezgiabher et al., 2020). 

Normally, QTM is observed in the presence of the following factors: dipole-dipole 

interactions {which causes mixing of Kramer’s states}, hyperfine interaction and rhombic 

or higher-order transverse anisotropy {E}. QTM lowers the effective relaxation energy 

barrier, inducing a loss of remnant magnetisation and it tends to increase with decreasing 

ST, thus slow relaxation of magnetisation is less frequent in mononuclear complexes {when 

compared with polynuclear complexes}. In f-block ions, spin-orbit coupling (SOC) is great 

enough to overcome any quenching effect from the ligand field. In d-block ions however, 

SOC is usually much weaker than the ligand field resulting in quenching of the first-order 

angular momentum (Jaing et al., 2011; Zhu et al., 2014; Cornia et al., 2014; Fondo et al., 

2017). Thus, in 3d ion complexes, rational design {involving low coordination number, 

weak ligand field and other considerations} is helpful in achieving field induced and zero-

field magnetic relaxation. Other strategies adopted in suppressing the effect of QTM include 

applying a static field {to remove the degeneracy of the Ms levels}, combining 3d-4f ions 

{to control geometry, especially since 4f ions tend to have high coordination numbers}, 

substituting the paramagnetic 3d ions {in 3d-4f clusters} with ZnII ion {“dilution effect”} 

(Andruh, 2011; Zhu et al., 2014; Fondo et al., 2017). 
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Generally, quantum tunnelling between Kramer’s states is forbidden but dipolar 

interaction as well as deviation from axial symmetry, could facilitate mixing of Kramer’s 

states thus enabling quantum tunnelling. In CoII ions {a Kramer’s ion with half integer spin} 

mixing of the ground ± 3/2 levels causes QTM, which can be suppressed by application of 

a dc field. This dilution of the magnetic sites reduces dipole interactions, and Zeeman 

splitting breaks the orbital degeneracy between the Kramer’s states {reducing the degree of 

mixing} (Jaing et al., 2011; Zhu et al., 2014; Buvaylo et al., 2017). 
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Figure 2.29: Pictorial representation of relaxation processes in SIMs/SMMs {TA-QTM = 

thermally assisted QTM} 
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2.15.2 Magnetic Exchange interactions 

 

In situations where paramagnetic ions act independently of one another, 

magnetically dilute complexes are said to arise. However, under certain considerations, 

paramagnetic ions could influence one another {via spin-spin interactions} giving rise to 

exchange interactions. There are commonly two types of magnetic exchange: direct 

exchange and superexchange. In direct exchange, the distance between the paramagnetic 

ions is small – the separation is approximately the sum of their covalent radii {this allows 

a two-electron transfer between the paramagnetic ions}; while in superexchange 

intervening atoms {with diamagnetic ground states} have the ability to transfer magnetic 

interactions – the separation between the ions is greater than their sum of their covalent 

radii {the extent of the overlap between the orbitals of the metal ions and the diamagnetic 

atoms greatly affects the exchange} (Ball, 1969). 

Since interactions of metal centres appear to be connected with the M-M distance 

as well as the linkage from one metal centre to the other, the sign of superexchange 

interactions {Jex} would depend on the contribution from relevant paths. That is, the sign 

would be closely related to the symmetry of the orbitals of the metal centres {ions} as well 

as the non-magnetic ions on the path of the superexchange – a positive Jex value suggests 

the spin vectors {in the lowest state} are parallel to one another {ferromagnetism}, while a 

negative value suggests the spin vectors are paired {antiferromagnetism} (Kanamori, 1959; 

Kobayashi et al., 1964). 

 

2.15.2.1 Some Parameters Used in the Interpretation of Magnetic Exchange 

interactions 
 

Deficiency in the use of the first-order isotropic {Heisenberg-Dirac-van Vleck} 

spin-exchange Hamiltonian expressions {Ĥ = -2JŜ1Ŝ2}, is very common in high spin d7 

{CoII ions}, due to strong anisotropy and the first-order orbital contribution of the ion {that 

is, first-order orbital momentum is not negligible}. To attempt quantitative approximation 

of magnetic data, orbitally dependent exchange interactions as well as SOC are considered, 

in addition to the isotropic exchange. Quantities adopted in the approximations include: 

axial splitting parameter {Δ}, orbital reduction factor {α}, spin-orbit coupling parameter 



 

117 
 

{λ} (Hossain et al., 2002; Brown et al., 2004; Rodriguez et al., 2005; Mishra et al., 2006; 

Narayanan et al., 2008; Arora et al., 2012; Goswami and Misra 2012; Daumann et al., 2013; 

Akintola et al., 2021). 

The axial splitting parameter (Δ) is commonly used to indicate the nature of 

distortion around a central metal ion. In high spin d7 {CoII ions}, it is viewed as the ligand 

splitting of the orbital degeneracy of the 4T1g(F) term. Under axial distortion, the ground 

{4T1g(F)} state splits into an orbital singlet {4A1g} as well as a doublet {4Eg}, with Δ as the 

energy between these two states {Fig. 2.50}; SOC splits the 4A1g state {into two Kramer’s 

doublets} and the 4Eg state {into four Kramer’s doublets}. The sign of Δ is dependent on 

which of the two states is lower in energy; a positive value indicates an elongated axis and 

that the orbital singlet {4A1g} possess the lowest in energy, while a negative value suggest 

the Eg state is lower in energy. 

The orbital reduction factor {α} gives an indication of the delocalisation of unpaired 

electrons {or spins} away from a central metal ion towards the ligand. It is a measure of the 

covalent nature of the bonds surrounding a central metal ion. The greater the covalence, the 

lower the value α. In high spin d7 {CoII ions}, the orbital reduction factor also consists of 

the admixture of the 4T1g(P) state and the ground state, 4T1g(F); and the stronger the 

admixture, the lower the value of α. The orbital reduction parameter is mathematically 

expressed as Ak {that is, α = Ak}. The k parameter is concerned with the reduction of the 

orbital momentum arising from the delocalisation of unpaired electrons and its value is 

usually < 1 {and in six-coordinate high-spin d7 CoII ion it is typically in the range 0.70 – 

0.95}; while the A parameter is concerned with the admixture of the 4T1g term of the upper 

4P into the ground 4F states and its value is either 1 {for strong crystal fields} or 3/2 {for 

weak crystal fields}. 

The spin-orbit coupling parameter {λ} commonly has a free ion {λo} value of – 180 

cm-1 and values smaller than the λo value suggest covalency in a material. 

 

 

 

 

 



 

118 
 

 

 

 

 

 

 

Figure 2.30: Splitting of the 4T1g(F) ground state under axial distortion. 
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2.15.2.2 Electron Spin/Paramagnetic Resonance (ESR/EPR) In CuII Complexes 
 

Electron spin/paramagnetic resonance {ESR/EPR} is a well-established technique 

for elucidation of structure {solid state} and chemical bonding as well as understanding 

solution dynamics of paramagnetic centres like MnII, FeIII, CoII and CuII (Krzystek et al., 

2006). The d9 configuration of CuII makes it comparatively easy to use ESR in the study of 

coordination environment of CuII complexes (Patel and Goldberg 1972; Bowmaker et al., 

1975; Bencini et al., 1978; Belford and Duan 1978; Misra and Kripal 1981; Garg et al., 

1988; Tada and Shino 1991; Sawada et al., 1996; Tajima et al., 1997; Larin et al., 2004; 

Singh, 2008; Morgan et al., 2018). 

The spins of a CuII ion {S = 1/2, I = 3/2} are generated by weakly coupled nuclei from 

ligands. Since the nuclear spin, I = 3/2, four parallel and four perpendicular {Fig. 2.31} 

hyperfine components {using [2I + 1]} are expected from the Cu isotopes {63Cu and 65Cu} 

(Chakradhar et al., 2003). ESR spectra are commonly described by g-tensors {g||, g⊥} and 

hyperfine coupling {A||, A⊥}. While the parallel components {g|| and A||} are commonly easy 

to resolve and interpret from ESR spectra, the perpendicular components {g⊥ and A⊥} are 

often poorly resolved and may require indirect interpretation (Bowmaker et al., 1975; Misra 

and Kripal 1981; Sawada et al., 1996; Singh, 2008). The g-tensors give an indication of the 

interaction between the magnetic field and the unpaired electron and values obtained 

depend on the nature of the ligand and bond formed between the CuII ion and the ligand. 

The hyperfine coupling, however, gives insight into how the nucleus transmits experienced 

forces to the unpaired electron (Belford and Duan 1978; Drosou et al., 2022). In distorted 

environments, the g|| obtained is larger than the expected value, while the A|| is lower than 

expected (Bowmaker et al., 1975). ESR spectra with g⊥ > g|| suggest CuII ions in compressed 

tetragonal/rhombic octahedral geometry, cis-distorted octahedral geometry, trigonal 

bipyramidal geometry or linear geometry with the dz
2 orbital as the singly occupied 

molecular orbital {SOMO} (Herman, 1979; Duggan et al., 1980). In five-coordinate 

complexes, g⊥ > g|| and |A||| ≈ |A⊥| as well as g3 > g2 > g1 suggest a trigonal-bipyramidal 

geometry; while g|| > g⊥ and |A⊥| << |A||| suggest a square-pyramidal geometry {in both 

trigonal-bipyramidal and square-pyramidal geometries, the unpaired electron is commonly 

observed in the ground state dz
2 orbital with 2A1g term, although dx

2 – y
2 ground state has 
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been proposed for some square-pyramidal complexes} (Hathaway et al., 1970; Barbucci et 

al., 1977; Bencini et al., 1978; Herman, 1979; Duggan et al., 1980; Addison et al., 1981; 

Wei et al., 1994; Fleming et al., 1998; Humphrey et al., 1999; Shi et al., 2006; Rosu et al., 

2011); in tetragonal CuII complexes g|| > g⊥, A|| is large and A⊥ is often difficult to determine 

(Bencini et al., 1978; Bertini et al., 1979; Ammeter et al., 1979; Fleming et al., 1998); in 

square-planar and octahedral environments, g|| > g⊥ and suggests a dx
2 – y

2 ground state 

{which is common to tetra-, penta- and hexa-coordinate CuII complexes with tetragonal 

elongation} (Humphrey et al., 1999; Chakradhar et al., 2003; Gradinaru et al., 2007; Rosu 

et al., 2011; Łabanowska et al., 2012; Singh et al., 2014; Sinha et al., 2015; El-Samanody 

et al., 2017). Strongly axial ESR signals, in d9 CuII complexes, is an indication of square-

planar and square-pyramidal geometry (Drosou et al., 2022); in tetrahedral environments, 

g1 > g2 > g3 > ge {and if [{g2 – g3}/{g1 – g2}] is less than 1, SOMO is the dx
2 – y2 orbital} or 

g|| > g⊥ > ge which also suggest dx
2 – y2 ground state (El-Tabl, 1998). 

Some Spin Hamiltonians deployed in ESR studies of CuII complexes are given in 

Eqs. 2.7 – 3.2, while some spectra line-shapes obtained are given in Fig. 2.32 (Kivelson 

and Neiman 1961; Hathaway and Billing 1970; Neese, 2001; Garribba and Micera 2006; 

Łabanowska et al., 2012). 

ℋs = gβeS · H + AS · I                                Equation 2.7 

The first term describes the spin-orbit as well as the electronic Zeeman 

contributions, while the second term describes the contributions from the electron and 

nuclear spins. 

 

When the crystal field moves from cubic symmetry to axial and non-axial 

symmetry, Eq. (2.7) becomes Eq. (2.8) and Eq. (2.9), respectively: 

 

ℋs = g||βeHzSz + g⊥βe(HxSx + HySy)                             Equation 2.8 

 

ℋs = βe(gxHxSx + gyHySy + gzHzSz)                             Equation 2.9 

Where gx, gy and gz are components of the g-tensor along three orthogonal axes 

 

To accommodate D4h geometry {with axial symmetry} Eq. (2.8) could become Eq. 

(3.0) or Eq. (3.1): 

 

ℋs = βe[g||HzSz + g⊥(HxSx + HySy)] + A||HzIz + A⊥(HxIx + HyIy)            Equation 3.0 
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ℋs = βe[g||HzSz + g⊥(HxSx + HySy)] + AHzIz + B(HxIx + HyIy)               Equation 3.1 

 

To accommodate N-donor ligands {for CuII ion in square-planar environment} Eq. 

(3.2) has been used 

ℋs = βB[g||Sz + g⊥(Sx + Sy)] + A||Sz𝐼𝑧
𝐶𝑢 + A⊥(Sx𝐼𝑥

𝐶𝑢 + Sy𝐼𝑦
𝐶𝑢) + ∑ 𝑆𝐴(𝑁𝑖)𝑁𝑖 INi  

                                                                                                               Equation 3.2 

Where A(Ni) is the hyperfine coupling tensor for the ith N-donor ligand 

 

Common line-shapes observed in ESR studies of CuII ions are (i) Isotropic (ii) Axial 

and (iii) Rhombic signals. 

In the case of (i), the CuII ion could be in an environment in which the tetragonal 

axes are misaligned; the symmetry is lower than octahedral, but undergoing free rotation; 

the symmetry is a regular octahedron, but undergoing Jahn-Teller distortion {static and/or 

dynamic}. The line-shape observed, in the case of (ii), shows dependence on the lowest g-

tensor value: when g > 2.04 {Fig. 2.32(b)}, the CuII ion likely possesses axial symmetry 

with parallel principal axes {and tetragonal elongation} or possesses some rhombic 

symmetry; while for g < 2.03 {Fig. 2.32(c)}, the CuII ion likely possesses axial symmetry 

with parallel principal axes {and tetragonal compression} or possesses compressed rhombic 

symmetry. The line-shapes for (iii) appear to be consistent with situations for (ii) as they 

also show dependence on the lowest g-tensor value {g > 2.04 [Fig. 2.32(d)] and g < 2.03 

[Fig. 2.32(e)]} and the environment of the CuII ion also appears to depend on elongation 

and compression {within rhombic or axial symmetry} (Hathaway and Billing 1970; Bertini 

et al., 1979; Ammeter et al., 1979; Rosu et al., 2011; Łabanowska et al., 2012). 
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Figure 2.31: (a). X-band spectrum of CuII complexes (source: ETHzürich) (b). Energy level 

and possible transitions for S = ½, I = 3/2 
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Figure 2.32: Isotropic {(a)}; Axial {(b) and (c)} and Rhombic {(d) and (e)} ESR spectra 

line-shapes for CuII complexes 
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CHAPTER THREE 

 

MATERIALS AND METHODS 

 

3.1 General considerations 

All starting materials for synthesis were obtained commercially {from Alfa Aesar, 

Merck and TCI chemicals} as reagent grade and used without further purification. Thin-

Layer Chromatography (TLC) was used for monitoring the reactions using precoated silica 

gel 60 plates. Column chromatography was performed on silica gel (60 – 120 mesh). FT-

IR spectral data were measured on a VERTEX 70 IR spectrometer by Bruker Optics using 

the Specac Diamond ATR optional accessory in the range 4000 - 400 cm−1. 1H and 13C 

NMR spectra were recorded with a Bruker AVANCE 63, 101, 250, 400 and 500 MHz 

spectrometer. Chemical shifts (δ) are given in parts per million (ppm) using the residue 

solvent peaks as a reference relative to TMS. Coupling constants (J) are given in hertz (Hz). 

Signals are abbreviated as follows: singlet, s; doublet, d; doublet-doublet, dd; triplet, t; 

triplet-doublet, td; multiplet, m. Mass Spectrometry (MS) analyses were conducted on a 

Bruker MAT SSQ 710 spectrometer. Elemental analyses were carried out on Leco CHNS-

932 and El Vario III elemental analysers. Photoluminescence excitation and emission 

spectra were recorded on a JASCO FP-6300 spectrofluorometer at room temperature with 

a spectral resolution of 1 nm. UV-Visible spectra were recorded on a Varian Cary5000 UV-

Vis-NIR Spectrophotometer. Simultaneous TG/DTA analyses were carried out under static 

air atmosphere using a Netzsch STA Luxx PC analyser up to 1000oC. Magnetic 

susceptibility was determined on bulk vacuum dried materials in the 2 – 300 K temperature 

range using a Quantum Design MPMS-5 superconducting SQUID magnetometer. Data 

obtained were corrected for diamagnetism of the capsules used and the intrinsic 

diamagnetism of the constituent atoms using Pascal constants. Electron spin resonance 

(ESR) spectra were recorded with an X-Band ESR-ELEXSYS Spectrometer by Bruker with 

a 100 kHz field modulation and microwave frequencies ranging between 9.31 – 9.82 GHz. 

Crystallographic data were collected on a Nonius KappaCCD diffractometer, using 

graphite-monochromated Mo-Kα radiation. Data were corrected for Lorentz and 
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polarisation effects, absorption was taken into account on a semi-empirical basis using 

multiple-scans (Hooft, 1998; Otwinowski and Minor 1997; Sheldrick, 2002). Structures 

were solved by direct methods (SHELXS; Sheldrick, 2008) and refined by full-matrix least 

squares techniques against Fo
2 (SHELXL). All hydrogen atoms were included at calculated 

positions with fixed thermal parameters. All non-disordered, non-hydrogen atoms were 

refined anisotropically. Crystallographic data as well as structure solution and refinement 

details are summarised in Chapter 4. Diamond 4.6.8 (Brandenburg and Putz 2022), was 

used for structure representations. 

 

3.2 Ultraviolet-Visible (UV-vis) and fluorescence measurements 
 

Stock solutions (usually 100 mL) of the receptors (1 x 10-5 M) were prepared in 

appropriate solvents (MeCN; MeOH; CHCl3). Solutions (50 mL) of the guest cations (1 x 

10-2 M) were also prepared  in appropriate solvents (MeCN; MeOH; CHCl3) – nitrate salts 

of the cations studied were used in all cases, except for Ga3+ (where the iodide salt was 

used), and In3+, Tl3+ (where the chloride salts were used). 3 mL solutions of the ligand were 

transferred into a 1 cm × 1 cm quartz cuvette equipped with a tiny magnetic bar and the 

UV-vis and fluorescence (excitation and emission) scans were obtained. The UV-vis and 

fluorescence scans in the presence of the guest cations were obtained by adding, separately, 

6 µL (of each cation) to a 3 mL solution of the ligand, by means of a micro-syringe, and the 

solution stirred for ≈30 seconds (to gain homogeneity) before measurement of the UV-vis 

and fluorescence scans for the response absorption and emission signals. Fluorescence 

measurements were performed using a slit width of 5 nm x 5 nm. The results are presented 

in Tables 4.1 (for the Bis-imidazoles), 4.2 (for the imidazole amines), 4.3 (for the NNO and 

NNN imidazole imines) and 4.4 (for the imines).  

 

3.3 Determination of the fluorescence quantum yield (Φf) 
 

 The fluorescence quantum yield was determined using Eq. 2.6 with Anthracene in 

ethanol (Φ = 0.27) was used as the reference. 
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3.4 Job’s plot, Association constant (Ka) and limit of detection (LOD) 

The probable coordination between the ligands and Mn+ ions was determined by 

Job’s method. A fixed volume (3 mL) was used; varying the volume of the {10-5 M} ligands 

(0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3.0) and making up with appropriate volume 

of metal ion (of concentration 1 x 10-5 M). Fluorescence measurements at appropriate 

excitation wavelength were performed – a plot of the emission intensity against the mole 

fraction gave an indication of mode of binding. In the determination of Ka and LOD, 

solutions of metal ion (concentrations 0.1 – 1.0 µM) were prepared, 6 µL were added to 3 

mL of the ligand solution and fluorescence measurements made at appropriate excitation 

wavelength. The Ka was determined using Eq. (2.3), while LOD was determined using Eq. 

(2.5). 

 

3.5 Reagents and solvents 

Isophthalaldehyde, terephthalaldehyde, 2-nitrobenzaldehyde, benzil, anisil, aniline, 

9,10-phenathrenequinone, 3,4-hexanedione, ammonium acetate, acetic acid, ammonia, 

hydrogen, potassium carbonate (K2CO3), sodium hydride (NaH), iodomethane, 10%Pd/C, 

salicylaldehyde, pyridine-2-carboxaldehyde, bis(2-aminophenyl) sulphide, bis(2-

aminophenyl) ether, 2-hydroxy-1-naphthaldehyde, 5-methylsalicylaldehyde, 5-

bromosalicylaldehyde, 3,5-dibromosalicylaldehyde, 5-nitrosalicylaldehyde, o-vanillin, o-

phenylenediamine, lead(IV)oxide (PbO2), PdCl2(MeCN)2, cobalt chloride hexahydrate, 

celite, ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), ethylacetate (EtOAc), 

hexane, dichloromethane (DCM), acetonitrile (MeCN), dimethylformamide (DMF), n-

heptane and ether (Et2O). 
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3.6 Preparation of Bis-imidazoles (BI1 – BI7) 

 

 

 

 

Scheme 3.1: Preparation of (a) 1,3-bis-imidazoles (b) 1,4-bis-imidazoles; (c) failed attempt 

at the preparation of 1,2-bis-imidazoles and List of prepared (d) 1,3-bis-imidazoles (BI1 – 

BI4) (e) 1,4-bis-imidazoles (BI5 – BI7). 
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The bis-imidazoles were prepared via similar procedure reported by our group 

(Eseola et al., 2018; Eseola et al., 2011), with slight modifications. Since a general method 

was adopted, a full description is given with compound BI1. To obtain a pure BI3 washing 

with hot EtOAc was required, while BI5 required washing with hot DMF. BI6 and BI7 

required purification via column chromatography (using 1:1 EtOAc/n-Heptane). 

While products were obtained for the 1,3- and 1,4- series, attempts at the preparation 

of the 1,2-series did not yield desired products (Scheme 3.1{c}) - 2,4,5-triphenyl-1H-

imidazole was obtained in the two approaches adopted (Fig. S8). 

 

3.6.1: 1,3-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene (BI1): 0.47 g (3.50 mmol) of 

isophthalaldehyde, 1.48 g (7.04 mmol) of benzil and 5.40 g (70.06 mmol) of ammonium 

acetate were placed in a round bottom flask, followed by 15 mL of acetic acid. The mixture 

obtained was refluxed at 104oC for 5 hours to give a clear yellow solution. On cooling a 

white solid was obtained. The solid was transferred into 40 mL of ice-cold water, followed 

by ammonia until a pH > 7. The solid was filtered, washed with water, and dried (in an oven 

at 70oC) to afford an off-white solid. Yield = 1.73 g (96 %). Selected FTIR (ATR, cm-1): 

3331w, 3058b, 1652s, 1606s, 1543s, 1481s, 1444s, 1403w, 1072s, 763s, 693s, 619s, 507s. 

UV-Vis (MeCN, nm {ε /M-1 cm-1}): 228 {47 633}, 309 {55 270}. 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 7.25 (t, J = 7.3 Hz, 2H, Ar-H), 7.33 (t, J = 7.5 Hz, 4H, Ar-H), 7.39 (t, 

J = 7.2 Hz, 2H, Ar-H), 7.46 (t, J = 7.4 Hz, 4H, Ar-H), 7.54 (d, J = 7.3 Hz, 4H, Ar-H), 7.64 

– 7.57 (m, 5H, Ar-H), 8.09 (d, J = 7.8 Hz, 2H, Ar-H), 8.82 (s, 1H, Ar-H), 12.86 (s, 2H, -

NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 122.82, 125.42, 127.05, 127.68, 128.26, 

128.68, 128.95, 129.11, 129.51, 131.35, 131.48, 135.62, 137.78, 145.81, 206.98. MS (ESI) 

m/z 515.22 (M+, Calc. 514.62). Anal. Calc.(Found) for C36H27.5N4O0.75 C, 81.87(81.99); H, 

5.25 (5.13); N, 10.61(10.66) %.  

 

3.6.2: 1,3-bis(4,5-bis(4-methoxyphenyl)-1H-imidazol-2-yl)benzene (BI2), off-white: 

0.48 g (3.58 mmol) of isophthalaldehyde, 1.94 g (7.18 mmol) of anisil and 5.57 g (71.58 

mmol) of ammonium acetate. Yield = 1.51 g (66 %). Selected FTIR (ATR, cm-1): 2935w, 

1613s, 1517s, 1491s, 1455w, 1294s, 1243s, 1173s, 1106s, 1029s, 970s, 829s, 767w, 697s, 
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591s, 531s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 239 {44 167}, 304 {52 653}. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm): 3.79 (d, J = 17.8 Hz, 12H, -OCH3), 6.96 (dd, J = 47.9, 7.6 

Hz, 8H, Ar-H), 7.60 – 7.40 (m, 9H, Ar-H), 8.03 (dd, J = 7.8, 1.5 Hz, 2H, Ar-H), 8.76 (s, 

1H), 12.66 (s, 2H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 55.51, 114.12, 114.53, 

122.56, 125.03, 128.78, 129.38, 130.22, 131.48, 145.16, 206.94. MS (ESI) m/z 635.26 (M+, 

Calc. 634.72). Anal. Calc.(Found) for C40H35N4O4.5 C, 74.63(74.91); H, 5.48(5.55); N, 

8.70(8.64) %. 

 

3.6.3: 1,3-bis(1H-phenanthro[9,10-d]imidazol-2-yl)benzene (BI3), off-white: 0.52 g 

(3.88 mmol) of isophthalaldehyde, 1.62 g (7.78 mmol) of 9,10-phenathrenequinone and 

6.04 g (77.62 mmol) of ammonium acetate. Yield = 1.39 g (54 %). Selected FTIR (ATR, 

cm-1): 3053w, 1660w, 1598w, 1495s, 1443s, 1362w, 1074w, 1027w, 764s, 694s, 531s. UV-

Vis (MeCN, nm {ε /M-1 cm-1}): 286 {47 938}. 1H NMR (250 MHz, CDCl3) δ (ppm): 7.03 

(d, J = 6.8 Hz, 4H, Ar-H), 7.17 (s, 4H, Ar-H), 7.28 (dd, J = 9.7, 6.3 Hz, 20H, Ar-H), 7.61 

(d, J = 7.2 Hz, 5H, Ar-H), 7.86 (s, 1H, Ar-H). 13C NMR (63 MHz, CDCl3) δ (ppm): 127.45, 

128.11, 128.61, 128.73, 128.91, 128.98, 129.25, 129.39, 130.01, 130.81, 131.50, 131.62, 

131.88, 132.07, 135.33, 137.84, 139.00, 147.26. MS (ESI) m/z 667.28 (M+, Calc. 666.81). 

Anal. Calc.(Found) for C48H35.5N4O0.75 C, 84.74(84.74); H, 5.26(5.11); N, 8.24(8.32) %.  

 

3.6.4: 1,3-bis(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)benzene (BI4), brown: 

0.31 g (2.31 mmol) of isophthalaldehyde, 0.96 g (4.61 mmol) of 9,10-phenathrenequinone, 

0.43 mL (0.44 g, 4.71 mmol) aniline and 3.60 g (46.26 mmol) of ammonium acetate. Yield 

= 1.50 g (98 %). Selected FTIR (ATR, cm-1): 3067w, 1650w, 1612w, 1530w, 1494s, 1451s, 

1383w, 1236w, 1036w, 1004w, 756s, 725s, 701s, 616s, 532s. UV-Vis (MeCN, nm {ε /M-1 

cm-1}): 231 {55 595}sh, 258 {99 976}, 311 {30 496}, 360 {16 494}sh. 1H NMR (250 MHz, 

CDCl3) δ (ppm): 7.20 (d, J = 8.1 Hz, 3H, Ar-H), 7.31 (d, J = 8.8 Hz, 2H, Ar-H), 7.51 (d, J 

= 6.2 Hz, 8H, Ar-H), 7.68 (dd, J = 15.1, 6.3 Hz, 8H, Ar-H), 7.79 (t, J = 7.4 Hz, 2H, Ar-H), 

8.00 (s, 1H, Ar-H), 8.77 (dd, J = 14.7, 8.3 Hz, 4H, Ar-H), 8.88 (d, J = 7.8 Hz, 2H, Ar-H). 

13C NMR (63 MHz, CDCl3) δ (ppm): 121.79, 123.65, 123.93, 124.04, 125.02, 125.85, 

126.55, 127.21, 128.19, 128.95, 129.07, 129.19, 130.04, 130.20, 130.50, 130.82, 131.10, 
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131.55, 131.78, 138.34, 139.40, 151.15. MS (ESI) m/z 663.25 (M+, Calc. 662.78). Anal. 

Calc.(Found) for C48H31.5N4O0.75 C, 85.25(85.28); H, 4.69(4.63); N, 8.28(8.31) %. 

 

3.6.5: 1,4-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene (BI5), yellow: 1.06 g (7.90 mmol) 

of terephthalaldehyde, 3.32 g (15.79 mmol) of benzil and 12.18 g (0.16 mol) of ammonium 

acetate. Yield = 3.59 g (88 %). Selected FTIR (ATR, cm-1): 3058w, 1602w, 1486s, 1451s, 

1071w, 969w, 841s, 763s, 694s, 603w, 507s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 234 {14 

298}, 355 {22 242}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.25 (t, J = 7.2 Hz, 2H, Ar-

H), 7.33 (t, J = 7.5 Hz, 4H, Ar-H), 7.40 (t, J = 7.2 Hz, 2H, Ar-H), 7.47 (t, J = 7.4 Hz, 4H, 

Ar-H), 7.56 (dd, J = 18.1, 7.3 Hz, 8H, Ar-H), 8.20 (s, 4H, Ar-H), 12.77 (s, 2H, -NH). 13C 

NMR (101 MHz, DMSO-d6) δ (ppm): 125.86, 127.57, 128.69, 128.89, 129.16, 130.29, 

131.46, 135.57, 137.83, 145.63, 204.38, 204.39. MS (EI) m/z 514 (M+, Calc. 514.62). Anal. 

Calc.(Found) for C36H26N4 C, 84.02(83.69); H, 5.09(5.11); N, 10.89(10.85) %. 

 

3.6.6: 1,4-bis(4,5-bis(4-methoxyphenyl)-1H-imidazol-2-yl)benzene (BI6), yellow: 1.01 g 

(7.53 mmol) of terephthalaldehyde, 4.08 g (15.09 mmol) of anisil and 11.64 g (0.15 mol) 

of ammonium acetate. Yield = 1.82 g (38 %). Selected FTIR (ATR, cm-1): 1615s, 1518s, 

1498s, 1443s, 1294s, 1245s, 1174s, 1106s, 1032s, 971w, 830s, 713w, 592s, 527s. UV-Vis 

(MeCN, nm {ε /M-1 cm-1}): 239 {40 467}, 299 {35 163}, 366 {50 866}. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 3.76 (s, 6H, -OCH3), 3.81 (s, 6H, -OCH3), 6.90 (d, J = 8.8 Hz, 

4H, Ar-H), 7.03 (d, J = 8.7 Hz, 4H, Ar-H), 7.47 (dd, J = 22.0, 8.7 Hz, 8H, Ar-H), 8.15 (s, 

4H, Ar-H), 12.57 (s, 2H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 55.48, 55.66, 

114.11, 114.58, 123.92, 125.65, 127.87, 128.26, 128.67, 130.15, 130.24, 137.13, 144.99, 

158.42, 159.25. MS (ESI) m/z 635.26 (M+, Calc. 634.72). Anal. Calc.(Found) for 

C40H34N4O4 C, 75.69(75.36); H, 5.40(5.35); N, 8.83(8.93) %. 

 

3.6.7: 1,4-bis(1,4,5-triphenyl-1H-imidazol-2-yl)benzene (BI7), off-white: 1.02 g (7.60 

mmol) of terephthalaldehyde, 3.20 g (15.22 mmol) of benzil, 1.40 mL (1.43 g, 15.33 mmol) 

aniline and 3.55 g (46.06 mmol) of ammonium acetate. Yield = 0.31 g (6 %). Selected FTIR 

(ATR, cm-1): 1597w, 1496s, 1480w, 1444w, 1418w, 1372w, 1244w, 1075w, 1028w, 960s, 

916s, 846s, 763s, 693s, 650s, 524w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 240 {6 575}, 291 
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{6 749}, 329 {7 812}. 1H NMR (400 MHz, CD2Cl2) δ (ppm): 7.11 (dd, J = 8.0, 1.5 Hz, 4H, 

Ar-H), 7.20 – 7.34 (m, 25H, Ar-H), 7.54 – 7.60 (m, 5H, Ar-H). MS (ESI) m/z 667.286 (M+, 

Calc. 666.81). Anal. Calc.(Found) for C48H35N4O0.5 C, 85.31(85.13); H, 5.22(5.14); N, 

8.29(8.46) %. 
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3.7 Preparation of NNO and NNN imidazole-based ligands 

 

 

 

 

Scheme 3.2: (a) Synthetic pathway to NNO and NNN imines (b) List of prepared nitro-

imidazoles (c) List of prepared imidazole amines 
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Scheme 3.3: (a) List of prepared NNO imidazole imines (b) List of prepared NNN 

imidazole imines (c) Proposed mechanism for ring formation in NNN imines series. 
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3.7.1 Preparation of nitro-imidazoles (N1 – N9)  

 

The nitro-imidazoles (N1, N2, N3, N4, N8, and N9) were prepared using same 

procedure as the bis-imidazoles (BI1 – BI7), while the methyl derivatives (N5 – N7) were 

obtained via methylation of the N-H variants (N2 – N4). Detailed description (for the N-H 

and N-Ph members) is given with N2 (since N1 gave a solution after work-up, requiring a 

different handling, its procedure is also given). A full description (for the N-Me variants) 

is given with N5. More so, pure products for N1 and N4 were obtained after column 

chromatography (1:1 EtOAc:hexane). 

 

3.7.1.1: 4,5-diethyl-2-(2-nitrophenyl)-1H-imidazole (N1): 3.05 g (20.2 mmol) of 2-

nitrobenzaldehyde was weighed and transferred into a round-bottom flask. 7.4 mL (6.96 g, 

61.0 mmol) of 3,4-hexanedione and 31.11 g (0.40 moles) ammonium acetate were then 

added. The mixture obtained, upon adding 50 mL of acetic acid, was refluxed at ≈ 120oC. 

After cooling, the solution obtained was transferred into ≈ 200 mL of ice-cold water and 

ammonia solution added until pH > 7. A solution was obtained after work-up, shaken with 

DCM (3 x 60 mL) and the combined volume reduced under pressure. Column 

chromatography (1:1 EtOAc:hexane) of the material obtained gave brown products. Yield 

= 3.74 g (75%). Selected IR (ATR, cm-1): 3082w, 2971w, 2934w, 1594w, 1527s, 1479s, 

1452w, 1353s, 1302w, 852s, 782s. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 1.08 (t, J = 

7.5 Hz, 3H, -CH3), 1.18 (t, J = 7.6 Hz, 3H, -CH3), 2.40 (q, J = 7.5 Hz, 2H, -CH2), 2.56 (q, 

J = 7.5 Hz, 2H, -CH2), 7.44 – 7.56 (m, 1H, Ar-H), 7.69 (td, J = 7.6, 1.2 Hz, 1H, Ar-H), 7.79 

(d, J = 8.0 Hz, 2H, Ar-H), 12.12 (s, 1H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 

15.23, 15.30, 17.57, 20.07, 124.24, 124.41, 128.80, 129.24, 129.46, 132.19, 138.41, 139.68, 

148.39. MS (EI) m/z 245 (base peak, M+, Calc. 245.28), 230 (-CH3), 173, 134, 129, 104, 

79, 56, 29. 

 

3.7.1.2: 2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole (N2): 6.94 g (46.0 mmol) of 2-

nitrobenzaldehyde, 9.67 g (46.0 mmol) of benzil and 53.15 g (0.68 moles) of ammonium 

acetate were weighed and transferred into a round-bottom flask. The mixture obtained, upon 

adding 80 mL of acetic acid, was refluxed at ≈ 120oC. The solution obtained, after cooling, 
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was transferred into ≈ 200 mL of ice-cold water and ammonia solution added until pH > 7. 

The mixture obtained, after work-up, was filtered and dried in an oven at 70oC to afford a 

yellow product. Yield = 15.07 g (96%). Selected IR (ATR, cm-1): 3000w, 1586w, 1525s, 

1503w, 1482w, 1451w, 1353s, 1304w, 723s, 693s. 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 7.27 (dd, J = 23.2, 6.7 Hz, 3H, Ar-H), 7.39 – 7.54 (m, 7H, Ar-H), 7.64 (t, J = 7.7 

Hz, 1H, Ar-H), 7.79 (t, J = 7.6 Hz, 1H, Ar-H), 7.93 (d, J = 8.0 Hz, 1H, Ar-H), 8.00 (d, J = 

7.8 Hz, 1H, Ar-H), 12.97 (s, 1H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 123.88, 

124.49, 127.21, 127.46, 128.50, 128.74, 129.23, 130.00, 130.23, 131.10, 132.59, 135.17, 

137.99, 141.50, 148.80. MS (EI) m/z 341 (base peak, M+, Calc. 341.36), 264, 165, 134, 104, 

89, 79. 

 

3.7.1.3: 2-(2-nitrophenyl)-1H-phenanthro[9,10-d]imidazole (N3), light brown: 2-

nitrobenzaldehyde (4.09 g, 27.1 mmol), phenanthrene-9,10-dione (5.64 g, 27.1 mmol) and 

ammonium acetate (41.72 g, 0.54 moles). Yield = 5.40 g (59%). Selected IR (ATR, cm-1): 

3073b, 1617w, 1532s, 1453w, 1364s, 1281w, 1236w, 752s, 734s, 722s. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 7.60 – 7.81 (m, 5H, Ar-H), 7.93 (t, J = 7.4 Hz, 1H, Ar-H), 8.11 

(ddd, J = 18.2, 7.9, 0.9 Hz, 2H, Ar-H), 8.44 (d, J = 6.7 Hz, 2H, Ar-H), 8.88 (dd, J = 18.3, 

8.2 Hz, 2H, Ar-H), 13.77 (s, 1H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 122.30, 

122.38, 122.73, 124.25, 124.67, 124.74, 124.81, 125.87, 126.22, 127.26, 127.76, 128.01, 

128.17, 128.38, 130.98, 131.40, 133.09, 137.52, 145.23, 149.33. MS (ESI) m/z 339.2 (M+, 

Calc. 339.35), 338.2 (M - H, base peak). 

 

3.7.1.4: 4,5-bis(4-methoxyphenyl)-2-(2-nitrophenyl)-1H-imidazole (N4), orange: 2-

nitrobenzaldehyde (6.38 g, 42.2 mmol), anisil (11.41 g, 42.2 mmol) and ammonium acetate 

(48.81 g, 0.63 moles). Yield = 11.48 g (68%). Selected IR (ATR, cm-1): 3063w, 2840w, 

1614s, 1574w, 1518s, 1492s, 1465w, 1358s, 1244s, 1181s, 1108w, 832s, 722s. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm): 3.75 (s, 3H, -OCH3), 3.81 (s, 3H, -OCH3), 6.88 (d, J = 8.5 

Hz, 2H, Ar-H), 7.03 (d, J = 8.4 Hz, 2H, Ar-H), 7.41 (dd, J = 11.2, 8.7 Hz, 4H, Ar-H), 7.61 

(td, J = 8.0, 1.2 Hz, 1H, Ar-H), 7.77 (td, J = 7.7, 1.1 Hz, 1H, Ar-H), 7.90 (dd, J = 8.0, 0.9 

Hz, 1H, Ar-H), 7.97 (dd, J = 7.8, 1.0 Hz, 1H, Ar-H), 12.78 (s, 1H, -NH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 55.49, 55.66, 114.16, 114.65, 123.49, 123.93, 124.41, 127.82, 
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128.19, 128.54, 129.70, 129.99, 130.03, 132.46, 137.36, 140.71, 148.71, 158.54, 159.39. 

MS (EI) m/z 401 (base peak, M+, Calc. 401.41), 386, 267, 252, 222, 201, 134, 119, 79, 28. 

 

3.7.1.5: 1-methyl-2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole (N5): 7.50 g (54.3 

mmol) of K2CO3 was added to a yellow mixture of 6.18 g (18.1 mmol) N2, in 90 mL 

acetonitrile and the brown mixture obtained was heated to reflux for ≈ 30 minutes. Upon 

addition of 1.70 mL (3.88 g, 27.3 mmol) of iodomethane, the yellow mixture obtained was 

heated overnight. The mixture was cooled, filtered through silica and washed with EtOAc. 

The solvent volume was reduced under pressure and the solid obtained dried in an oven at 

60oC to afford a yellow product. Yield = 5.02 g (78%). Selected IR (ATR, cm-1): 3061w, 

1600w, 1575w, 1522s, 1462w, 1392s, 1341s, 1066w, 1001w, 788s, 745s, 691s. 1H NMR 

(400MHz, DMSO-d6) δ (ppm): 3.33 (s, 3H, -CH3), 7.14 (ddd, J = 7.3, 3.6, 1.2 Hz, 1H, Ar-

H), 7.34 – 7.40 (m, 2H, Ar-H), 7.18 – 7.25 (m, 2H, Ar-H), 7.46 (dd, J = 7.9, 1.6 Hz, 2H, 

Ar-H), 7.50 – 7.59 (m, 3H, Ar-H), 7.77 – 7.84 (m, 1H, Ar-H), 7.87 – 7.94 (m, 2H, Ar-H), 

8.14 – 8.20 (m, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 32.58, 125.02, 125.42, 

126.49, 126.79, 128.60, 129.41, 129.68, 130.47, 130.77, 131.11, 131.24, 132.74, 133.77, 

134.81, 137.14, 142.83, 149.84. MS (EI) m/z 355 (base peak, M+, Calc. 355.39), 307, 178, 

165, 118, 104, 77. 

 

3.7.1.6: 1-methyl-2-(2-nitrophenyl)-1H-phenanthro[9,10-d]imidazole (N6), yellow: N3 

(1.65 g, 4.9 mmol), K2CO3 (2.21 g, 14.6 mmol) and iodomethane (0.46 mL, 1.02 g, 7.2 

mmol). Yield = 1.72 g (96%). Selected IR (ATR, cm-1): 3062w, 1614w, 1575w, 1531s, 

1467s, 1352s, 1158w, 1089w, 854s, 784s, 749s, 724s. 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 4.16 (s, 3H, -CH3), 7.61 – 7.83 (m, 4H, Ar-H), 7.87 – 8.06 (m, 3H, Ar-H), 8.31 (d, 

J = 8.1 Hz, 1H, Ar-H), 8.48 (dd, J = 7.7, 1.6 Hz, 1H, Ar-H), 8.60 – 8.69 (m, 1H, Ar-H), 

8.89 (d, J = 7.4 Hz, 1H, Ar-H), 9.00 (d, J = 7.8 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-

d6) δ (ppm): 35.98, 122.23, 122.66, 123.89, 124.55, 125.37, 125.75, 126.02, 126.30, 126.49, 

127.45, 127.54, 128.15, 128.27, 128.35, 129.19, 132.38, 133.92, 134.71, 137.56, 148.44, 

150.11. MS (EI) m/z 353 (base peak, M+, Calc. 353.37), 305, 219, 176, 165, 151, 104, 43, 

28. 
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3.7.1.7: 4,5-bis(4-methoxyphenyl)-1-methyl-2-(2-nitrophenyl)-1H-imidazole (N7), 

golden-brown: N4 (7.07 g, 17.6 mmol), K2CO3 (7.30 g, 52.8 mmol) and iodomethane (1.64 

mL, 3.74 g, 26.3 mmol). Yield = 6.41 g (88%). Selected IR (ATR, cm-1): 3041w, 1615w, 

1578w, 1517s, 1493w, 1353s, 1248s, 1173s, 1028s, 830s, 754w. 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.30 (s, 3H, -CH3), 3.70 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 6.76 – 

6.86 (m, 2H, Ar-H), 7.11 (dd, J = 9.2, 2.3 Hz, 2H, Ar-H), 7.24 – 7.41 (m, 4H, Ar-H), 7.75 

– 7.82 (m, 1H, Ar-H), 7.83 – 7.93 (m, 2H, Ar-H), 8.14 (dd, J = 8.1, 0.6 Hz, 1H, Ar-H). 13C 

NMR (101 MHz, DMSO-d6) δ (ppm): 32.44, 55.42, 55.65, 114.05, 115.08, 122.82, 124.95 

125.58, 127.58, 127.60, 129.28, 131.03, 132.48, 132.65, 133.65, 136.97, 142.24, 149.85, 

158.25, 159.92. MS (EI) m/z 415 (M+, Calc. 415.44), 398, 353, 223, 208, 148 (base peak), 

133, 104, 76. 

 

3.7.1.8: 2-(2-nitrophenyl)-1,4,5-triphenyl-1H-imidazole (N8), golden-brown: 2-

nitrobenzaldehyde (6.86 g, 45.4 mmol), benzil (9.55 g, 45.4 mmol), aniline (4.14 mL, 4.22 

g, 45.4 mmol) and ammonium acetate (52.50 g, 0.68 moles). Yield = 17.88 g (94%). 

Selected IR (ATR, cm-1): 3065w, 1597w, 1514s, 1495s, 1346s, 1148w, 1071w, 747s, 693s. 

1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.14 (dd, J = 6.7, 3.0 Hz, 2H, Ar-H), 7.20 (d, J = 

7.2 Hz, 1H, Ar-H), 7.22 – 7.28 (m, 7H, Ar-H), 7.31 – 7.36 (m, 3H, Ar-H), 7.42 – 7.47 (m, 

2H, Ar-H), 7.58 – 7.72 (m, 3H, Ar-H), 7.99 (dd, J = 8.0, 1.1 Hz, 1H, Ar-H). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 124.73, 125.65, 126.81, 127.11, 128.61, 128.69, 129.02, 129.08, 

129.12, 129.48, 130.44, 131.05, 131.34, 133.19, 133.49, 134.51, 135.73, 137.66, 143.07, 

149.55. MS (ESI) m/z 418.4 (M + H, Calc. 417.47), 317.4, 215.2. 

 

3.7.1.9: 2-(2-nitrophenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (N9), golden-

brown: 2-nitrobenzaldehyde (6.25 g, 41.36 mmol), phenanthrene-9,10-dione (8.62 g, 41.40 

mmol), aniline (3.78 mL, 3.85 g, 41.41 mmol) and ammonium acetate (47.82 g, 0.62 moles). 

Yield = 14.60 g (85%). Selected IR (ATR, cm-1): 3000w, 1613w, 1597w, 1526s, 1494w, 

1367s, 1157w, 1038w, 752s, 708s. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.14 (d, J = 

7.9 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H, Ar-H), 7.57 – 7.63 (m, 6H, Ar-H), 7.77 (ddt, J = 15.4, 

13.5, 6.5 Hz, 5H, Ar-H), 8.11 (d, J = 8.0 Hz, 1H, Ar-H), 8.53 – 8.60 (m, 1H, Ar-H), 8.91 

(d, J = 8.2 Hz, 1H, Ar-H), 8.97 (d, J = 8.4 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6) 
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δ (ppm): 120.67, 122.44, 125.05, 127.27, 128.15, 128.99, 130.58, 131.69, 133.77, 137.23, 

149.41. MS (ESI) m/z 416.3 (M + H, Calc. 415.45), 317.2 (base peak), 215.1. 

 

3.7.2 Preparation of imidazole amines (A1 – A9) 

A general approach was adopted in the synthesis of A1 – A9 (a full description is 

given with A1). 

 

3.7.2.1: 2-(4,5-diethyl-1H-imidazol-2-yl)aniline (A1): 3.74 g (15.3 mmol) of N1 was 

weighed and transferred into a hydrogenation tube. Catalytic amount of 10%Pd/C was 

added followed by ≈ 50 mL of THF to obtain a mixture. The reduction was carried out using 

80 bars of hydrogen at ≈ 80oC for ≈ 2 hours. The mixture obtained was filtered through a 

pad of celite and washed with THF. The solvent volume was reduced under pressure and 

the solid obtained was filtered, washed with hexane and dried (in oven at 70oC) to afford a 

brown product. Yield = 2.83 g (86%). Selected IR (ATR, cm-1): 3460w, 3368w, 2965s, 

2870w, 1616s, 1604s, 1531s, 1461s, 742s, 653w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 231 

{7 942}, 249 {10 023}, 278 {7 426}, 336 {7 381}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

1.16 (q, J = 7.6 Hz, 6H, -CH3), 2.41 – 2.48 (m, 2H, -CH2), 2.53 – 2.62 (m, 2H, -CH2), 6.47 

– 6.59 (m, 1H, Ar-H), 6.69 (dd, J = 8.1, 0.8 Hz, 1H, Ar-H), 6.86 (s, 2H, -NH2), 6.93 – 7.02 

(m, 1H, Ar-H), 7.58 (dd, J = 7.8, 1.2 Hz, 1H, Ar-H), 11.66 (s, 1H, -NH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 15.31, 15.58, 17.48, 20.07, 112.58, 115.19, 115.95, 125.73, 

126.73, 128.33, 136.72, 144.50, 146.61. MS (EI) m/z 215 (base peak, M+, Calc. 215.29), 

200 (-CH3), 159, 119, 65, 28. 

 

3.7.2.2: 2-(4,5-diphenyl-1H-imidazol-2-yl)aniline (A2), off-white: N2 (4.28 g, 12.5 

mmol). Yield = 3.72 g (67%). Selected IR (ATR, cm-1): 3463w, 3360w, 3056b, 1617s, 

1601s, 1534s, 1459w, 765s, 743s, 695s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 225 {34 584}, 

294 {17 321}, 340 {17 761}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.60 (t, J = 7.5 Hz, 

1H, Ar-H), 6.80 (d, J = 8.2 Hz, 1H, Ar-H), 6.98 (s, 2H, -NH2), 7.07 (dd, J = 11.2, 4.1 Hz, 

1H, Ar-H), 7.23 (t, J = 7.3 Hz, 1H, Ar-H), 7.32 (t, J = 7.5 Hz, 2H, Ar-H), 7.39 (t, J = 7.2 

Hz, 1H, Ar-H), 7.45 (t, J = 7.4 Hz, 2H, Ar-H), 7.54 (t, J = 7.3 Hz, 4H, Ar-H), 7.84 (d, J = 

7.9 Hz, 1H, Ar-H), 12.46 (s, 1H, -NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 111.46, 
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115.37, 116.22, 126.79, 126.96, 127.15, 127.26, 128.76, 129.10, 129.15, 129.39, 131.46, 

135.42, 135.73, 147.10, 147.23. MS (EI) m/z 311 (base peak, M+, Calc. 311.38), 207, 165. 

 

3.7.2.3: 2-(1H-phenanthro[9,10-d]imidazol-2-yl)aniline (A3), ash: N3 (2.88 g, 8.5 

mmol). Yield = 2.24 g (85%). Selected IR (ATR, cm-1): 3369w, 3207w, 1614s, 1513s, 

1486s, 1427s, 750s, 721s, 661w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 231 {62 142}, 248 

{54 955}, 262 {49 258}, 307 {15 145}, 356 {21 081}, 373 {20 274}. 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 6.74 (t, J = 7.3 Hz, 1H, Ar-H), 6.92 (d, J = 7.9 Hz, 1H, Ar-H), 7.15 – 

7.22 (m, 1H, Ar-H), 7.33 (s, 2H, -NH2), 7.59 – 7.68 (m, 2H, Ar-H), 7.75 (dd, J = 16.1, 8.0 

Hz, 2H, Ar-H), 8.08 (d, J = 7.1 Hz, 1H, Ar-H), 8.61 (dd, J = 21.7, 7.9 Hz, 2H, Ar-H), 8.86 

(dd, J = 12.5, 8.5 Hz, 2H, Ar-H), 13.21 (s, 1H, -NH). 13C NMR (101 MHz, DMSO-d6) δ 

(ppm): 111.16, 115.44, 116.63, 122.27, 122.65, 124.19, 124.52, 125.48, 125.70, 126.55, 

126.98, 127.49, 127.57, 127.62, 127.84, 128.06, 130.35, 136.27, 148.15, 150.80. MS (ESI) 

m/z 310.3 (M + H, Calc. 309.36). 

 

3.7.2.4: 2-(4,5-bis(4-methoxyphenyl)-1H-imidazol-2-yl)aniline (A4), ash: N4 (12.36 g, 

30.8 mmol). Yield = 10.08 g (88%). Selected IR (ATR, cm-1): 3465w, 3355w, 2953w, 

1615s, 1516s, 1495s, 1460w, 833s, 796w, 745s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 236 

{32 662}, 289 {19 228}, 343 {16 691}. 1H NMR (400MHz, DMSO-d6) δ (ppm): 3.75 (s, 

3H, -OCH3), 3.81 (s, 3H, -OCH3), 6.50 – 6.63 (m, 1H, Ar-H), 6.78 (dd, J = 8.1, 0.8 Hz, 1H, 

Ar-H), 6.89 (d, J = 8.8 Hz, 2H, Ar-H), 6.97 (s, 2H, -NH2), 6.99 – 7.09 (m, 3H, Ar-H), 7.44 

(dd, J = 10.3, 8.8 Hz, 4H, Ar-H), 7.81 (dd, J = 7.9, 1.2 Hz, 1H, Ar-H), 12.28 (s, 1H, -NH). 

13C NMR (101 MHz, DMSO-d6) δ (ppm): 55.49, 55.65, 111.71, 114.21, 114.54, 115.34, 

116.16, 123.88, 126.02, 126.63, 128.14, 128.36, 129.14, 130.39, 135.05, 146.43, 147.11, 

158.36, 159.26. MS (EI) m/z 371 (base peak, M+, Calc. 371.43), 356 ([M – NH2]
+, Calc. 

355.41), 186, 167, 134, 104, 77, 28. 

 

3.7.2.5: 2-(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)aniline (A5), ash: N5 (2.32 g, 6.5 

mmol). Yield = 1.97 g (93%). Selected IR (ATR, cm-1): 3438s, 3350w, 1614s, 1599s, 1487s, 

1440w, 771s, 759s, 697s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 283 {16 928}. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 3.38 (s, 3H, -CH3), 5.87 (s, 2H, -NH2), 6.67 (t, J = 7.4 Hz, 1H, 
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Ar-H), 6.86 (d, J = 8.0 Hz, 1H, Ar-H), 7.11 – 7.19 (m, 2H, Ar-H), 7.23 (t, J = 7.5 Hz, 2H, 

Ar-H), 7.34 (dd, J = 7.7, 1.2 Hz, 1H, Ar-H), 7.41 – 7.46 (m, 2H, Ar-H), 7.53 (ddd, J = 18.3, 

9.6, 4.7 Hz, 5H, Ar-H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 33.48, 113.58, 115.85, 

116.01, 126.60, 128.58, 129.10, 129.52, 129.97, 130.05, 130.35, 131.17, 131.39, 135.21, 

136.03, 146.26, 147.96. MS (EI) m/z 325 (base peak, M+, Calc. 325.41), 309 ([M – NH2]
+, 

Calc. 309.39), 165, 118, 103, 89, 77, 28. 

 

3.7.2.6: 2-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)aniline (A6), ash: N6 (1.65 g, 

4.7 mmol). Yield = 1.29 g (85%). Selected IR (ATR, cm-1): 3429b, 3319w, 1615s, 1506w, 

1485w, 1459w, 745s, 720s, 694w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 258 {56 696}, 284 

{15 197}, 308 {12 562}, 358 {7 309}.  1H NMR (400 MHz, DMSO-d6) δ (ppm): 4.19 (s, 

3H, -CH3), 5.78 (s, 2H, -NH2), 6.75 (t, J = 7.4 Hz, 1H, Ar-H), 6.92 (d, J = 8.2 Hz, 1H, Ar-

H), 7.25 (t, J = 7.7 Hz, 1H, Ar-H), 7.39 (d, J = 7.6 Hz, 1H, Ar-H), 7.61 – 7.82 (m, 4H, Ar-

H), 8.60 (t, J = 8.1 Hz, 2H, Ar-H), 8.86 (d, J = 8.3 Hz, 1H, Ar-H), 8.97 (d, J = 8.3 Hz, 1H, 

Ar-H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 36.21, 113.23, 116.04, 116.07, 121.83, 

122.28, 123.71, 124.05, 124.85, 125.41, 125.78, 127.15, 127.20, 127.50, 127.70, 127.85, 

128.51, 130.83, 131.46, 136.73, 148.40, 151.44. MS (EI) m/z 323 (M+, Calc. 323.39), 307 

([M – NH2]
+, Calc. 307.38), 231, 204, 190, 176, 162. 

 

3.7.2.7: 2-(4,5-bis(4-methoxyphenyl)-1-methyl-1H-imidazol-2-yl)aniline (A7), off-

white: N7 (6.12 g, 14.7 mmol). Yield = 4.52 g (80%). Selected IR (ATR, cm-1): 3428w, 

1617s, 1517s, 1490s, 1249s, 832s, 744s, 680w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 240 

{15 274}, 284 {10 371}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.35 (s, 3H, -CH3), 3.71 

(s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 5.86 (s, 2H, -NH2), 6.66 (dd, J = 11.4, 4.3 Hz, 1H, 

Ar-H), 6.83 (t, J = 8.5 Hz, 3H, Ar-H), 7.05 – 7.18 (m, 3H, Ar-H), 7.31 (dd, J = 7.7, 1.3 Hz, 

1H, Ar-H), 7.35 – 7.42 (m, 4H, Ar-H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 33.35, 

55.42, 55.63, 113.79, 114.06, 114.95, 115.82, 115.97, 123.44, 127.66, 127.96, 129.86, 

130.20, 132.53, 135.75, 145.68, 147.89, 158.11, 159.74. MS (EI) m/z 385 (base peak, M+, 

Calc. 385.45), 369 ([M – NH2]
+, Calc. 369.44), 311, 193, 165, 148, 133, 113, 106, 77. 
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3.7.2.8: 2-(1,4,5-triphenyl-1H-imidazol-2-yl)aniline (A8), off-white: N8 (6.54 g, 39.6 

mmol). Yield = 10.71 g (70%). Selected IR (ATR, cm-1): 3478w, 3284w, 1613s, 1596s, 

1486s, 1443w, 747w, 693s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 278 {14 050}. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm): 6.11 (s, 2H, -NH2), 6.20 – 6.26 (m, 1H, Ar-H), 6.63 (dd, J 

= 7.8, 1.3 Hz, 1H, Ar-H), 6.76 (d, J = 7.6 Hz, 1H, Ar-H), 6.91 – 6.99 (m, 1H, Ar-H), 7.14 

– 7.21 (m, 3H, Ar-H), 7.22 – 7.34 (m, 10H, Ar-H), 7.46 – 7.50 (m, 2H, Ar-H). 13C NMR 

(101 MHz, DMSO-d6) δ (ppm): 112.90, 115.17, 115.99, 126.71, 126.89, 128.68, 128.83, 

128.90, 129.07, 129.40, 129.58, 129.95, 130.50, 130.98, 131.66, 134.79, 136.20, 137.30, 

145.67, 148.23. MS (EI) m/z 387 (base peak, M+, Calc. 387.48), 371 ([M – NH2]
+, Calc. 

371.46), 310, 283, 267, 193, 180, 165, 77. 

 

3.7.2.9: 2-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)aniline (A9), off-white: N9 

(4.16 g, 10.0 mmol). Yield = 3.17 g (82%). Selected IR (ATR, cm-1): 3445w, 3308w, 1612s, 

1489s, 1452s, 1383s, 772s, 723s, 698s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 257 {75 059}, 

307 {25 250}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 5.93 (s, 2H, -NH2), 6.28 – 6.39 (m, 

1H, Ar-H), 6.77 (d, J = 7.7 Hz, 1H, Ar-H), 6.96 (dd, J = 7.8, 1.3 Hz, 1H, Ar-H), 6.99 – 7.05 

(m, 1H, Ar-H), 7.09 (d, J = 7.8 Hz, 1H, Ar-H), 7.33 (t, J = 7.4 Hz, 1H, Ar-H), 7.51 – 7.58 

(m, 1H, Ar-H), 7.60 – 7.71 (m, 6H, Ar-H), 7.78 (t, J = 7.2 Hz, 1H, Ar-H), 8.67 (dd, J = 7.9, 

1.0 Hz, 1H, Ar-H), 8.88 (d, J = 8.3 Hz, 1H, Ar-H), 8.93 (d, J = 8.3 Hz, 1H, Ar-H). 13C NMR 

(400MHz, DMSO-d6) δ (ppm): 113.18, 115.19, 115.87, 120.75, 122.47, 122.96, 124.10, 

124.92, 125.51, 126.08, 127.03, 127.06, 127.36, 127.89, 128.03, 128.81, 129.49, 130.29, 

130.43, 130.75, 136.48, 138.73, 148.69, 150.40. MS (ESI) m/z 386.3 (M + H, Calc. 385.46), 

355.4. 

 

3.7.3 Preparation of imidazole imines (I1 – I9) and (IN2 – IN4) 

The imidazole imines (NNO as well as NNN series) were prepared using similar 

procedure. Description of the procedure is made with I1 (for the NNO series) and IN2 (for 

the NNN series). IN2c.H+, IN2v.MeOH and IN2v {Scheme 3.3(c)} were obtained from a 

failed attempt to prepare the complexes of IN2. 
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3.7.3.1: (E)-2-(((2-(4,5-diethyl-1H-imidazol-2-yl)phenyl)imino)methyl)phenol (I1): 

0.20 mL (0.2292 g, 1.9 mmol) of salicylaldehyde was added to a 20 mL hot MeOH solution 

of 0.4033 g (1.9 mmol) of A1. The set up was heated at 70oC for ≈ 4hrs and the mixture 

obtained was filtered, washed with MeOH and dried to afford a white product. Yield = 

0.4874 g (81%). Selected FTIR (ATR, cm-1): 3383s, 2956w, 2697w, 2572w, 1616w, 1588s, 

1493s, 1462s, 1434w, 1240s, 1203w, 1092s, 1049s, 748s, 709s, 637w. UV-Vis (MeCN, nm 

{ε /M-1 cm-1}): 256 {3 601}, 280 {3 259}, 334 {3 608}. 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 0.85 (t, J = 7.5 Hz, 3H, -CH3), 1.17 (t, J = 7.5 Hz, 3H, -CH3), 6.14 (d, J = 6.7 Hz, 

1H, Ar-H), 6.56 (t, J = 7.4 Hz, 1H, Ar-H), 6.68 (dd, J = 14.0, 6.3 Hz, 2H, Ar-H), 6.73 – 

6.80 (m, 2H, Ar-H), 6.87 (d, J = 7.9 Hz, 1H, Ar-H), 6.98 (t, J = 7.1 Hz, 1H, Ar-H), 7.06 (t, 

J = 7.1 Hz, 1H, Ar-H), 7.64 (d, J = 7.0 Hz, 1H, Ar-H), 10.10 (s, 1H, -OH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 16.01, 20.44, 62.50, 114.58, 115.27, 115.92, 118.46, 119.37, 

122.40, 125.90, 127.80, 129.06, 129.80, 140.32, 140.78, 153.77. MS (EI) m/z 319 (M+, 

Calc. 319.40), 302 (-OH), 226 (loss of -PhOH), 200 (loss of -N=CHPhOH), 185 (base 

peak), 160, 129, 65. Anal. Calc.(Found) for C20H21N3O: C, 75.21 (74.46); H, 6.63 (6.74); 

N, 13.16 (13.17) %. 

 

3.7.3.2: (E)-2-(((2-(4,5-diphenyl-1H-imidazol-2-yl)phenyl)imino)methyl)phenol (I2), 

ash: 1.37 mL (1.57 g, 12.9 mmol) of salicylaldehyde and 4.00 g (12.9 mmol) of A2. Yield 

= 4.82 g (90%). Selected IR (ATR, cm-1): 3387s, 3045w, 1616w, 1603s, 1588w, 1538w, 

1490w, 1480w, 1463w, 1343w, 1295w, 1277w, 1242s, 1013s, 750s, 735w, 691s. UV-Vis 

(MeCN, nm {ε /M-1 cm-1}): 253 {15 437}, 282 {13 955}, 334 {10 637}. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 6.23 (dd, J = 7.6, 1.3 Hz, 1H, Ar-H), 6.53 (d, J = 1.8 Hz, 1H, 

Ar-H), 6.59 (t, J = 7.5 Hz, 1H, Ar-H), 6.80 (ddd, J = 16.1, 15.2, 7.7 Hz, 4H, Ar-H), 7.01 – 

7.20 (m, 5H, Ar-H), 7.24 (t, J = 7.4 Hz, 2H, Ar-H), 7.34 – 7.43 (m, 3H, Ar-H), 7.46 – 7.54 

(m, 2H, Ar-H), 7.88 (dd, J = 7.6, 1.1 Hz, 1H, Ar-H), 9.92 (s, 1H, -N=CH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 63.64, 114.03, 115.76, 115.82, 118.84, 119.21, 123.21, 125.54, 

126.66, 126.74, 126.90, 127.05, 128.61, 129.23, 129.39, 129.89, 130.10, 130.65, 134.87, 

138.32, 141.57, 142.57. MS (EI) m/z 415 (M+, Calc. 415.49), 322 (loss of -PhOH), 311, 296 

(base peak, loss of -N=CHPhOH), 208, 165, 89, 28. Anal. Calc.(Found) for C28H21N3O: C, 

80.94 (80.91); H, 5.09 (5.08); N, 10.11 (10.14) %. 
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3.7.3.3: (E)-2-(((2-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl)imino)methyl)phenol 

(I3), white: 0.33 mL (0.38 g, 3.1 mmol) of salicylaldehyde and 1.01 g (3.1 mmol) of A3. 

Yield = 1.00 g (75%). Selected FTIR (ATR, cm-1): 3375w, 3053w, 1610s, 1591w, 1538s, 

1513w, 1484w, 1473s, 1453w, 1430s, 1400s, 1362w, 1323w, 1295s, 1154s, 1103s, 1047w, 

744s, 718s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 255 {21 372}, 310 {6 307}, 358 {5 695}, 

374 {6 082}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.20 (dd, J = 7.7, 1.5 Hz, 1H, Ar-

H), 6.39 – 6.48 (m, 1H, Ar-H), 6.84 – 6.94 (m, 2H, Ar-H), 6.98 (dd, J = 8.1, 1.1 Hz, 1H, 

Ar-H), 7.01 – 7.08 (m, 1H, Ar-H), 7.16 – 7.26 (m, 2H, Ar-H), 7.52 – 7.60 (m, 2H, Ar-H), 

7.67 (ddd, J = 8.4, 7.1, 1.5 Hz, 1H, Ar-H), 7.74 – 7.81 (m, 1H, Ar-H), 7.92 (d, J = 1.9 Hz, 

1H, Ar-H), 8.05 – 8.13 (m, 2H, Ar-H), 8.70 (dd, J = 8.0, 1.2 Hz, 1H, Ar-H), 8.84 (d, J = 8.4 

Hz, 1H, Ar-H), 8.90 (dd, J = 6.3, 3.4 Hz, 1H, Ar-H), 10.52 (s, 1H, -OH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 64.77, 113.47, 115.73, 116.25, 118.89, 119.65, 121.21, 122.63, 

122.85, 124.08, 124.37, 124.48, 124.91, 125.42, 125.55, 126.19, 126.65, 127.00, 127.54, 

127.84, 128.06, 128.47, 130.22, 131.30, 138.49, 141.81, 146.45, 153.86. MS (EI) m/z 413 

(M+, Calc. 413.47), 369, 320 (loss of -PhOH), 294 (base peak, loss of -N=CHPhOH), 207, 

190, 45, 31. Anal Calc.(Found) for C28H19N3O: C, 81.34 (80.31); H, 4.63 (4.79); N, 10.16 

(10.01) %. 

 

3.7.3.4: (E)-2-(((2-(4,5-bis(4-methoxyphenyl)-1H-imidazol-2-

yl)phenyl)imino)methyl)phenol (I4), white: 1.15 mL (1.32 g, 10.80 mmol) of 

salicylaldehyde and 4.01 g (10.80 mmol) of A4. Yield = 4.57 g (89%). Selected FTIR (ATR, 

cm-1): 3371s, 3027w, 1612s, 1588w, 1489s, 1460s, 1439w, 1238s, 1176s, 1107s, 1059w, 

1030s, 748s, 709w, 637w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 283 {23 650}, 339 {16 

634}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.72 (s, 3H, -OCH3), 3.77 (s, 3H, -OCH3), 

6.20 (dd, J = 7.6, 1.2 Hz, 1H, Ar-H), 6.48 (d, J = 2.2 Hz, 1H, Ar-H), 6.59 (t, J = 7.4 Hz, 

1H, Ar-H), 6.71 (d, J = 2.1 Hz, 1H, Ar-H), 6.73 – 6.86 (m, 5H, Ar-H), 6.92 (d, J = 8.8 Hz, 

2H, Ar-H), 7.05 (ddd, J = 14.9, 10.7, 5.0 Hz, 4H, Ar-H), 7.38 – 7.49 (m, 2H, Ar-H), 7.84 

(dd, J = 7.6, 1.0 Hz, 1H, Ar-H), 9.90 (s, 1H, -N=CH). 13C NMR (101 MHz, DMSO-d6) δ 

(ppm): 55.45, 55.55, 63.53, 114.06, 114.26, 114.81, 115.71, 115.82, 118.80, 119.20, 122.13, 

123.05, 125.39, 125.59, 127.22, 127.66, 127.85, 129.81, 132.05, 138.16, 141.48, 142.06, 
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153.73, 158.35, 159.73, 206.93. MS (ESI) m/z 476.3 (M + H+, Calc. 475.54). Anal. 

Calc.(Found) for C30H25N3O3: C, 75.77 (75.77); H, 5.30 (5.18); N, 8.84 (9.14) %. 

 

3.7.3.5: (E)-2-(((2-(1-methyl-4,5-diphenyl-1H-imidazol-2-

yl)phenyl)imino)methyl)phenol (I5), white: 0.33 mL (0.38 g, 3.1 mmol) of 

salicylaldehyde and 1.01 g (3.1 mmol) of A5. Yield = 1.00 g (75%). Selected FTIR (ATR, 

cm-1): 3059w, 1616s, 1569w, 1526w, 1503w, 1478w, 1441w, 1278s, 1228w, 1184s, 1154s, 

1072w, 1030w, 763s, 696s, 634w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 238 {16 448}, 274 

{29 052}, 340 {10 875}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.15 (s, 3H, -CH3), 6.98 

(dd, J = 15.2, 7.8 Hz, 2H, Ar-H), 7.09 – 7.15 (m, 1H, Ar-H), 7.20 (t, J = 7.5 Hz, 2H, Ar-H), 

7.40 – 7.57 (m, 9H, Ar-H), 7.63 – 7.73 (m, 4H, Ar-H), 9.09 (s, 1H, -N=CH), 12.67 (s, 1H, 

-OH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 32.56, 117.17, 118.77, 119.68, 119.76, 

126.47, 126.51, 127.11, 127.64, 128.51, 129.22, 129.61, 130.13, 131.06, 131.25, 131.44, 

132.03, 133.32, 134.10, 135.27, 136.72, 145.84, 147.33, 160.77, 164.45. MS (ESI) m/z 

430.4 (M+, Calc. 429.51). Anal. Calc.(Found) for C29H23N3O: C, 81.09 (80.64); H, 5.40 

(5.37); N, 9.78 (9.76) %. 

 

3.7.3.6: (E)-2-(((2-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-

yl)phenyl)imino)methyl)phenol (I6), brown: 0.35 mL (0.40 g, 3.3 mmol) of 

salicylaldehyde and 1.04 g (3.2 mmol) of A6. Yield = 1.07 g (78%). Selected FTIR (ATR, 

cm-1): 3062w, 1613s, 1578w, 1564w, 1535w, 1448s, 1377w, 1332w, 1278s, 1181s, 1112w, 

1091w, 1062w, 1038w, 750s, 725s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 257 {70 159}, 282 

{26 699}, 341 {11 242}, 356 {10 271}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 4.04 (s, 

3H, -CH3), 6.67 (d, J = 8.2 Hz, 1H, Ar-H), 6.88 – 6.95 (m, 1H, Ar-H), 7.23 – 7.33 (m, 1H, 

Ar-H), 7.53 – 7.60 (m, 1H, Ar-H), 7.69 (dddd, J = 14.1, 12.9, 6.9, 2.0 Hz, 8H, Ar-H), 8.52 

– 8.60 (m, 2H, Ar-H), 8.88 (d, J = 8.2 Hz, 1H, Ar-H), 8.99 (d, J = 7.6 Hz, 1H, Ar-H), 9.13 

(s, 1H, -N=CH), 12.37 (s, 1H, -OH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 35.56, 

117.00, 118.91, 119.64, 121.67, 122.35, 123.65, 124.05, 124.89, 125.58, 125.88, 126.62, 

126.88, 127.38, 127.66, 127.70, 127.75, 127.89, 128.64, 131.84, 132.47, 133.28, 134.06, 

137.11, 147.82, 150.73, 160.54, 164.79. MS (EI) m/z 427 (M+, Calc. 427.50), 307 (base 
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peak, loss of -N=CHPhOH), 260, 229, 214, 190, 153, 28. Anal. Calc.(Found) for 

C29H21N3O: C, 81.48 (80.98); H, 4.95 (4.96); N, 9.83 (9.73) %. 

 

3.7.3.7: (E)-2-(((2-(4,5-bis(4-methoxyphenyl)-1-methyl-1H-imidazol-2-

yl)phenyl)imino)methyl)phenol (I7), orange: 0.58 mL (0.66 g, 5.4 mmol) of 

salicylaldehyde and 2.08 g (5.4 mmol) of A7. Yield = 1.58 g (60%). Selected FTIR (ATR, 

cm-1): 3046w, 1614s, 1564w, 1519s, 1492s, 1460s, 1389w, 1279s, 1247s, 1176s, 1110w, 

1032s, 833s, 752s, 690w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 232 {35 453}, 276 {34 582}, 

338 {10 392}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.11 (s, 3H, -CH3), 3.70 (s, 3H, -

OCH3), 3.83 (s, 3H, -OCH3), 6.80 (d, J = 8.8 Hz, 2H, Ar-H), 6.98 (dd, J = 15.9, 8.0 Hz, 2H, 

Ar-H), 7.09 (d, J = 8.7 Hz, 2H, Ar-H), 7.34 – 7.52 (m, 6H, Ar-H), 7.60 – 7.74 (m, 4H, Ar-

H), 9.09 (s, 1H, -N=CH), 12.69 (s, 1H, -OH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 

32.46, 55.41, 55.62, 113.98, 115.04, 117.17, 118.74, 119.67, 119.75, 123.47, 127.33, 

127.55, 127.62, 128.06, 128.88, 131.09, 132.01, 132.41, 133.33, 134.07, 136.53, 145.30, 

147.21, 158.07, 159.81, 160.75, 164.38. MS (ESI) m/z 490.4 (M+, Calc. 489.56). Anal. 

Calc.(Found) for C31H27N3O3: C, 76.05 (75.35); H, 5.96 (5.51); N, 8.58 (8.63) %. 

 

3.7.3.8: (E)-2-(((2-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)imino)methyl)phenol (I8), 

yellow: 1.15 mL (1.32 g, 10.79 mmol) of salicylaldehyde and 4.16 g (10.74 mmol) of A8. 

Yield = 3.79 g (72%). Selected FTIR (ATR, cm-1): 3059w, 1617s, 1599w, 1570s, 1495s, 

1479w, 1393s, 1373w, 1274s, 1227w, 1187s, 1103s, 1030s, 754s, 692s. UV-Vis (MeCN, 

nm {ε /M-1 cm-1}): 274 {34 018}, 339 {10 585}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

6.86 – 6.90 (m, 2H, Ar-H), 6.96 (ddd, J = 9.8, 8.3, 5.9 Hz, 4H, Ar-H), 7.08 (t, J = 7.4 Hz, 

1H, Ar-H), 7.17 – 7.20 (m, 1H, Ar-H), 7.21 – 7.26 (m, 4H, Ar-H), 7.33 (ddd, J = 7.0, 6.3, 

1.3 Hz, 4H, Ar-H), 7.37 – 7.42 (m, 2H, Ar-H), 7.51 (qd, J = 4.7, 2.5 Hz, 4H, Ar-H), 7.66 

(dd, J = 7.6, 1.3 Hz, 1H, Ar-H), 8.60 (s, 1H, -N=CH), 12.61 (s, 1H, -OH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 117.12, 118.56, 119.58, 119.84, 126.72, 126.80, 126.83, 127.08, 

127.31, 128.04, 128.27, 128.59, 128.68, 128.78, 128.87, 129.10, 129.40, 130.26, 131.12, 

131.40, 131.66, 132.30, 133.21, 133.97, 134.96, 136.32, 137.07, 145.57, 147.52, 160.67, 

163.95. MS (ESI) m/z 514.3 (M + Na+, Calc. 514.57), 492.3 (M + H+, Calc. 492.59). Anal. 

Calc.(Found) for C34H25N3O: C, 83.07 (82.56); H, 5.13 (5.09); N, 8.55 (8.96) %. 
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3.7.3.9: (E)-2-(((2-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-

yl)phenyl)imino)methyl)phenol (I9), ash: 0.29 mL (0.33 g, 2.7 mmol) of salicylaldehyde 

and 1.02 g (2.7 mmol) of A9. Yield = 1.11 g (85%). Selected FTIR (ATR, cm-1): 3062w, 

1614s, 1595w, 1565s, 1530w, 1509s, 1492w, 1380s, 1348w, 1276s, 1226w, 1184w, 1152s, 

1092w, 1047w, 751s, 722s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 257 {64 265}, 282 {24 

143}, 339 {9 085}, 354 {8 508}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.69 (d, J = 8.1 

Hz, 1H, Ar-H), 6.90 – 6.97 (m, 1H, Ar-H), 7.11 (d, J = 7.6 Hz, 1H, Ar-H), 7.27 – 7.37 (m, 

3H, Ar-H), 7.38 – 7.47 (m, 4H, Ar-H), 7.48 – 7.61 (m, 5H, Ar-H), 7.63 – 7.71 (m, 2H, Ar-

H), 7.76 (t, J = 7.1 Hz, 1H, Ar-H), 8.64 (dd, J = 7.9, 1.2 Hz, 1H, Ar-H), 8.86 (s, 1H, -

N=CH), 8.91 (d, J = 8.2 Hz, 1H, Ar-H), 8.96 (d, J = 8.4 Hz, 1H, Ar-H), 12.55 (s, 1H, -OH). 

13C NMR (101 MHz, DMSO-d6) δ (ppm): 117.05, 119.68, 120.63, 124.11, 125.00, 127.10, 

127.32, 127.92, 128.72, 130.11, 131.49, 133.27, 133.97, 137.75, 147.74, 150.32, 160.54, 

164.25. MS (EI) m/z 489 (M+, Calc. 489.57), 385, 369 (base peak, loss of -N=CHPhOH), 

245, 184, 165, 28. Anal. Calc.(Found) for C34H23N3O: C, 83.41 (83.10); H, 4.74 (4.78); N, 

8.58 (8.61) %. 

 

3.7.3.10: (E)-2-(4,5-diphenyl-1H-imidazol-2-yl)-N-(pyridin-2-ylmethylene)aniline 

(IN2): 1.24 mL (1.39 g, 13.0 mmol) of pyridine-2-carboxaldehyde was added to a 70 mL 

MeOH solution of 4.03 g (12.9 mmol) of A2. The set up was heated at 70oC for ≈ 3hrs. The 

solid obtained on cooling, was filtered, washed with MeOH and dried in an oven at ≈ 70oC 

to afford an ash product. Yield = 3.78 g (73%). Selected FTIR (ATR, cm-1): 3205s (N-H), 

1622s (C=C, C=N), 1602w, 1584s, 1510s, 1479s, 1432s, 1411w, 1320s, 740s, 696s, 643w. 

UV-Vis (MeCN, nm {ε /M-1 cm-1}): 286 {18 435}, 338 {13 950}. 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 6.30 - 6.31 (d, J = 6.31, 1H, Ar-H), 6.73 - 6.81 (m, J = 6.77, 3H, Ar-

H), 7.08 - 7.26 (m, J = 7.17, 7H, Ar-H), 7.36 - 7.41 (m, J = 7.38, 3H, Ar-H), 7.45 (d, 1H, 

Ar-H), 7.50 - 7.52 (d, J = 7.51, 2H, Ar-H), 7.63 - 7.68 (td, J = 7.65, 1H, Ar-H), 7.84 – 7.86 

(d, J = 7.85, 1H, Ar-H), 8.41 - 8.42 (d, J = 8.41, 1H, Ar-H). 13C NMR (101 MHz, DMSO-

d6) δ (ppm): 68.90, 114.13, 115.27, 118.88, 119.95, 123.27, 123.99, 126.69, 126.87, 127.07, 

128.60, 129.27, 129.42, 130.17, 130.83, 134.87, 137.66, 138.20, 141.32, 142.06, 149.77, 

158.85. MS (EI) m/z 400 (M+, calc. 400.47), 322 (base peak, loss of Py), 295, 165. Anal 

Calc.(Found) for C27H20N4: C, 80.98 (80.56); H, 5.03 (4.97); N, 13.99 (13.95) %. 
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3.7.3.11: (E)-2-(1H-phenanthro[9,10-d]imidazol-2-yl)-N-(pyridin-2-

ylmethylene)aniline (IN3), off-white powder: 0.17 mL (0.19 g, 1.8 mmol) of pyridine-2-

carboxaldehyde and 0.54 g (1.8 mmol) of A3. Yield = 0.51 g (73%). Selected FTIR (ATR, 

cm-1): 3172w (N-H), 1616w (C=C, C=N), 1590w, 1523s, 1477s, 1434w, 1355w, 1325w, 

742s, 718s, 614s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 253 {50 393}, 311 {12 451}, 374 

{15 756}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.84 – 6.88 (dd, J = 6.85, 1H, Ar-H), 

6.91 – 6.93 (d, J = 6.92, 1H, Ar-H), 7.15 – 7.25 (m, J = 7.22, 3H, Ar-H), 7.56 – 7.59 (m, J 

= 7.58, 2H, Ar-H), 7.65 – 7.77 (tdd, J = 7.58, 2H, Ar-H), 7.75 – 7.78 (m, J = 7.76, 2H, Ar-

H), 7.82 – 7.84 (d, J = 7.82, 1H, Ar-H), 8.04 – 8.06 (dd, J = 8.05, 1H, Ar-H), 8.26 – 8.28 

(dd, J = 8.27, 1H, Ar-H), 8.41 – 8.43 (dd, J = 8.42, 1H, Ar-H), 8.67 – 8.70 (dd, J = 8.69, 

1H, Ar-H), 8.83 – 8.85 (d, J = 8.84, 1H, Ar-H), 8.91 – 8.89 (dd, J = 8.90, 1H, -NH). 13C 

NMR (101 MHz, DMSO-d6) δ (ppm): 70.12, 114.04, 115.45, 119.08, 120.39, 121.72, 

122.60, 122.84, 124.05, 124.22, 124.55, 124.84, 125.02, 125.41, 126.12, 127.06, 127.56, 

127.80, 128.07, 128.44, 131.26, 138.05, 138.39, 141.74, 146.23, 149.95, 158.72. MS (EI) 

m/z 398 (M+, Calc. 398.46), 382, 320 (base peak, loss of Py,), 294 (loss of N=CHPy), 190, 

165, 78, 44, 28. Anal Calc.(Found) for C27H18N4: C, 81.39 (80.69); H, 4.55 (4.66); N, 14.06 

(13.62) %. 

 

3.7.3.12: (E)-2-(4,5-bis(4-methoxyphenyl)-1H-imidazol-2-yl)-N-(pyridin-2-

ylmethylene)aniline (IN4), brown powder: 1.09 mL (1.23 g, 11.4 mmol) of pyridine-2-

carboxaldehyde and 4.23 g (11.4 mmol) of A4. Yield = 4.08 g (77%). Selected FTIR (ATR, 

cm-1): 3321b (N-H), 1614s (C=C, C=N), 1588w, 1540s, 1517s, 1471w, 1414w, 1344w, 

1318w, 1286s, 1244s, 1079w, 1025s, 757s, 705s, 672w. UV-Vis (MeCN, nm {ε /M-1 cm-

1}): 232 {31 300}, 287 {19 309}, 342 {13 057}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

3.70 (s, 3H, -OCH3), 3.75 (s, 3H, -OCH3), 6.28 - 6.29 (d, J = 6.29, 1H, Ar-H), 6.73 - 6.84 

(ddd, J = 6.79, 5H, Ar-H), 6.92 - 6.94 (d, J = 6.93, 2H, Ar-H), 7.06 - 7.11 (m, J = 7.09, 3H, 

Ar-H), 7.20 - 7.23 (dd, J = 7.21, 1H, Ar-H), 7.46 - 7.50 (dd, J = 7.47, 3H, Ar-H), 7.62 - 

7.66 (td, J = 7.64, 1H, Ar-H), 7.86 – 7.88 (d, J = 7.87, 1H, Ar-H), 8.43 - 8.44 (d, J = 8.43, 

1H, NH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 55.42, 159.81, 55.52, 68.85, 114.06, 

114.39, 114.86, 115.28, 118.89, 119.93, 122.18, 123.18, 123.91, 125.81, 127.68, 127.88, 

129.94, 132.24, 137.62, 138.16, 141.26, 141.62, 149.77, 158.37, 159.09. MS (EI) m/z 460 
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(M+, Calc. 460.53), 382 (base peak, loss of Py), 341, 230, 79 (Py). Anal Calc.(Found) for 

C29H24N4O2: C, 75.63 (75.78); H, 5.25 (5.23); N, 12.17 (12.21) %. 

 

3.7.3.13: 2,3-diphenyl-5-(pyridin-2-yl)-5,6-dihydroimidazo[1,2-c]quinazolin-1-ium, 

(IN2cH+, brown): 1H NMR (250 MHz, DMSO-d6) δ (ppm): 6.75 (s, 1H, NHimidazole), 6.94 

(dd, J = 10.4, 7.9 Hz, 2H, Ar-H), 7.15 (d, J = 7.7 Hz, 1H), 7.23 – 7.59 (m, 13H, Ar-H), 7.75 

(t, J = 7.1 Hz, 1H, Ar-H), 8.01 (d, J = 7.5 Hz, 2H, Ar-H), 8.42 (d, J = 4.5 Hz, 1H, 

NHpyrimidine). 
13C NMR (63 MHz, DMSO-d6) δ (ppm): 26.49 (THF), 68.39 (THF), 116.99, 

121.58, 125.75, 129.05, 130.23, 130.56, 132.03, 138.93, 150.69. 

 

3.7.3.14: 2,3-diphenyl-5-(pyridin-2-yl)imidazo[1,2-c]quinazoline, (IN2v.MeOH, 

colourless): 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.18 (d, J = 5.0 Hz, 3H, CH3 of 

MeOH), 4.10 (dd, J = 10.1, 4.9 Hz, 1H, OH of MeOH), 7.06 (d, J = 4.2 Hz, 4H, Ar-H), 7.15 

(dt, J = 8.6, 6.3 Hz, 2H, Ar-H), 7.27 (d, J = 6.7 Hz, 3H, Ar-H), 7.44 – 7.54 (m, 2H, Ar-H), 

7.69 (d, J = 5.5 Hz, 2H, Ar-H), 7.77 – 7.87 (m, 2H, Ar-H), 7.95 – 8.06 (m, 2H, Ar-H), 8.65 

(d, J = 6.0 Hz, 1H, Ar-H). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 49.06 (CH3 of MeOH), 

151.89, 118.90, 122.86, 124.04, 124.50, 125.08, 128.04, 128.20, 128.25, 128.40, 128.44, 

128.63, 129.34, 130.77, 130.88, 131.43, 134.15, 136.65, 140.31, 141.72, 143.60, 146.32, 

148.53. 

 

3.7.3.15: 2,3-diphenyl-5-(pyridin-2-yl)imidazo[1,2-c]quinazoline, (IN2v, lemon-yellow): 

1H NMR (250 MHz, DMSO-d6) δ (ppm): 7.06 (d, J = 4.4 Hz, 4H, Ar-H), 7.15 (ddd, J = 

12.3, 8.2, 4.4 Hz, 2H, Ar-H), 7.23 – 7.35 (m, 3H, Ar-H), 7.49 (dd, J = 6.6, 3.1 Hz, 2H, Ar-

H), 7.64 – 7.74 (m, 2H, Ar-H), 7.79 – 7.89 (m, 2H, Ar-H), 8.00 (dd, J = 10.2, 4.4 Hz, 2H, 

Ar-H), 8.59 – 8.72 (m, 1H, Ar-H). 13C NMR (63 MHz, DMSO-d6) δ (ppm): 119.81, 123.77, 

124.95, 125.44, 126.00, 128.95, 129.16, 129.35, 129.54, 130.25, 131.67, 131.79, 132.32, 

135.05, 137.56, 141.20, 142.61, 144.50, 147.21, 149.43, 152.75. 
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3.8 Preparation of Sulphur (Oxygen) {ONSNO/ONONO} bridged imines (H2S1 – 

H2O1)  

 

 

Scheme 3.4: (a) Synthetic pathway to (b) List of prepared S-/O-bridged pentadentate imines  
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The pentadentate (ONSNO/ONONO) imines were prepared in a similar fashion as 

the NNO/NNN imines, a full description is given with H2S1. H2S1 and H2O1 were prepared 

with slight alteration to earlier reports (Guo and Yuan 2008; Pérez-Pérez, J., et al 2016). 

 

3.8.1 2,2'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))diphenol {H2S1}: Drops of AcOH 

was added to a 50 mL EtOH solution of 2.25 g (10.4 mmol) of bis(2-aminophenyl) sulphide. 

Upon addition of 2.23 mL (2.56 g; 20.9 mmol) of salicylaldehyde, the yellow solution 

obtained was refluxed for ≈ 4 hours. The mixture obtained was filtered hot, washed with 

EtOH and dried under vacuum to give a yellow product. Yield = 4.28 g (96.8%). Selected 

IR (ATR, cm-1): 3059w, 1612s, 1559s, 1497s, 1468s, 1371s, 1282s, 1228w, 1187s, 1112w, 

1051w, 1035s, 644s. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 238 {17 522}, 269 {25 585}, 344 

{14 813}. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 6.90 – 6.92 (d, J = 6.91, 2H, Ar-H), 

6.94 – 6.98 (td, J = 6.96, 2H, Ar-H), 7.16 – 7.18 (dd, J = 7.17, 2H, Ar-H), 7.24 – 7.28 (td, 

J = 7.26, 2H, Ar-H), 7.38 – 7.44 (m, J = 7.41, 4H, Ar-H), 7.52 – 7.54 (dd, J = 7.53, 2H, Ar-

H), 7.62 – 7.64 (dd, J = 7.63, 2H, Ar-H), 8.94 (s, 2H, CH=N), 12.83 (s, 2H, -OH). 13C NMR 

(101 MHz, DMSO-d6) δ (ppm): 117.12, 119.38, 119.59, 119.66, 128.31, 129.24, 129.85, 

131.65, 133.36, 134.05, 147.96, 160.72, 164.19. MS (EI) m/z 424 (M+, Calc. 424.51), 391 

(loss of OH groups), 318 (loss of =CHPhOH), 228 (loss of -Ph-N=CHPhOH), 197 (base 

peak, -PhN=CHPhOH), 180, 77 (Ph), 51. Anal. Calc.(Found) for C26H20N2O2S: C, 73.56 

(73.25); H, 4.75 (4.76); N, 6.60 (6.60); S, 7.55 (7.99) %. 

 

3.8.2 1,1'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-ol) {H2S2}, 

yellow: 1.03 g (4.8 mmol) of bis(2-aminophenyl) sulphide and 1.64 g (9.5 mmol) of 2-

hydroxy-1-naphthaldehyde. Yield = 2.38 g (95.2%). Selected IR (ATR, cm-1): 3059s, 

1620w, 1604w, 1551s, 1460s, 1418w, 1391w, 1353w, 1082s, 1056w, 1037w, 583s, 559w. 

UV-Vis (MeOH, nm {ε /M-1 cm-1}): 317 {18 335}, 372 {15 155}, 464 {13 062}. 1H NMR 

(400 MHz, DMSO-d6) δ (ppm): 7.02 – 7.04 (d, J = 7.03, 2H, Ar-H), 7.20 – 7.23 (dd, J = 

7.22, 2H, Ar-H), 7.26 – 7.30 (m, J = 7.28, 2H, Ar-H), 7.37 – 7.41 (t, J = 7.39, 2H, Ar-H), 

7.46 – 7.50 (m, J = 7.48, 2H, Ar-H), 7.56 – 7.60 (dd, J = 7.58, 2H, Ar-H), 7.82 – 7.84 (d, J 
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= 7.83, 2H, Ar-H), 7.91 – 7.96 (dd, J = 7.94, 4H, Ar-H), 8.54 – 8.57 (d, J = 8.56, 2H, Ar-

H), 9.73 (s, 2H, CH=N), 15.23 (s, 2H, -OH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 

109.67, 119.80, 121.13, 121.26, 124.18, 127.51, 127.94, 128.33, 128.58, 129.48, 131.91, 

133.31, 136.90, 146.19, 157.93, 167.26. MS (EI) m/z 524 (M+, base peak, Calc. 524.63), 

370 (loss of =CHnaphOH), 278 (loss of PhN=CHnaphOH), 262 (-SPhN=CHnaph), 246 

(loss of -SPhN=CHnaphOH), 227, 199, 172, 144 (naphOH), 115, 45, 31. Anal. 

Calc.(Found) for C34H24N2O2S: C, 77.84 (77.33); H, 4.61 (4.58); N, 5.34 (5.26); S, 6.11 

(6.36) %. 

 

3.8.3 2,2'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(4-methylphenol) {H2S3}, 

yellow: 2.04 g (9.4 mmol) of bis(2-aminophenyl) sulphide and 2.57 g (18.9 mmol) of 5-

methylsalicylaldehyde. Yield = 3.87 g (90.6%). Selected IR (ATR, cm-1): 3060w, 1613s, 

1589w, 1567s, 1487s, 1470s, 1438s, 1381w, 1358s, 1320w, 1280s, 1059s, 1039w, 659s, 

612w. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 271 {33 917}, 353 {19 214}. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 2.26 (s, 6H, -CH3), 6.79 – 6.82 (d, J = 6.80, 2H, Ar-H), 7.14 – 

7.16 (dd, J = 7.15, 2H, Ar-H), 7.20 – 7.28 (m, J = 7.24, 4H, Ar-H), 7.40 – 7.44 (m, J = 7.42, 

4H, Ar-H), 7.49 – 7.52 (dd, J = 7.50, 2H, Ar-H), 8.87 (s, 2H, CH=N), 12.52 (s, 2H, -OH). 

13C NMR (101 MHz, DMSO-d6) δ (ppm): 20.36, 116.97, 119.34, 128.12, 128.21, 129.25, 

129.79, 131.63, 133.04, 134.84, 148.11, 158.56, 164.03. MS (EI) m/z 452 (M+, Calc. 

452.57), 435 (loss of -OH), 332 (loss of =CHPh{OH}{Me}), 242 (loss of 

PhN=CHPh{OH}{Me}), 226 (-SPhN=CHPh{OH}), 211 (base peak, NPh-S-PhN), 196, 

136, 109, 77, 32, 28. Anal. Calc.(Found) for C28H24N2O2S: C, 74.31 (74.24); H, 5.35 (5.30); 

N, 6.19 (6.14); S, 7.09 (7.31) %. 

 

3.8.4 2,2'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) {H2S4}, 

yellow: 2.07 g (9.6 mmol) of bis(2-aminophenyl) sulphide and 3.85 g (19.2 mmol) of 5-

bromosalicylaldehyde. Yield = 4.65 g (83.5%). Selected IR (ATR, cm-1): 3056w, 1613s, 

1575w, 1552s, 1465s, 1435w, 1348s, 1280s, 1232w, 1172s, 1074w, 1055w, 626s. UV-Vis 

(MeOH, nm {ε /M-1 cm-1}): 270 {31 132}, 352 {17 296}. 1H NMR (400 MHz, DMSO-d6) 
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δ (ppm): 6.87 – 6.89 (d, J = 6.88, 2H, Ar-H), 7.17 – 7.19 (dd, J = 7.18, 2H, Ar-H), 7.26 – 

7.30 (m, J = 7.28, 2H, Ar-H), 7.41 – 7.45 (m, J = 7.43, 2H, Ar-H), 7.48 – 7.54 (m, J = 7.52, 

4H, Ar-H), 7.83 (d, 2H, Ar-H), 8.90 (s, 2H, CH=N), 12.78 (s, 2H, -OH). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 110.33, 119.41, 119.56, 121.53, 128.60, 129.35, 129.93, 131.80, 

134.71, 136.24, 147.75, 159.72, 162.66. MS (EI) m/z 582 (M+, Calc. 582.31), 565 (loss of 

-OH), 503 (loss of -Br), 398 (loss of =CHPh{OH}{Br}), 306 (loss of 

PhN=CHPh{OH}{Br}), 275 (base peak, loss of SPhN=CHPh{OH}{Br}), 258, 227 

(SPhN=CHPh{OH}), 199, 139, 109, 77, 28. Anal. Calc.(Found) for C26H18Br2N2O2S: C, 

53.63 (53.88); H, 3.12 (3.02); N, 4.81 (4.72); S, 5.51 (5.91) %. 

 

3.8.5 6,6'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenol) {H2S5}, 

orange: 2.03 g (9.4 mmol) of bis(2-aminophenyl) sulphide and 5.26 g (18.8 mmol) of 3,5-

dibromosalicylaldehyde. Yield = 6.64 g (95.5%). Selected IR (ATR, cm-1): 3081w, 1607s, 

1543w, 1469w, 1440s, 1353s, 1295w, 1276s, 1228s, 1196s, 1159s, 1060w, 1038w, 687s, 

659w. UV-Vis (CHCl3, nm {ε /M-1 cm-1}): 275 {27,329}, 363 {14,498}. 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 7.21 – 7.24 (dd, J = 7.22, 2H, Ar-H), 7.31 – 7.33 (td, J = 7.33, 

2H, Ar-H), 7.21 – 7.24 (t, J = 7.22, 2H, Ar-H), 7.47 – 7.49 (td, J = 7.47, 2H, Ar-H), 7.56 – 

7.58 (dd, J = 7.57, 2H, Ar-H), 7.86 – 7.87 (d, J = 7.87, 2H, Ar-H), 7.91 – 7.92 (d, J = 7.92, 

2H, Ar-H), 8.96 (s, 2H, CH=N), 14.03 (s, 2H, -OH). 13C NMR (101 MHz, DMSO-d6) δ 

(ppm): 110.20, 111.71, 119.66, 121.51, 129.21, 129.59, 130.12, 132.26, 134.91, 138.12, 

146.69, 156.98, 163.10, 204.39. MS (EI) m/z 740.10 (M+ - not observed), 386 (loss of 

PhN=CHPh{OH}{Br2}), 355 (base peak, PhN=CHPh{OH}{Br2}), 277 

(N=CHPh{OH}{Br2}), 212 (NPh-S-PhN), 198 (NPh-S-Ph), 184 (Ph-S-Ph). Anal. 

Calc.(Found) for C26H16Br4N4O2S: C, 42.19 (42.47); H, 2.18 (2.09); N, 3.79 (3.71); S, 4.33 

(4.22) %. 
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3.8.6 2,2'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(4-nitrophenol) {H2S6}, 

yellow: 2.26 g (10.5 mmol) of bis(2-aminophenyl) sulphide and 3.50 g (20.9 mmol) of 5-

nitrosalicylaldehyde. Yield = 5.11 g (95.0%). Selected IR (ATR, cm-1): 3072w, 1613s, 

1576s, 1514s, 1475s, 1443w, 1339s, 1296s, 1180s, 1128w, 1099s, 1055w, 1039w, 666s, 

637s. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 269 {7 724}, 305 {7 672}, 496 {1 992}. 1H 

NMR (400 MHz, Acetone-d6) δ (ppm): 7.10 (d, J = 9.3 Hz, 2H, Ar-H), 7.34 (t, J = 7.8 Hz, 

4H, Ar-H), 7.47 (d, J = 8.4 Hz, 2H, Ar-H), 7.61 (d, J = 7.9 Hz, 2H, Ar-H), 8.24 – 8.33 (m, 

2H, Ar-H), 8.60 (d, J = 2.8 Hz, 2H, Ar-H), 9.12 (s, 2H, CH=N). MS (EI) m/z 515 (M + H, 

Calc. 514.51), 497 (loss of OH), 273 (SPhN=CHPh{OH}{NO2}), 242 (base peak, 

PhN=CHPh{OH}{NO2}), 227 (SPhN=CHPh{OH}), 212 (NPh-S-PhN), 195, 184, 167, 

165, 109, 65, 43, 28. Anal. Calc.(Found) for C26H18N4O6S: C, 60.69 (60.63); H, 3.53 (3.55); 

N, 10.89 (10.85); S, 6.23 (6.27) %. 

 

3.8.7 6,6'-((1E,1'E)-((thiobis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol) {H2S7}, 

orange: 0.84 g (3.9 mmol) of bis(2-aminophenyl) sulphide and 1.19 g (7.8 mmol) of o-

vanillin. Yield = 1.79 g (95.2%). Selected IR (ATR, cm-1): 3059w, 1610s, 1562s, 1456s, 

1382s, 1247s, 1195s, 1078s, 1037w, 634w. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.78 

(s, 6H, -OCH3), 6.88 – 6.92 (t, J = 6.90, 2H, Ar-H), 7.11 – 7.17 (ddd, J = 7.14, 4H, Ar-H), 

7.21 – 7.29 (m, J = 7.25, 4H, Ar-H), 7.40 – 7.45 (td, J = 7.43, 2H, Ar-H), 7.54 – 7.56 (dd, 

J = 7.55, 2H, Ar-H), 8.94 (s, 2H, C=NH), 12.95 (s, 2H, -OH). 13C NMR (101 MHz, DMSO-

d6) δ (ppm): 56.25, 116.30, 119.09, 119.41, 119.57, 124.67, 128.37, 129.25, 129.84, 131.63, 

147.87, 148.31, 150.88, 164.47. MS (EI) m/z 484 (M+, Calc. 484.57), 451 (Loss of OH 

groups), 350 (loss of =CHPh{OH}{OMe}), 258 (base peak, loss of 

PhN=CHPh{OH}{OMe}), 243, 226 (loss of SPhN=CHPh{OH}{OMe}), 211 (NPh-S-

PhN), 196, 184 (Ph-S-Ph), 150 (N=CHPh{OH}{OMe}), 135, 109, 77, 32, 28. Anal. 

Calc.(Found) for C28H24N2O4S: C, 69.40 (69.59); H, 4.99 (5.05); N, 5.78 (5.75); S, 6.62 

(6.97) %. 
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3.8.8 2,2'-((1E,1'E)-((oxybis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))diphenol {H2O1}, yellow: 0.95 g 

(4.7 mmol) of bis(2-aminophenyl) ether and 1.05 mL (1.20 g, 9.9 mmol) salicylaldehyde. 

Yield = 1.94 g (92.8%). Selected IR (ATR, cm-1): 3061w, 1615s, 1591w, 1571s, 1479s, 

1449s, 1396w, 1365w, 1283s, 1150s, 1109s, 1047w, 1032w, 651s. UV-Vis (MeOH, nm {ε 

/M-1 cm-1}): 228 {45 873}, 269 {28 067}, 341 {25 114}. 1H NMR (400 MHz, DMSO-d6) 

δ (ppm): 6.86 (d, J = 8.2 Hz, 2H, Ar-H), 6.90 – 7.00 (m, 4H, Ar-H), 7.23 – 7.33 (m, 4H, 

Ar-H), 7.34 – 7.41 (m, 2H, Ar-H), 7.58 (dt, J = 7.6, 1.6 Hz, 4H, Ar-H), 9.00 (s, 2H, C=NH), 

13.14 (s, 2H, -OH). 13C NMR (101 MHz, DMSO-d6) δ (ppm): 117.10, 119.42, 119.45, 

119.70, 120.63, 125.00, 128.73, 133.11, 133.82, 139.22, 150.26, 160.94, 164.27. MS (EI) 

m/z 408 (M+, Calc. 408.45), 391 (loss of OH), 315 (loss of PhOH), 301 (loss of =CHPhOH), 

288 (loss of N=CHPhOH), 271 (Ph-O-PhN=CHPh), 221 (=NPh-O-PhN=), 212 (loss of 

PhN=CHPhOH), 196 (Ph-O-Ph), 181, 168, 139, 120, 77, 65, 51, 39. Anal. Calc.(Found) for 

C26H20N2O3: C, 76.45 (76.13); H, 4.94 (4.88); N, 6.86 (6.80) %. 
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3.9 Preparation of azo bridged-imines (H2AI1 – H2AI3) 

 

 

Scheme 3.5: Synthetic pathway to diazo bridged-imines (H2AI1 – H2AI3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

156 
 

 The azo-imines were prepared in a fashion similar to their pentadentate 

(ONSNO/ONONO) analogues, a full description is given with H2AI1. 

 

3.9.1 2,2'-Diaminoazobenzene (DAB): 20.14 g (84.20 mmol) of PbO2 was added to a 200 

mL EtOAc solution of 4.53 g (41.89 mmol) o-phenylenediamine. The dark brown mixture 

obtained was refluxed for ≈ 2 hours, filtered and washed with EtOAc. A reddish-brown 

crystalline product was obtained after purification by column chromatography using n-

Heptane:EtOAc (2:1). Yield = 1.32 g (14.9 %). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

6.39 (s, 4H, Ar-H), 6.57 – 6.63 (m, 2H, Ar-H), 6.84 (dd, J = 8.2, 1.1 Hz, 2H, Ar-H), 7.12 

(ddd, J = 8.3, 7.1, 1.5 Hz, 2H, Ar-H), 7.66 (dd, J = 8.1, 1.4 Hz, 2H, Ar-H). 13C NMR (101 

MHz, DMSO-d6) δ (ppm): 116.08, 117.19, 122.25, 131.70, 137.12, 145.75. MS (EI) m/z 

212 (base peak, M+, Calc. 212.25), 196 (loss of NH2), 183 (loss of NH4), 169, 120 (loss of 

PhNH2), 106 (loss of NPhNH2), 92 (PhNH2), 65, 52, 39. 

 

3.9.2 2,2'-((1E,1'E)-(((Z)-diazene-1,2-diylbis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))diphenol {H2AI1}: Drops of 

AcOH was added to a 40 mL Et2O solution of 1.03 g (4.85 mmol) of DAB, followed by 

1.05 mL (1.20 g, 9.85 mmol) salicylaldehyde. The slurry obtained was heated under reflux 

for 5 hours.  The mixture was filtered hot and dried in air to afford a red product. Yield = 

1.78 g (87.3 %). Selected IR (ATR, cm-1): 3425w, 1611s, 1549w, 1448w, 1270s, 1110s, 

1032w, 753s, 619w, 513s. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 287 {14 664}. 1H NMR 

(400 MHz, CDCl3) δ (ppm): 6.86 (t, J = 7.4 Hz, 2H, Ar-H), 6.95 – 7.03 (m, 2H, Ar-H), 7.27 

– 7.37 (m, 8H, Ar-H), 7.43 – 7.49 (m, 2H, Ar-H), 7.75 (dd, J = 8.0, 1.1 Hz, 2H, Ar-H), 8.60 

(s, 2H, C=NH), 13.56 (s, 2H, -OH). 13C NMR (101 MHz, CDCl3) δ (ppm): 117.04, 117.51, 

118.97, 119.50, 120.58, 127.45, 132.23, 132.34, 133.38, 146.55, 161.71, 164.13. MS (EI) 

m/z 420 (base peak, M+, Calc. 420.46), 316 (loss of =CHPhOH), 300 (loss of N=CHPhOH), 

223 (loss of PhN=CHPhOH), 210 (loss of NPhN=CHPhOH), 196 (loss of 

N=NPhN=CHPhOH), 182, 167, 141, 115, 91, 77, 51. 

 

 



 

157 
 

3.9.3 1,1'-((1E,1'E)-(((Z)-diazene-1,2-diylbis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-ol) {H2AI2}, 

red: 1.00 g (4.71 mmol) of DAB and 1.63 g (9.47 mmol) 2-hydroxy-1-naphthaldehyde. 

Yield = 2.10 g (85.7 %). Selected IR (ATR, cm-1): 3058w, 1620s, 1584s, 1479w, 1309w, 

1282s, 1210w, 1039w, 958w, 740s, 527s, 478s. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 316; 

341; 499. MS (EI) m/z 520 (M+, Calc. 520.58), 259 (base peak, loss of N-

PhN=CH(naphOH)), 231, 220, 144, 115, 77, 65, 28. Anal. Calc.(Found) for C34H24N4O2: 

C, 78.44 (78.15); H, 4.65 (4.66); N, 10.76 (10.81) %. 

 

3.9.4 2,2'-((1E,1'E)-(((Z)-diazene-1,2-diylbis(2,1-

phenylene))bis(azanylylidene))bis(methanylylidene))bis(4-methylphenol) {H2AI3}, 

orange-red: 1.01 g (4.75 mmol) of DAB and 1.30 g (9.47 mmol) 5-methylsalicylaldehyde. 

Yield = 2.06 g (96.7 %). Selected IR (ATR, cm-1): 3069w, 1602s, 1567s, 1479s, 1323s, 

1234w, 1153s, 1040w, 822s, 756s, 595w, 422s. UV-Vis (MeOH, nm {ε /M-1 cm-1}): 294 

{7 948}. MS (ESI) m/z 502.3 ([M + Na + MeOH]+, Calc. 503.55), 471.3 ([M + Na]+, Calc. 

471.51), 225.2 (base peak, loss of N-Ph-N=CHPh{OH}{Me}). Anal. Calc.(Found) for 

C28H24N4O2: C, 74.98 (74.31); H, 5.39 (5.47); N, 12.49 (12.65) %. 

 

3.10 Preparation of metal complexes 

 

3.10.1 Nitro-imidazole palladium complexes 

 

3.10.1.1 Pd-N1: 0.0739 g (0.30 mmol) of ligand (N1) and 0.0783 g (0.30 mmol) of 

PdCl2(MeCN)2 were placed in a vial. 2 mL MeCN was added and the set-up allowed to 

stand at room temperature for weeks to afford orange crystals suitable for x-ray. Yield = 

0.0686 g (49.0 %). Selected IR (ATR, cm-1): 3074b, 1617w, 1532s, 1453s, 1364s, 877s, 

822s, 780s, 614s. Anal. Calc.(Found) for C15H18Cl2N4O2Pd: C, 38.86 (39.17); H, 3.91 

(3.91); N, 12.08 (12.09) %. 

 

3.10.1.2 [Pd-N3]2.5H2O: 0.0167 g (4.92 x 10-5 mol) of ligand (N3) and 0.0130 g (5.01 x 

10-5 mol) of PdCl2(MeCN)2 were placed in a vial. 2 mL MeCN was added and the set-up 

allowed to stand at room temperature for weeks to afford orange crystals suitable for x-ray. 

Yield (0.0222 g, 74.7 %). Selected IR (ATR, cm-1): 3075w, 1616w, 1575s, 1459s, 1346s, 
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854s, 754s, 613w. Anal. Calc.(Found) for C23H21Cl2N4O4.5Pd: C, 45.83 (45.85); H, 3.51 

(3.16); N, 9.29 (8.99) %. 

 

3.10.1.3 [Pd-N9]0.5H2O: 0.2046 g (0.49 mmol) of ligand (N9) and 0.1282 g (0.49 mmol) 

of PdCl2(MeCN)2 were weighed and transferred into a vial. 4 mL MeOH was added and 

the mixture stirred for ≈ 5 hours at room temperature. The mixture was filtered, washed 

with MeOH and dried under vacuum to give a green product. Yield = 0.1996 g (63.0 %). 

Selected IR (ATR, cm-1): 3065w, 1524s, 1416w, 1353s, 853s, 723s, 693s. Anal. for 

C29.5H22Cl2N4O2.5Pd Calc. (Found): C, 54.18 (54.34); H, 3.29 (3.19); N, 8.72 (8.21) %. 

 

3.10.2 NNO/NNN imines cobalt complexes 

 The cobalt complexes were prepared using equimolar amount of the metal salt, the 

imidazole-imine ligand (and the co-ligand, hydroxyquinone) with appropriate solvent. The 

reaction was carried out at room temperature for ≈ 2 – 3 hrs to afford the respective 

complexes. 

 

3.10.2.1 [Co(I2)Cl]0.75H2O.0.5MeOH (M1), green powder: 4 mL MeOH solution of 

0.1989 g (0.84 mmol) of CoCl2.6H2O was added dropwise to 8 mL MeOH suspension of 

0.3478 g (0.84 mmol) of I2. The green mixture obtained was stirred at room temperature, 

filtered, washed with MeOH and dried (under pressure and later at 50oC). Yield = 0.1291 g 

(29 %). Selected IR (ATR, cm-1): 3606w, 3412w, 3059w, 1604s, 1583s, 1528s, 1506w, 

1459s, 1461s, 1392s, 1180s, 1147s, 1030w, 764s, 682s, 524w. UV-Vis (DCM, nm {ε /M-1 

cm-1}): 288 {28 373}, 399 {7 049}. MS (EI) m/z 508 ([M-0.75H2O, 0.5MeOH]+, Calc. 

508.86), 471 (base peak, [M-(0.75H2O, 0.5MeOH)37Cl]+, Calc. 473.41), 311 ([M-

(0.75H2O, 0.5MeOH)37Cl CoOPhCH=]+, Calc. 309.36), 165 ([CoOPhCH=]+, Calc. 

164.05), 149 ([CoOPh]+, Calc. 151.03), 121, 105, 93, 76, 65, 28. Anal. for 

C28.5H23.5ClCoN3O2.25 Calc.(Found): C, 63.58 (63.44); H, 4.40 (4.02); N, 7.80 (8.02) %. 

A repeat of the procedure at 50oC gave a green product and a yield of 0.1187 g (29 %) 
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3.10.2.2 [Co(I2)2]Cl.MeOH (M2), brown crystals: In attempt to grow suitable crystals for 

x-ray crystallographic study of M1; 0.0550 g (0.18 mmol) of A2, 0.019 mL (0.0218 g, 0.18 

mmol) of salicylaldehyde and 0.0419 g (0.018 mmol) of CoCl2.6H2O were left in a vial, 

after addition of 2 mL MeOH. Crystals suitable for x-ray determination were obtained after 

several days. Yield = 0.0131 g (8 %). Selected IR (ATR, cm-1): 3050w, 1601s, 1583w, 

1522s, 1461s, 1436s, 1369s, 1317s, 1235w, 1188s, 1146s, 1026w, 868w, 750s, 695s, 562w, 

470s. Anal. for C57H44ClCoN6O3 Calc.(Found): C, 71.66 (71.47); H, 4.64 (4.25); N, 8.80 

(9.29) %. 

 

3.10.2.3 [Co(I2)(OAc)]0.75H2O (M3), brown powder: 4 mL 50% MeOH solution of 

0.2025 g (0.81 mmol) of Co(OAc)2.4H2O was added dropwise to 8 mL MeOH suspension 

of 0.3373 g (0.81 mmol) of I2. The brown mixture obtained was stirred at room temperature, 

filtered, washed with EtOH and dried (under pressure and later at 50oC). Yield = 0.3819 g 

(86 %). Selected IR (ATR, cm-1): 1608w, 1586s, 1570s {νasym (COO-)}, 1527w, 1507w, 

1491w, 1461s, 1436s, 1399w {νsym (COO-)}, 1322w, 1183s, 1147s, 1078w, 801w, 754s, 

697s, 524w. UV-Vis (DCM, nm {ε /M-1 cm-1}): 288 {21 142}, 401 {5 114}. MS (EI) m/z 

472 ([M-(0.75H2O, OAc)]+, Calc. 473.41), 335, 266, 190, 165 ([CoOPhCH=]+, Calc. 

164.05), 97, 69, 60, 45, 43 (base peak), 29. Anal. for C30H24.5CoN3O3.75 Calc.(Found): C, 

66.00 (65.94); H, 4.52 (4.14); N, 7.70 (7.76) %. 

 

3.10.2.4 [Co(I2)HQ].2CH3OH (M4), brown powder: 4 mL 50% MeOH solution of 0.1282 

g (0.51 mmol) of Co(OAc)2.4H2O was added dropwise to 6 mL MeOH suspension of 

0.2136 g (0.51 mmol) I2, followed by 2 mL MeOH solution of 0.0747 g (0.51 mmol) 8-

hydroxyquinoline to give a dark brown mixture. The mixture was stirred at room 

temperature, filtered, washed with MeOH and dried. Yield = 0.1911 g (55%). Selected IR 

(ATR, cm-1):  3057w, 1603w, 1577s, 1497s, 1464s, 1377s, 1319s, 1279s, 1237w, 1147s, 

868s, 738s, 698s, 505s. UV-Vis (DCM, nm {ε /M-1 cm-1}): 245 {30 924}sh, 296 {17 

060}sh, 317 {14 973}sh. MS (EI) m/z 472 ([M-(HQ)(2CH3OH)]+, Calc. 473.41), 415 ([M-

(HQ)(2CH3OH)Co]+, Calc. 414.48) 311 ([M-(HQ)(2CH3OH)CoOPhCH=]+, Calc. 309.36), 

145(base peak, HQ, Calc. 144.5), 117, 89, 63, 43, 28. Anal. for C39H26CoN4O4 

Calc.(Found): C, 68.72 (68.71); H, 5.03 (4.66); N, 8.22 (8.23) %. 
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3.10.2.5 [Co(IN2)Cl2] (M5), brown powder: 4 mL MeOH solution of 0.1939g (0.82 mmol) 

of CoCl2.6H2O was added dropwise to 8 mL MeOH suspension of 0.3266g (0.82 mmol) of 

IN2. The dark brown mixture obtained was stirred at room temperature, filtered, washed 

with MeOH and dried (under pressure and later at 50oC). Yield = 0.3328 g (77 %). Selected 

IR (ATR, cm-1): 3150w, 1625w, 1599s, 1489s, 1354s, 1304s, 1263s, 1071w, 674s, 615w, 

560w, 497s. MS (EI) m/z 495 ([M-35Cl]+, Calc. 494.86), 493 ([M-37Cl]+, Calc. 494.86), 456 

([M-37Cl2]
+, Calc. 456.41), 398 ([M-35Cl2Co]+, Calc. 398.47), 322 (base peak, [M-

35Cl2CoPy]+, Calc. 322.38), 294 ([M-35Cl2CoPyCH=N]+, Calc. 295.36), 165 

([CoPyCH=N]+, Calc. 164.05), 103, 93, 78, 36, 28. Anal. for C27H20Cl2CoN4 Calc. (Found): 

C, 61.15 (60.95); H, 3.80 (3.86); N, 10.56 (10.37) %. 

 

3.10.2.6 [Co(I4)Cl]1.5MeOH (M6), green powder: 2 mL MeOH solution of 0.0571 g (0.24 

mmol) of CoCl2.6H2O was added dropwise to 6 mL MeOH suspension of 0.1077 g (0.23 

mmol) of I4. The green mixture obtained was stirred at room temperature, filtered, washed 

with MeOH and Et2O, and dried. Yield = 0.0804 g (62 %). Selected IR (ATR, cm-1): 3619s, 

3423b, 1620s, 1586w, 1550s, 1519s, 1462w, 1398s, 1285s, 1241s, 1131s, 1023s, 833s, 

798s, 755s, 592s, 512s. UV-Vis (DCM, nm {ε /M-1 cm-1}): 242 {38 931}, 286 {32 117}, 

381 {8 929}sh, 397 {8 474}sh. MS (EI) m/z 568 ([M-1.5CH3OH]+, Calc. 568.92), 532 (base 

peak, [M-(1.5CH3OH)Cl]+, Calc. 533.46), 517 ([M-(1.5CH3OH)OCl]+, Calc. 517.46), 371 

([M-(1.5CH3OH)CoClOPhCH=]+, Calc. 369.42), 266, 205, 71, 57, 36, 28. Anal. for 

C31.5H30ClCoN3O4.5 Calc. (Found): C, 61.32 (61.15); H, 4.90 (4.52); N, 6.81 (7.02) %. 

 

3.10.2.7 [Co(I4)(OAc)] (M7), brown powder: 4 mL 50% MeOH solution of 0.1750 g (0.70 

mmol) of Co(OAc)2.4H2O was added dropwise to an 8 mL MeOH suspension of 0.3327 g 

(0.70 mmol) of I4. The brown mixture obtained was stirred at room temperature, filtered, 

washed with hot MeOH and dried. Yield = 0.3115 g (75 %). Selected IR (ATR, cm-1):  

1606s, 1569s {νasym (COO-)}, 1519s, 1498s, 1461s, 1402s, {νsym (COO-)}, 1298w, 1247s, 

1181s, 1148s, 1031s, 832s, 753s, 678s, 608s, 595w, 495s. UV-Vis (DCM, nm {ε /M-1 cm-

1}): 243 {33 518}, 288 {28 851}, 388 {7 305}sh. MS (EI) m/z 489 ([M-(OPhCH=)]+, Calc. 

487.39), 399 ([M-(OPhCH=)(OAc)(CH3O)]+, Calc. 397.32), 385 ([M-
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(OPhCH=N)(OAc)(CH3O)]+, Calc. 383.31), 370 ([M-(OPhCH=N)(OAc)(CH3O)CH3]
+, 

Calc. 368.27), 355 ([M-(CH3COO)CoOPhC=N]+, Calc. 355.41), 237 

([Co(OAc)(OPhCH=N)]+, Calc. 237.10), 223 ([Co(OAc)(OPhCH=)]+, Calc. 223.09), 209 

([Co(OAc)(OPh)]+, Calc. 210.07), 118 ([Co(OAc)]+, Calc. 117.98), 108 (PhOCH3, Calc. 

107.13), 94 (base peak), 78, 65, 51, 39, 28. Anal. for C32H27CoN3O5 Calc.(Found): C, 64.87 

(64.92); H, 4.59 (4.57); N, 7.09 (7.11) %. 

 

3.10.2.8 [Co(I7)Cl] (M8), green powder: 2 mL MeOH solution of 0.0477 g (0.20 mmol) of 

CoCl2.6H2O was added dropwise to 5 mL MeOH suspension of 0.0975 g (0.20 mmol) of 

I7. The green mixture obtained was stirred at room temperature, filtered, washed with 

MeOH and Et2O, and dried. Yield = 0.0572 g (49 %). Selected IR (ATR, cm-1): 3094w, 

1620s, 1601s, 1578s, 1519s, 1494s, 1289s, 1251s, 1174s, 1033s, 832s, 752s, 545s, 518s. 

UV-Vis (DCM, nm {ε /M-1 cm-1}): 238 {34 652}, 282 {28 188}, 391 {6 367}. MS (EI) m/z 

582 ([M-(0.25CH3OH)]+, Calc. 582.94), 545 (base peak, [M-(0.25CH3OH)Cl]+, Calc. 

547.49), 515 ([M-(0.25CH3OH)ClOCH3]
+, Calc. 516.46), 488 ([M-

(0.25CH3OH)Cl(OCH3)2]
+, Calc. 485.42), 384 ([M-(ClCoOPhCH=)]+, Calc. 383.44), 273, 

223, 205, 148, 122, 36. Anal. for C31.25H27ClCoN3O3.25 Calc. (Found): C, 63.51 (63.40); H, 

4.61 (4.51); N, 7.11 (7.10) %. 

 

3.10.2.9 [Co(I8)Cl] (M9), green: 4 mL MeOH solution of 0.1576 g (0.66 mmol) of 

CoCl2.6H2O was added dropwise to a 10 mL MeOH suspension of 0.3259 g (0.66 mmol) 

of I8. The green mixture obtained was stirred at room temperature, filtered, washed with 

hot MeOH and dried (under pressure and later at 50oC). Yield = 0.1452 g (37 %). Selected 

IR (ATR, cm-1): 1605s, 1577s, 1524s, 1425s, 1375w, 1284w, 1144s, 1027w, 803s, 692s, 

522s, 493w. UV-Vis (DCM, nm {ε /M-1 cm-1}): 278 {37 014}, 393 {8 050}. MS (EI) m/z 

584 (M+, Calc. 584.96), 548 (base peak, [M-Cl]+, Calc. 549.51), 387 ([M-

(ClCoOPhCH=)]+, Calc. 385.46), 371 ([M-(ClCoOPhCH=N)]+, Calc. 371.45), 274, 180, 

165, 36. Anal. for C34H24ClCoN3O Calc. (Found): C = 69.81 (70.39), H = 4.14 (4.43), N = 

7.18 (7.34) %. Green crystals suitable for x-ray were obtained by self assembly {See Fig. 

4.5(d)}. 
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3.10.3 ONSNO/ONONO imines metal complexes 

3.10.3.1 Preparation of ONSNO/ONONO imines cobalt complexes 

The CoII complexes {except [Co2S12]3H2O} were obtained after reacting 

appropriate ligand with Co(OAc)2.4H2O in 1:1 ratio, in MeOH, at room temperature for ≈ 

10 hours, a full description is given with [Co2S22]3.5H2O. Crystals suitable for 

crystallographic measurements were obtained for [Co2S22]3.5H2O and [Co2S52] after 

dissolving the complexes in hot DCM (layered with Et2O), while those for 

[Co2S42]1.5H2O, [Co2S72]6H2O and [Co2S82]0.5H2O were obtained after dissolving the 

complexes in hot THF (layered with Et2O). 

 

3.10.3.1.1 [Co2S12]3H2O: 0.1008 g (0.2 mmol) of H2S1 and 0.0591 g (0.2 mmol) of 

Co(OAc)2.4H2O were placed in a vial. 4 mL MeCN was added and the set-up allowed to 

stand for days.  The brown crystals (suitable for crystallographic measurement) obtained 

was filtered, washed with MeCN and dried in air to afford a dark brown product. Yield = 

0.1322 g (54.7 %). Selected IR (ATR, cm-1): 1603s, 1574s, 1523s, 1460s, 1434s, 1374s, 

1299br, 1181s, 1146s, 1032s, 976s, 920s, 856s, 753s, 597s. UV-Vis (MeCN, nm {ε /M-1 

cm-1}): 231 {28,526}, 267 {22,782}. Anal. for C52H42Co2N4O7S2 Calc.(Found): C, 61.42 

(61.72); H, 4.16 (3.86); N, 5.51 (5.47); S, 6.31 (6.06) %. 

 

3.10.3.1.2 [Co2S22]3.5H2O: 0.1460 g (0.6 mmol) of Co(OAc)2.4H2O was added to a 4 mL 

MeOH slurry of 0.30 g (0.6 mmol) of H2S2.  The mixture obtained was stirred at room 

temperature and the brown mixture obtained was filtered, washed with MeOH and dried in 

air to afford a dark brown product. Yield = 0.3275 g (46.7 %). Selected IR (ATR, cm-1): 

3392br, 3054w, 1614w, 1599s, 1571s, 1532s, 1506w, 1450s, 1424s, 1356s, 1091w, 1034s, 

609w, 561s, 536w, 497s, 468s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 269 {101,823}, 324 

{55,262}, 421 {48,843}. MS (ESI) m/z 1185.1 (base peak, [Co2S22]
+ + Na+, Calc. 1186.09), 

1162.1 ([Co2L22]
+, Calc. 1163.10). Anal. for C68H51Co2N4O7.5S2 Calc.(Found): C, 66.61 

(66.66); H, 4.19 (3.99); N, 4.57 (4.82); S, 5.23 (5.10) %.  
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3.10.3.1.3 [Co2S32]2H2O, dark brown: 0.1140 g (0.5 mmol) of Co(OAc)2.4H2O and 0.2067 

g (0.5 mmol) of H2S3. Yield = 0.2259 g (46.9 %). Selected IR (ATR, cm-1): 3065w, 1604s, 

1573s, 1539w, 1520s, 1454w, 1433s, 1375s, 1297w, 1063w, 1033s, 645s, 523w, 496w, 

462w, 446s. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 294 {36,305}, 420 {17,935}. Anal. for 

C56H48Co2N4O6S2 Calc.(Found): C, 63.75 (63.88); H, 4.59 (4.50); N, 5.31 (5.33); S, 6.08 

(5.92) %. 

 

3.10.3.1.4 [Co2S42]1.5H2O, dark brown: 0.16 g (0.6 mmol) of Co(OAc)2.4H2O and 0.37 g 

(0.6 mmol) of H2S4. Yield = 0.40 g (48.2 %). Selected IR (ATR, cm-1): 3394br, 1603s, 

1574s, 1509s, 1442s, 1366s, 1299s, 1158s, 1064w, 1031w, 754s, 665s, 630s, 542w. UV-

Vis (MeCN, nm {ε /M-1 cm-1}): 248 {19,920}, 412 {5,612}. MS (ESI) m/z 1298.4 

([Co2S42]H2O, Calc. 1296.45). Anal. for C52H35Br4Co2N4O5.5S2 Calc.(Found): C, 47.84 

(47.76); H, 2.70 (2.62); N, 4.29 (4.22); S, 4.91 (4.78) %.  

 

3.10.3.1.5 [Co2S52], reddish-brown: 0.11 g (0.4 mmol) of Co(OAc)2.4H2O and 0.32 g (0.4 

mmol) of H2S5. Yield = 0.33 g (47.9 %). Selected IR (ATR, cm-1): 3052w, 1606w, 1591w, 

1511s, 1492w, 1300s, 1227s, 1186s, 1062w, 1037w, 748s, 702s, 549w, 508s, 439s. UV-Vis 

(MeCN, nm {ε /M-1 cm-1}): 248 {92,587}, 417 {30,451}. MS (ESI) m/z 1616.5 ([Co2S52]
+ 

+ Na+, Calc. 1617.02), 820.6 (base peak, [CoS5]+ + Na+, Calc. 820.01). Anal. for 

C52H28Br8Co2N4O4S2 Calc.(Found): C, 39.18 (39.31); H, 1.77 (1.71); N, 3.51 (3.48); S, 4.02 

(4.03) %. 

 

3.10.3.1.6 [Co2S62]2H2O, light-brown: 0.15 g (0.6 mmol) of Co(OAc)2.4H2O and 0.30 g 

(0.6 mmol) of H2S6. Yield = 0.36 g (52.4 %). Selected IR (ATR, cm-1): 3424br, 3060w, 

1602s, 1576w, 1543w, 1459s, 1308s, 1177s, 1098s, 753s, 642w, 496w, 435w. UV-Vis 

(MeCN, nm {ε /M-1 cm-1}): 248 {92,587}, 417 {30,451}. Anal. for C52H36Co2N4O14S2 

Calc.(Found): C, 52.98 (52.87); H, 3.08 (2.90); N, 9.51 (9.36); S, 5.44 (5.37) %. 
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3.10.3.1.7 [Co2S72]6H2O, reddish-brown: 0.0724 g (0.3 mmol) of Co(OAc)2.4H2O and 

0.14 g (0.3 mmol) of H2S7. Yield = 0.1266 g (36.8 %). Selected IR (ATR, cm-1): 3313br, 

3059w, 1612s, 1559s, 1539w, 1436s, 1392w, 1234s, 1193s, 1080s, 675w, 639w, 617w, 

588w, 539s, 449s, 428w. UV-Vis (MeCN, nm {ε /M-1 cm-1}): 245 {71,388}, 305 {49,067}, 

418 {19,267}. MS (ESI) m/z 1106.1 ([Co2S72]
+ + Na+, Calc. 1105.97). Anal. for 

C56H56Co2N4O14S2 Calc.(Found): C, 56.47 (56.55); H, 4.74 (4.41); N, 4.70 (4.56); S, 5.38 

(4.96) %.  

 

3.10.3.1.8 [Co2O12]0.5H2O, light-brown: 0.08 g (0.3 mmol) of Co(OAc)2.4H2O and 0.12 

g (0.3 mmol) of H2S8. Yield = 0.12 g (43.5 %). Selected IR (ATR, cm-1): 3055w, 1611s, 

1598s, 1457s, 1383w, 1294s, 1147w, 1031w, 753s, 544w, 493w, 447w. UV-Vis (MeCN, 

nm {ε /M-1 cm-1}): 235 {72,502}, 285 {43,130}, 383 {25,680}. MS (ESI) m/z 953.1 

([Co2S82]
+ + Na+, Calc. 953.72), 529.1 (base peak, [CoS8]+ + MeCN + Na+, Calc. 529.41), 

488.1 ([CoS8]+ + Na+, Calc. 488.36). Anal. for C52H37Co2N4O6.5 Calc.(Found): C, 66.46 

(66.44); H, 3.97 (3.79); N, 5.96 (5.98) %. 

 

3.10.3.2 Preparation of ONSNO/ONONO imines nickel complexes 
 

The nickel complexes were prepared adopting a similar approach as the CoII 

complexes. Crystals suitable for crystallographic measurements for Ni2S12 and Ni2S32 were 

obtained by slow evaporation of appropriate solvent containing equivalent amounts of the 

ligand and Ni(OAc)2.4H2O, while those for Ni2S22.THF, NiS5(H2O).2THF were obtained 

by dissolving the complex in THF then layering in Et2O. 

 

3.10.3.2.1 [Ni2S12]2.5H2O, green: 0.1016 g (0.4 mmol) of Ni(OAc)2.4H2O and 0.1732 g 

(0.4 mmol) of H2S1. Yield = 0.1666 g (41 %). Selected IR (ATR, cm-1): 3360w, 3054w, 

1605s, 1575w, 1521s, 1438s, 1375s, 1291s, 1177s, 1032w, 751s, 607w, 494w. UV-Vis 

(DCM, nm {ε /M-1 cm-1}): 248 {65 252}sh, 293 {49 804}, 421 {21 084}. Anal. 

Calc.(Found) for C52H41N4Ni2O6.5S2 C, 62.00 (62.16); H, 4.10 (3.85); N, 5.56 (5.61); S, 

6.37 (6.34) %. 
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3.10.3.2.2 [Ni2S22]4H2O, brown: 0.0507 g (0.2 mmol) of Ni(OAc)2.4H2O and 0.1061 g (0.2 

mmol) of H2S2. Yield = 0.1059 g (42 %). Selected IR (ATR, cm-1): 3615s, 3050w, 1603s, 

1574s, 1533s, 1450s, 1390s, 1182s, 1091w, 745s, 647w, 562w, 522s. UV-Vis (DCM, nm 

{ε /M-1 cm-1}): 244 {118 584}, 274 {90 737}, 331 {51 565}, 440 {35 515}. Anal. 

Calc.(Found) for C68H52N4Ni2O8S2 C, 66.15 (66.11); H, 4.25 (4.00); N, 4.54 (4.58); S, 5.19 

(5.08) %. 

 

3.10.3.2.3 [Ni2S32]1.5H2O, light-brown: 0.0828 g (0.3 mmol) of Ni(OAc)2.4H2O and 

0.1503 g (0.3 mmol) of H2S3. Yield = 0.1466 g (42 %). Selected IR (ATR, cm-1): 3437w, 

3062w, 1616s, 1597s, 1524s, 1453s, 1368s, 1138s, 1033w, 750s, 553w, 488s. UV-Vis 

(DCM, nm {ε /M-1 cm-1}): 296 {37 429}, 434 {14 544}. Anal Calc.(Found) for 

C56H47N4Ni2O5.5S2 C, 64.33 (64.26); H, 4.53 (4.45); N, 5.36 (5.40); S, 6.13 (6.03) %. 

 

3.10.3.2.4 [Ni2S42]1.5H2O, light-green: 0.0547 g (0.2 mmol) of Ni(OAc)2.4H2O and 

0.1276 g (0.2 mmol) of H2S4. Yield = 0.1155 g (40.4 %). Selected IR (ATR, cm-1): 3445w, 

3063w, 1606s, 1575w, 1511s, 1449s, 1357s, 1286s, 1157s, 1064w, 750s, 633s, 546s, 450w. 

UV-Vis (DCM, nm {ε /M-1 cm-1}): 257 {55 988}, 301 {32 564}sh, 434 {16 693}. Anal. 

Calc.(Found) for C52H35N4Ni2O5.5S2 C, 47.86 (47.90); H, 2.70 (2.55); N, 4.29 (4.36); S, 

4.91 (4.93) %. 

 

3.10.3.2.5 [NiS5(H2O)], brown: 0.0420 g (0.2 mmol) of Ni(OAc)2.4H2O and 0.1244 g (0.2 

mmol) of H2S5. Yield = 0.1010 g (74.2 %). Selected IR (ATR, cm-1): 3587s, 3057br, 1604s, 

1575s, 1494s, 1435s, 1369w, 1271w, 1139s, 1063w, 755s, 694s, 525w, 477w. UV-Vis 

(DCM, nm {ε /M-1 cm-1}): 253 {34 412}, 300 {20 859}, 446 {10 803}. Anal. Calc.(Found) 

for C26H16Br4N2NiO3S C, 38.33 (38.58); H, 1.98 (1.96); N, 3.44 (3.43); S, 3.39 (3.86) %. 

 

3.10.3.2.6 [Ni2S62]2.5H2O, green: 0.0662 g (0.3 mmol) of Ni(OAc)2.4H2O and 0.1367 g 

(0.3 mmol) of H2S6. Yield = 0.1431 g (45.4 %). Selected IR (ATR, cm-1): 3060br, 1616s, 

1539s, 1485s, 1300s, 1246w, 1129w, 1099s, 753s, 644w, 555w, 505w. UV-Vis (DCM, nm 

{ε /M-1 cm-1}): 235 {4 682}, 305 {3 733}, 406 {5 209}. Anal. Calc.(Found) for 

C52H37N8Ni2O14.5S2 C, 52.60 (52.62); H, 3.14 (3.16); N, 9.44 (9.16); S, 5.40 (4.63) %. 
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3.10.3.3 Preparation of copper complexes 

 

The CuII complexes of H2S2 and H2S3 were prepared via same route as the CoII 

complexes, while those for H2S1 and H2O1 were prepared by placing the respective ligand 

and metal salt (in 1:1 ratio) in appropriate solvent. In the case of H2S2 the solvent used is 

observed to affect the product obtained – while chloroform gives a trinuclear complex {with 

acetate bridging}, THF gives a dinuclear complex {and no acetate present inside or outside 

the coordination sphere}. 

 

3.10.3.3.1 [Cu3S12(OAc)2]2.75H2O: 0.1170 g (0.28 mmol) of H2S1 and 0.0550 g (0.28 

mmol) of Cu(OAc)2.H2O were placed in a vial followed by 2 mL of DCM. The set-up was 

left to stand for one week at room temperature. Brown crystals (suitable for crystallographic 

measurement) were obtained, filtered and dried in air. Yield = 0.0496 g (14.9 %). Selected 

IR (ATR, cm-1): 3048w, 1609s, 1569w, 1541w, 1515s, 1432s, 1376s, 1330w, 1310w, 

1180s, 1145s, 1019w, 972s, 860s, 754s, 679s, 547s, 518s. UV-Vis (DCM, nm {ε /M-1 cm-

1}): 246 {9.27 x 104}, 274 {7.20 x 104}, 388 {2.57 x 104}. Anal. Calc.(Found) for 

C56H47.5Cu3N4O10.75S2 C, 55.90 (55.78); H, 3.98 (3.61); N, 4.66 (4.57); S, 5.33 (5.03) %. 

 

3.10.3.3.2 [Cu3S22(OAc)2]5.5H2O: 0.2188 g (0.42 mmol) H2S2 and 0.0834 g (0.42 mmol) 

of Cu(OAc)2.H2O were placed in a vial followed by 2 mL CHCl3. The set-up was left to 

stand for days at room temperature. Brown crystals (suitable for crystallographic 

measurement) were obtained, filtered and dried in air. Yield = 0.2300 g (38.0 %). Selected 

IR (ATR, cm-1): 3367w, 1603s, 1534s, 1368s, 1184s, 1039w, 749s, 649w, 540w. MS (ESI) 

m/z 608.1 ([CuS2]+ + Na+, Calc. 609.15), 586.2 (base peak, [CuS2]+, Calc. 586.16). UV-

Vis (DCM, nm {ε /M-1 cm-1}): 321 {4.69 x 104}, 411 {2.54 x 104}. Anal. Calc.(Found) for 

C72H61Cu3N4O13.5S2 C, 59.52 (59.50); H, 4.23 (4.23); N, 3.86 (4.62); S, 4.41 (5.03) %. 

 

3.10.3.3.3 [Cu2S22].2THF: 0.0990 g (0.19 mmol) of H2S2 and 0.0377 g (0.19 mmol) of 

Cu(OAc)2.H2O were weighed and transferred into a vial. 2 mL of THF was added and the 

set-up left for days. Brown crystals (suitable for crystallographic measurements) were 

obtained, filtered, washed with THF and dried in air. Yield = 0.1069 g (43.0 %). Selected 

IR (ATR, cm-1): 3055w, 1614w, 1602s, 1575s, 1534s, 1455s, 1433s, 1396s, 1364s, 1182s, 
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1061s, 829s, 741s, 562s, 504s, 464s. Anal. Calc.(Found) for C76H60Cu2N4O6S2 C, 69.33 

(68.94); H, 4.59 (4.51); N, 4.26 (4.25); S, 4.87 (4.69) %. 

 

3.10.3.3.4 [Cu2S32]3H2O: 5 mL 40% MeOH solution of 0.0903 g (0.45 mmol) of 

Cu(OAc)2.H2O was added to a 10 mL MeOH suspension (yellow) of 0.2044 g (0.45 mmol) 

H2S3. The green mixture, which later turned brown, obtained was stirred at room 

temperature, filtered, washed with MeOH and dried in air to afford a brown product. Yield 

= 0.1488 g (30.4 %). Selected IR (ATR, cm-1): 1621s, 1589s, 1447s, 1324s, 1159s, 1039w, 

753s, 614w, 525s. UV-Vis (DCM, nm {ε /M-1 cm-1}): 274 {5.40 x 104}sh, 403 {1.85 x 104}. 

MS (EI) m/z 513 ([CuS3]+, Calc. 514.10). Anal. Calc.(Found) for C56H50Cu2N4O7S2 C, 

62.15 (62.40); H, 4.66 (4.35); N, 5.18 (4.91); S, 5.93 (5.71) %. Crystals suitable for x-ray 

measurement were obtained by placing the ligand and metal salt (in 1:1 ratio) in a vial and 

layering with THF. 

 

3.10.3.3.5 [Cu2O12]1.5H2O: 0.0804 g (0.20 mmol) of H2O1 and 0.0393 g (0.20 mmol) of 

Cu(OAc)2.H2O were placed in a vial followed by 2 mL of MeCN. The set-up was left to 

stand for one week at room temperature. Brown crystals (suitable for crystallographic 

measurement) were obtained, filtered and dried in air. Yield = 0.0875 g (46.0 %). Selected 

IR (ATR, cm-1): 3356br, 1603s, 1578s, 1434s, 1324s, 1174s, 1040s, 748s, 607w, 528w. 

UV-Vis (DCM, nm {ε /M-1 cm-1}): 243 {5.21 x 104}, 289 {4.08 x 104}, 409 {1.91 x 104}. 

Anal. Calc.(Found) for C52H39Cu2N4O7.5 C, 64.59 (64.12); H, 4.07 (4.30); N, 5.79 (5.51) 

%. 

 

3.10.3.4 Preparation of chromium complex 

 

3.10.3.4.1 [CrO1(ONO2)]0.5H2O.0.2MeCN: 0.0129 g (0.03 mmol) of H2O1 and 0.0127 

g (0.03 mmol) of Cr(NO3)3.9H2O were weighed into a vial, 2 mL MeCN was added and the 

set-up left to stand for 7 days.  The green crystals (suitable for crystallographic 

measurements) obtained was filtered, washed with MeCN and dried in air. Yield = 0.0121 

g (71.2 %). Selected IR (ATR, cm-1): 1610s, 1584s, 1536s, 1486w, 1465s, 1441s, 1382s, 

1349s, 1312s, 1240s, 1199w, 1156w, 1123w, 1101s, 1004s, 929s, 847s, 822s, 748s, 621s, 

552s, 518s, 456s. Anal. Calc.(Found) for C26.4H19.6CrN3.2O6.5 C, 58.98 (58.83); H, 3.67 

(3.45); N, 8.34 (8.41) %. 
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Figure 3.1: (a) Proposed structures for CoII NNO/NNN imine complexes. (b) Proposed 

structure for the dinuclear CoII pentadentate imine complexes 
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION 

 

4.1 Synthesis 

Difficulties were encountered in the preparation of the 1,2-bisimidazoles series, 

even with adoption of different strategies. Similar challenges have been reported in 

literature (Yamashita and Abe 2014). The 1,3- and 1,4- series were obtained in low to 

excellent yields. 

The NNO and NNN imidazole imines were obtained in three steps: a first step 

involving a one pot synthesis of the nitro-imidazoles; followed by reduction {using 

hydrogen at 80 bars} to afford respective amines; the final step involved condensation of 

the appropriate amines with salicylaldehyde {for NNO imines} or pyridine-2-

carboxaldehyde {for NNN imines} in 1:1 ratio. The reaction of the amines with 

salicylaldehyde gave isolable products, however, only the N-H variants {excluding A1} 

gave isolable products with pyridine-2-carboxaldehyde. In the failed cases with pyridine-2-

carboxaldehyde, TLC showed new products were formed but isolation by column 

chromatography/precipitation {by means of different solvents} generated the starting 

amines {chromatography} or an oily mixture {precipitation}. The isolated compounds were 

obtained in excellent yields. The preparation of the pentadentate {ONSNO/ONONO} 

imines followed same procedure as the NNO/NNN imines and products were also obtained 

in excellent yields. The azo-imines were prepared in two steps: a first step involving the 

oxidation of o-phenylenediamine {using PbO2}, followed by condensation of the diamine 

obtained with appropriate aldehyde derivative to give respective imines. While the azo-

diamine was obtained in poor yield, the reddish coloured imines were obtained in excellent 

yields. Attempts to prepare other analogues {similar to those of the pentadentate imines} 

proved difficult {analysis of the materials obtained did not fit expected outcomes}. 
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4.2 1H-NMR of the compounds 

 Selected nuclear magnetic resonance (NMR) chemical shift values for the prepared 

organic molecules are presented in Tables 4.1 – 4.2. 

 The presence of the methoxy group {in the bis-imidazole series, BI2 and BI6} 

resulted in a slight upfield shift in the N-Himidazole peak {Table 4.1(a), Fig. S44 and Fig. 

S45}. This trend was also observed for N4 and A4 {in comparison to N2 and A2, 

respectively} {Table 4.1(b), Fig. S46 and Fig. S47}. The introduction of π-electron rich 

phenanthrene {Phen}, produced the most downfield shift of the N-Himidazole {Fig. S46 and 

Fig. S47} – while the methoxy group gave rise to ≈ 0.20 ppm shift, the Phen group gave 

rise to ≈ 0.80 ppm. Substitution at the N-H position {N-Me and N-Ph} of the imidazole 

amines generally resulted in an upfield shift in the NH2amine peak {Table 4.1(b) and Fig. 

S48 – S50} – while the NH2amine of the N-H analogues generally resonated around 7.00 

ppm, it resonated around 6.00 ppm in the substituted analogues. This trend {upfield shift 

upon substitution} was also observed for the N=CH peak of the imidazole imines {Table 

4.1(b) and Fig. S51 – S53}, while a downfield shift was observed with respect to the OH 

peak {Fig. S52}. 

 In comparison to H2S1, the introduction of π-electron rich naphthalene as well as 

replacing S with the more electronegative O, gave rise to a downfield shift in the N=CH 

and OH peaks {naphthalene showing the greatest shift} {Table 4.2 and Fig. S54 – S55}. 

The p-methyl and p-bromo substitutions only resulted in slight changes in the chemical shift 

values of the N=CH and OH peaks; the dibromo {o and p} and o-methoxy substitutions 

produced a downfield shift in the OH peak but no significant shift in the N=CH peak {Table 

4.2 and Fig. S54 – S55}. 
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Table 4.1(a): Effect of structural modification on the N-H chemical shift values of the bis-

imidazole {BI1 – BI7} 

 

 N-H δ (ppm) 

BI1 12.86 

BI2 12.66 

BI3 Absent 

BI4 Absent 

BI5 12.77 

BI6 12.57 

BI7 Absent 

 

 

Table 4.1(b): Effect of structural modification on the N-H, NH2, O-H and N=CH chemical 

shift values of the nitro-imidazoles {N1 – N9}, imidazole-amines {A1 – A9} and imidazole-

imines {1a – 1i}. 

 

 N-H δ (ppm)   N-H δ (ppm) NH2 δ (ppm)   O-H δ (ppm) N=CH δ (ppm) 

N1 12.12  A1 11.66 6.86  1a 10.10 N.Oa 

N2 12.97  A2 12.46 6.98  1b N.Oa 9.92 

N3 13.77  A3 13.21 7.33  1c 10.52 N.Oa 

N4 12.78  A4 12.28 6.97  1d N.Oa 9.90 

N5 Absent  A5 Absent 5.87  1e 12.67 9.09 

N6 Absent  A6 Absent 5.78  1f 12.37 9.13 

N7 Absent  A7 Absent 5.86  1g 12.69 9.09 

N8 Absent  A8 Absent 6.11  1h 12.61 8.60 

N9 Absent  A9 Absent 5.93  1i 12.55 8.86 

aNot observed, possibly due to overlap with the π-conjugated protons. 
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Table 4.2: Effect of structural modification on the O-H and N=CH chemical shift values of 

the ONSNO/ONONO imines {H2S1 – H2O1}. 

 

 O-H δ (ppm) N=CH δ (ppm) 

H2S1 12.83 8.94 

H2S2 15.23 9.73 

H2S3 12.52 8.87 

H2S4 12.78 8.90 

H2S5 14.03 8.96 

H2S6 N.Oa 9.12 

H2S7 12.95 8.94 

H2O1 13.14 9.00 

aNot observed, possibly due to poor solubility of the nitro analogue 
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4.3 Mass Spectrophotometry (MS) of the compounds 

Proposed fragmentation of the nitro-imidazoles {Schemes 4.1 – 4.3}, imidazole 

amines {Schemes 4.4 – 4.6}, tridentate NNO imines {Scheme 4.7}, tridentate NNN imines 

{Scheme 4.8}, pentadentate ONSNO/ONONO imines {Schemes 4.9 – 4.11}, pentadentate 

diazo imines {Scheme 4.12} and the CoII complexes of the NNO/NNN imines {Schemes 

4.13 – 4.15} are presented below. In almost all cases {nitro-imidazoles as well as imidazole 

amines} the molecular ion {M+} generated the base peak {a similar trend was not observed 

in the NNO/NNN imines and their CoII complexes}. Electrospray ionisation {ESI} 

measurement of N3 as well as its amine {A3} gave only the M+. ESI measurement of H2S5 

also gave its M+, which was not observed with high energy electron impact {EI} technique. 

The loss of -NH2 group was observed in the imidazole amines. 
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Scheme 4.1: Proposed fragmentation pattern of (a) N1, (b) N2 and (c) N4. 
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Scheme 4.2: Proposed fragmentation pattern of (a) N5, (b) N6 and (c) N7 
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Scheme 4.3: Proposed fragmentation pattern of (a) N8 and (b) N9 
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Scheme 4.4: Proposed fragmentation pattern of (a) A1, (b) A2 and (c) A4 
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Scheme 4.5: Proposed fragmentation pattern of (a) A5, (b) A6 and (c) A7 
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Scheme 4.6: Proposed fragmentation pattern of (a) A8 and (b) A9 
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Scheme 4.7: Proposed fragmentation pattern of (a) I1, (b) I2, (c) I3, (d) I6 and (e) I9 

 



 

181 
 

 

 

 

 

Scheme 4.8: Proposed fragmentation pattern of (a) IN2, (b) IN3 and (c) IN4 
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Scheme 4.9: Proposed fragmentation pattern of (a) H2S1, (b) H2S2 and (c) H2S3 
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Scheme 4.10: Proposed fragmentation pattern of (a) H2S4, (b) H2S5 and (c) H2S6 
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Scheme 4.11: Proposed fragmentation pattern of (a) H2S7 and (b) H2O1 

 

 

 

 

 



 

185 
 

 

 

 

 

 

 

 

Scheme 4.12: Proposed fragmentation pattern of (a) DAB, (b) H2AI1 and (c) H2AI2 

 



 

186 
 

 

 
Scheme 4.13: Proposed fragmentation pattern of (a) M1, (b) M3 and (c) M4 
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Scheme 4.14: Proposed fragmentation pattern of (a) M5 and (b) M6 



 

188 
 

 

 

 
Scheme 4.15: Proposed fragmentation pattern of (a) M7, (b) M8 and (c) M9 
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4.4 Thermal Stability of the compounds 

4.4.1 Thermal stability of the NNO imidazole imines and the CoII complexes 

The thermogravimetric {TG} curves of the NNO imines are presented in Fig. S57 

– S64, and the data in Table 4.3. All the compounds exhibited multistage decomposition 

with thermal stabilities ≥ 250oC and complete decomposition occurring at ≥ 475oC {the 

Phen based compounds showed complete decomposition at temperatures higher than those 

observed for the Ph and MeOPh analogues}. Generally, the observed stability trend was 

Phen ≈ MeOPh > Ph, the exception was I9 which showed a slight change at ≈ 210oC before 

a more significant change at ≈ 325oC.  The loss of the PhOH group in I9 occurred over a 

long temperature range {in two phases}. 

Like the NNO imines, the CoII complexes displayed multistage decomposition {Fig. 

S65 – S71 and Table 4.4}. The loss of solvents {H2O, MeOH}, in M1, M4 and M6, 

occurred at ≤ 100oC, suggesting they were not coordinated (Joseyphus and Nair 2009; Su 

et al., 2011; Chen et al., 2011). 

 

4.4.2 Thermal stability of the pentadentate (ONSNO/ONONO) complexes 

Like the NNO series, the dinuclear CoII complexes {Fig. S72 – S79 and Table 4.5}, 

di- and tri-nuclear CuII complexes {Fig. S80 – S84 and Table 4.6} and mononuclear CrIII 

complex {Fig. S85 and Table 4.6} exhibited multistage decomposition. Loss of solvents 

{H2O, THF, MeCN} was observed in the range ≤ 100oC to < 300oC. 
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Table 4.3: TG data of the NNO imidazole imines 

 
Compound Temperature (oC) Experimental % Theoretical % Loss fragment 

I2 250 43.41 {180.37 g} 44.34 HOPhN=CHPh 

 400   
Rest of the organic molecule 

 > 525 

 

I3 273 4.31 {17.81 g} 4.11 OH of phenol 

 300 4.48 {18.51 g} 4.36 H2O {OH of phenol  + H of imidazole} 

 400 21.31 {84.20 g} 22.47 Ph-CH= {from phenol side} 

 500 18.44 {76.03 g} 18.40 Ph from imidazole side of the structure 

 > 600   Rest of the organic molecule 

     

I4 270 5.59 {26.58 g} 6.53 MeO 

 325 24.16 {107.39 g} 24.10 PhOMe 

 > 450   Rest of the organic molecule 

     

I5 200 51.91 {222.96 g} 51.52 Portion of Imidazole ring + 2 Ph 

 475   
Rest of the organic molecule 

 > 575 

 

I6 275 42.49 {181.65 g} 43.09 HOPhN=CHPh 

 500   
Rest of the organic molecule 

 > 575 

 

I7 275 8.62 {42.20 g} 9.81 MeO + OH 

 350   
Rest of the organic molecule 

 > 475 

 

I8 275 39.28 {193.10 g} 39.92 HOPhN=CHPh 

 400 7.69 {22.71 g} 8.81 C=N of Imidazole ring 

 500 28.43 {76.58 g} 28.63 Ph on N of Imidazole ring 

 > 575   Rest of the organic molecule 

 

I9 210 0.92 
19.20 PhOH 

 325 17.38 {93.03 g} 

 475 6.71 {27.01 g} 6.82 N=CH 

 520 16.47 {63.03 g} 17.07 Portion from Ph of imidazole side 

 > 600   Rest of the organic molecule 
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Table 4.4: TG data of the CoII NNO complexes 

 
Compound Temperature (oC) Experimental % Theoretical % Loss fragment 

M1 < 100 2.68 {14.43 g} 2.51 H2O 

 325 6.25 {32.81 g} 5.48 H2O + MeOH 

 400 11.85 {60.30 g} 10.11 Cl + O from phenol group 

 > 475   Rest of the complex 

 

M3 293 10.87 {59.35 g} 10.81 AcO 

 > 600   Rest of the complex 

 

M4 100 
24.04 {163.87 g} 24.82 OPhCH + 2 MeOH 

 < 375 

 > 375   Rest of the complex 

 

M5 280 
24.34 {129.08 g} 24.54 

PyCH=N + portion of Ph on 

Imidazole ring  < 500 

 > 550   Rest of the complex 

 

M6 < 100 

7.31 {45.10 g} 7.79 MeOH  275 

 < 325 

 > 425   Rest of the complex 

 

M7 250 12.25 {72.58 g} 12.84 Ph from Phenol side 

 > 575   Rest of the complex 

 

M9 325 
21.92 {128.23 g} 21.80 OPh + Cl 

 < 475 

 > 500   Rest of the complex 
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Table 4.5: TG data of the dinuclear CoII {ONSNO/ONONO} complexes 

Compound Temperature (oC) Experimental % Theoretical % Loss fragment 

[Co2S12]3H2O < 100 4.95 {50.34 g} 5.32 H2O 

 125 

13.87 {133.55 g} 13.62 OPh-CH=N-C  150 

 175 

 250 17.62 {146.55 g} 17.70 C5H4-S-C4H3 

 375 20.83 {142.59 g} 21.06 H2C-N=CH-PhO 

 525 26.76 {144.60 g} 26.68 OPh-CH=N-C2H 

 > 725   Rest of the complex 

 

[Co2S22]3.5H2O < 100 
36.58 {448.53 g} 36.17 

H2O + ONaph-CH=N-Ph-S-Ph-

N=CH  350 

 425 28.29 {221.41 g} 27.89 O-Naph + Ph 

 500 19.74 {111.41 g} 19.16 S-Ph 

 > 650   Rest of the complex 

 

[Co2S32]2H2O < 100 
26.80 {282.74 g} 27.43 H2O + OPh(Me)-CH=N-Ph-S-C 

 375 

 400 34.53 {264.38 g} 34.39 C5H4-N=CH-PhO + C5H6 

 450 19.59 {98.40 g} 20.53 Ph-N=CH 

 > 650   Rest of the complex 

 

[Co2S42]1.5H2O < 100 
76.36 {1003.60 

g} 
76.88 

H2O + S4 + OPh(Br)-CH=N-Ph-S-

Ph-N 
 375 

 500 

 > 675   Rest of the complex 

 

[Co2S52] 375 12.98 {206.91 g} 13.16 C4H2Br2 

 400 
53.35 {738.45 g} 53.32 S5 

 500 

 > 625   Rest of the complex 

 

[Co2S62]2H2O < 100 
22.12 {260.77 g} 22.08 H2O + (O2N)Ph-CH=N-Ph 

 325 

 375 
47.22 {433.78 g} 47.72 

OPh(NO2)-CH=N-Ph-S + O + 

OPh(NO2)-CH  450 

 > 500   Rest of the complex 

 

[Co2S72]2H2O < 100 
22.43 {267.15 g} 22.61 H2O + OPh(OMe)-CH=N-C 

 175 

 325 
36.61 {337.47 g} 36.17 OPh(OMe)-CH=N-Ph-S-Ph 

 < 425 

 > 425   Rest of the complex 

 

[Co2O12]0.5H2O < 100 
11.16 {104.88 g} 10.76 H2O + OPh 

 375 

 425 71.80 {602.15 g} 71.74 CH=N-Ph-O-Ph-N=CH-PhO +  

Ph-O-Ph-N=CH-PhO 

 > 500   Rest of the complex 
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Table 4.6: TG data of the di-/tri-nuclear CuII and mononuclear CrIII {ONSNO/ONONO} 

complexes 

 
Compound Temperature 

(oC) 

Experimental 

% 

Theoretical 

% 

Loss fragment 

[Cu3S12(OAc)2]2.75H2O 175 4.18 {50.30 g} 4.12 H2O 

 200 33.87 {390.77 

g} 
33.76 

OAc + OPhCH=N-Ph-S-

Ph-N=C  275 

 350 43.17 {329.94 

g} 

43.23 OPhCH=N-Ph-S-Ph-

N=CH 

 > 650   Rest of the complex 

 

[Cu3S22(OAc)2]5.5H2O < 100 
4.86 {70.62 g} 4.96 H2O 

 175 

 300 57.03 {787.58 

g} 

57.93 S2 + O-Naph-CH=N-Ph-

S 

 > 500 25.35 {140.44 

g} 

25.66 O-Naph 

 > 650   Rest of the complex 

 

[Cu2S22]2THF 100 
56.48 {743.59 

g} 
56.43 THF + S2 + Ph  250 

 350 

 375 21.32 {122.30 

g} 

21.30 S-Ph-N 

 > 675   Rest of the complex 

 

[Cu2S32]3H2O 100 2.52 {27.27 g} 2.50 H2O 

 175 18.94 {199.86 

g} 

19.50 H2O + MePh-CH=N-Ph 

 325 55.43 {462.82 

g} 

55.76 S3 + Me 

 > 600   Rest of the complex 

 

[Cu2O12]1.5H2O < 100 1.87 {18.08 g} 1.86 H2O 

 100 
8.27 {78.48 g} 8.02 H2O + O-C4H3 

 150 

 325 74.04 {646.30 

g} 

73.40 O1 + C2H-CH=N-Ph-O-

Ph-N 

 > 450   Rest of the complex 

 

[CrIIIO1(ONO2)]0.5H2O.0.2MeCN 125 31.79 {170.92 

g} 
31.86 

H2O + MeCN + ONO2 + 

OPh  275 

 375 54.18 {198.48 

g} 

53.29 CH=N-Ph-O-Ph 

 > 425   Rest of the complex 
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4.5 Structural properties of compounds 

4.5.1 Structural property of the palladium(II) complexes of the nitro-imidazoles 

The crystal structures and crystallographic analyses of Pd-N1 and Pd-N3 are 

presented in Fig. 4.1 and Table 4.7(a) respectively.  The compounds crystallise in a 

monoclinic P21/n and P21/c space groups, respectively. The asymmetric units of Pd-N1 and 

Pd-N3 contained one Pd(II) ion, two neutral N donor atoms {one from the imidazole ligand 

and one from acetonitrile} and two chloride ions; resulting in a four-coordinate square 

planar geometry. The Pd-N bond lengths were ≈ 2.0 Å while the Pd-Cl bond lengths were 

≈ 2.3 Å {Table 4.7(b)}; the bond distances agreed with earlier reports  (Jose et al., 2018; 

Liu et al., 2019). 
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Figure 4.1: Molecular structure of (a) Pd-N1 (b) Pd-N3. Solvents and some hydrogens are 

omitted for clarity. 
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Table 4.7(a): Crystallographic Data and Structure Refinement Parameters for Pd-N1, 

Pd-N3. 

 

                                                          Pd-N1                         Pd-N3                                                              

Formula                                          C15H18Cl2N4O2Pd      C23H16Cl2N4O2Pd  

Fw (g mol-1)                                   463.63                        557.72   

Cryst. syst.                                      Monoclinic                Monoclinic   

Space group                                    P21/n                          P21/c     

a (Å)                                               12.3432(2)                 8.1027(1)   

b (Å)                                               11.9659(2)                 19.0460(3)     

c (Å)                                               13.1306(3)                 17.2076(2)    

α (deg)                                            90                               90        

β (deg)                                            108.350(1)                 93.272(1)    

γ (deg)                                            90                               90         

V (Å3)                                            1840.74(6)                  2652.69(6)   

z                                                     4                                  4          

T(K)                                              133(2)                          133(2)  

δCalc(Mg/m3)                                  1.673                           1.602     

F(000)                                            928                             1288   

μ(mm-1)                                          1.313                          0.938    

θ range for data collection (deg)    1.98 - 27.48               2.37 – 27.48   

Measd reflns                                  14200                         20779    

Unique refln (Rint)                         4212 (0.0341)             6088 (0.0306)  

No. of param                                 242                              350       

GOF on F2                                     1.043                          1.058     

R1[I>2σ(I)]                                   0.0293                         0.0288   

wR2(all data)                                0.0735                         0.0698  

 

 

Table 4.7(b): Selected bond lengths (Å) and angles (o) 

 
                                       Pd-N1                  Pd-N3    
           Pd(1)-N(1)         1.995(2)               1.9956(17)      

           Pd(1)-N(4)         2.004(2)               1.996(2)    

           Pd(1)-Cl(1)        2.3044(7)             2.2964(6)   

           Pd(1)-Cl(2)        2.2993(7)             2.2959(6)    

 

    N(1)-Pd(1)-N(4)      177.13(8)            178.74(8)      

    N(1)-Pd(1)-Cl(2)       90.31(7)              90.12(5)  

    N(4)-Pd(1)-Cl(2)       87.72(6)              89.66(6)      

    N(1)-Pd(1)-Cl(1)       89.56(7)              90.02(5)      

    N(4)-Pd(1)-Cl(1)       92.39(6)              90.16(6)      

    Cl(2)-Pd(1)-Cl(1)    179.80(2)            178.13(2)      
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4.5.2 Structural property of the imidazole amines, NNO imines and their metal 

complexes 

The crystal structure and crystallographic analysis of I9.MeOH is presented in Fig. 

4.2 and Table 4.8(a) respectively. I9.MeOH crystallised in a triclinic Pī space group. The 

C=Nimine and hydrogen bond distances {Table 4.8(b)} agreed with reported ranges 

(Jiménez-Sánchez et al., 2014; Kanmazalp et al., 2019). 

The crystal structures for imidazole amine complexes, A2-CdI2, A8-CdI2, A8-

CoCl2 and A9-CuCl2.MeCN, are presented in Fig. 4.3. The structures for the Zn(II) imine 

complexes, 1c-ZnCl2.MeCN, 1h-ZnCl2 and 1i-ZnCl2.2MeCN are presented in Fig. 4.4; 

and their crystallographic data in Table 4.9. The crystal structures and crystallographic data 

for the cobalt imine complexes, [Co(1a)2]Cl, M2, M5 and M9 are presented in Fig. 4.5 and 

Table 4.11, respectively. 

A2-CdI2 and A9-CuCl2.MeCN crystallised in the monoclinic P21/c and P21/n space 

groups, respectively; while A8-CdI2 and A8-CoCl2 crystallised in the triclinic P-1 and Pī 

space groups, respectively. The asymmetric unit of A2-CdI2 contained one Cd(II) ion 

connected four heteroatoms {Nimidazole and Namine atoms} and one iodide ion, resulting in 

two six-membered chelate rings with a five-coordinate {trigonal bipyramidal} geometry. 

The amine {A2} acted as neutral ligand resulting in a cationic complex. The asymmetric 

units of A8-CdI2, A8-CoCl2 and A9-CuCl2.MeCN contained one M(II) ion {M = Cd, Co 

and Cu, respectively}, two heteroatoms {Nimidazole and Namine atoms} and two X- ions {X = 

I, Cl and Cl, respectively}, resulting in a six-membered chelate ring with four-coordinate 

{distorted tetrahedral [for A8] and square planar [for A9]} geometries. The amines {A8 and 

A9} acted as neutral ligands in the neutral complexes obtained. The coordination bond 

length {Table 4.12} showed M-N followed the order Cd > Co ≈ Cu, and M-Cl followed 

Cu > Co. 

I3-ZnCl2.MeCN and I8-ZnCl2 crystallised in the orthorhombic Pbcn and Pbca space 

groups, respectively; while I9-ZnCl2.2MeCN crystallises in the monoclinic P21/n space 

group. The asymmetric units of the complexes contained one Zn(II) ion, three heteroatoms 

{Nimidazole, Nimine and Ophenol atoms} and one chloride ion, resulting in a two six-membered 

chelate rings with a four-coordinate {distorted tetrahedral} geometry. The ligands acted as 

monoanionic molecules. The Zn-O, Zn-N and Zn-Cl bond lengths {Table 4.10} were in the 
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range 1.9202(13) – 1.9305(0), 1.9905(13) – 2.0362(13) and 2.2158(0) – 2.2233(5), 

respectively. In comparison to I9.MeOH, the C=Nimine of the complexes increased, while 

the C-Ophenol decreased. 

The cobalt complexes, [Co(I1)2]Cl, M2, M5 and M9, crystallised in the monoclinic 

P21/n, triclinic Pī, monoclinic P21/n and orthorhombic Pbca space groups, respectively. In 

the case of [Co(I1)2]Cl and M2, Co(II) was oxidised to Co(III) with a Cl- {counter ion} 

outside the coordination sphere. Their asymmetric units contained one Co(III) ion and six 

heteroatoms {Nimidazole, Nimine and Ophenol atoms}, resulting in cationic complexes possessing 

four six-membered chelate rings with a six-coordinate {distorted octahedral} geometry. The 

asymmetric unit of M5 contained one Co(II) ion, three heteroatoms {Nimidazole, Nimine and 

Npyridine atoms} and two Cl- ions, resulting in two six-membered chelate rings with a five-

coordinate {trigonal-bipyramidal} geometry. The asymmetric unit of M9 contained one 

Co(II) ion, three heteroatoms {Nimidazole, Nimine and Ophenol atoms} and one Cl- ion, resulting 

in two six-membered chelate rings with a four-coordinate {distorted tetrahedral} geometry. 

The NNO ligands {I1, I2 and I8} acted as monoanionic molecules, while IN2 acted as a 

neutral molecule. The Co-O, and Co-N bond lengths {Table 4.12} were in the range 

1.868(3) – 1.899(2) and 1.9141(3) – 2.010(4), respectively. As seen in the Zn(II) complexes, 

the C=Nimine of the cobalt complexes {in comparison to I9.MeOH} increased, while the C-

Ophenol {NNO series} decreased. 
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Figure 4.2: Molecular structure of I9.MeOH. Solvents and some hydrogens are omitted for 

clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

200 
 

 

 

  

 

Figure 4.3: Molecular structures of (a) A2-CdI2 (b) A8-CdI2 (c) A8-CoCl2 and (d) A9-

CuCl2.MeCN. Solvents and some hydrogens are omitted for clarity. 
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Figure 4.4: Molecular structures of (a) 1c-ZnCl2.MeCN (b) 1h-ZnCl2 and (c) 1i-

ZnCl2.2MeCN. Solvents and some hydrogens are omitted for clarity. 
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Figure 4.5: Molecular structures of (a) [Co(I1)2]Cl (b) M2 (c) M5, and (d) M9. Solvents 

and some hydrogens are omitted for clarity. 
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Table 4.8(a): Crystallographic Data and Structure Refinement Parameters for I9.MeOH. 

 
                                                        I9.MeOH 

Formula                                         C35H27N3O2 

Fw (g mol-1)                                   521.60  

Cryst. syst.                                     Triclinic 

Space group                                    Pī 

a (Å)                                               10.4422(3) 

b (Å)                                               11.4333(2) 

c (Å)                                               13.0546(3) 

α (deg)                                            98.735(1) 

β (deg)                                            113.262(1)        

γ (deg)                                            102.928(1)           

V (Å3)                                            1344.42(5) 

z                                                     2    

T(K)                                              133(2) 

δCalc(Mg/m3)                                  1.288 

F(000)                                            548 

μ(mm-1)                                         0.081 

θ range for data collection (deg)  2.14 – 27.48 

Measd reflns                                  19439  

Unique refln (Rint)                         6103(0.0219) 

No. of param                                 381 

GOF on F2                                    1.037 

R1[I>2σ(I)]                                   0.0429 

wR2(all data)                                0.1068 

 

Table 4.8(b): Selected bond lengths (Å) 

 
                          I9.MeOH      

C=Nimine            1.2804(0)  

 

C – Ophenol         1.3483(0)  

 

C=N….HO         1.7052(0)   

 

Nimine
….Ophenol    2.6106(0)    
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Table 4.9: Crystallographic Data and Structure Refinement Parameters for A2-CdI2, A8-

CdI2, A8-CoCl2, A9-CuCl2.MeCN, I3-ZnCl2.MeCN, I8-ZnCl2, and I9-ZnCl2.2MeCN 

 
                                                           A2-CdI2            A8-CdI2              A8-CoCl2           A9-CuCl2.MeCN 
Formula                                          C84H68Cd4I8N12    C27H21CdI2N3         C27H17Cl2CoN3     C29H22Cl2CuN4 

Fw (g mol-1)                                   2710.30               753.67                  513.27                 560.95               

Cryst. syst.                                      Monoclinic         Triclinic               Triclinic              Monoclinic      

Space group                                    P21/c                    P-1                       Pī                        P21/n                

a (Å)                                               18.2910(3)           9.7532(2)             9.1480(3)           13.2587(5)        

b (Å)                                               10.4421(2)           11.1838(2)          11.4605(4)          10.5155(3)        

c (Å)                                               25.1769(4)           13.0352               12.3983(4)          17.7623(6)        

α (deg)                                            90                         97.266(1)            81.756(2)            90                     

β (deg)                                            105.062(1)           95.235(1)            89.579(2)             93.477(2)                 

γ (deg)                                            90                         111.499(1)          68.429(2)             90                                

V (Å3)                                            4643.50(14)         1297.64(4)          1194.86(7)            2471.89(14)     

z                                                     2                           2                          2                           4                        

T(K)                                              133(2)                   133(2)                 133(2)                  133(2)              

δCalc(Mg/m3)                                  1.938                    1.929                   1.427                    1.507                

F(000)                                            2544                     716                      522                      1148                 

μ(mm-1)                                          3.610                    3.240                   0.962                   1.127                 

θ range for data collection (deg)  1.67 – 27.48          1.93 - 27.48         2.38 - 27.48         1.98 - 27.48       

Measd reflns                                  32331                   18411                  11817                  14251                 

Unique refln (Rint)                         10596(0.0429)     5892(0.0233)       5375(0.0653)      5618(0.0444)    

No. of param                                 563                       306                       302                      334                    

GOF on F2                                     1.034                   1.074                    1.164                   1.117                  

R1[I>2σ(I)]                                   0.0667                 0.0210                   0.0865                 0.0481                

wR2(all data)                                0.1691                 0.0457                   0.1588                 0.0983                

 

                                                      I3-ZnCl2.MeCN      I8-ZnCl2                         I9-ZnCl2.2MeCN 
Formula                                         C30H21ClN4OZn      C34H24ClN3OZn             C38H28ClN5OZn 

Fw (g mol-1)                                   554.33                     591.38                            671.47 

Cryst. syst.                                     Orthorhombic        Orthorhombic                  Monoclinic 

Space group                                    Pbcn                      pbca                                 P21/n 

a (Å)                                               28.3695(4)              10.0462(1)                     12.5256(2) 

b (Å)                                               12.1407(2)              23.1008(3)                     14.2437(2) 

c (Å)                                               14.3497(2)              23.8712(3)                     18.8020(3) 

α (deg)                                            90                            90                                  90 

β (deg)                                            90                            90                                 109.140(1) 

γ (deg)                                            90                            90                                  90 

V (Å3)                                            4942.40(13)            5539.91(11)                   3169.05(8) 

z                                                     8                             8                                     4 

T(K)                                              133(2)                    133(2)                             133(2) 

δCalc(Mg/m3)                                  1.490                     1.418                               1.407 

F(000)                                            2272                      2432                               1384 

μ(mm-1)                                          1.134                     1.016                              0.899 

θ range for data collection (deg)   2.31 - 27.46            2.37 – 27.48                   2.24 - 27.48 

Measd reflns                                  38042                    56659                              25171 

Unique refln (Rint)                         5657(0.0353)         6325(0.0322)                  7274(0.0360) 

No. of param                                 339                         457                                  426 

GOF on F2                                     1.045                     1.107                                1.048 

R1[I>2σ(I)]                                   0.0283                   0.0349                               0.0341 

wR2(all data)                                0.0716                   0.0790                               0.0800 
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Table 4.10: Selected bond lengths (Å) and angles (o) 

 
                                A2-CdI2       A8-CdI2                                         A8-CoCl2                       A9-CuCl2.MeCN 
     Cd(1)-N(1)         2.296(6)       2.323(2)                      Co(1)-N(1)     2.028(4)           Cu(1)-N(1)      2.041(2) 

     Cd(1)-N(4)         2.309(8)                                           Co(1)-N(3)     2.060(4)           Cu(1)-N(3)      2.026(3) 

     Cd(1)-N(3)         2.433(6)       2.321(2)                    Co(1)-Cl(1)    2.2411(15)       Cu(1)-Cl(1)      2.2401(8) 

     Cd(1)-N(6)         2.434(7)                                          Co(1)-Cl(2)    2.2296(15)       Cu(1)-Cl(2)      2.3541(8) 

     Cd(1)-I(1)          2.7218(7)    2.7115(2) 

     Cd(1)-I(2)                              2.7029(2) 

                                                                           

                                                                           

                               A2-CdI2       A8-CdI2                                         A8-CoCl2                       A9-CuCl2.MeCN                                                                            
 N(1)-Cd(1)-N(4)    104.2(3)                                     N(1)-Co(1)-N(3)      90.34(16)    N(1)-Cu(1)-N(3)   82.45(10) 

 N(1)-Cd(1)-N(3)      73.4(2)         78.92(7)              N(1)-Co(1)-Cl(2)   112.33(12)     N(1)-Cu(1)-Cl(1)  97.06(7) 

 N(4)-Cd(1)-N(3)      87.0(2)                                     N(1)-Co(1)-Cl(1)  115.74(13)      N(1)-Cu(1)-Cl(2)   148.05(7) 

 N(1)-Cd(1)-N(6)      92.2(2)                                     N(3)-Co(1)-Cl(2)  109.07(14)      N(3)-Cu(1)-Cl(1)   176.65(8) 

 N(4)-Cd(1)-N(6)      73.6(3)                                     N(3)-Co(1)-Cl(1)   108.43(13)     N(3)-Cu(1)-Cl(2)    87.02(8) 

 N(3)-Cd(1)-N(6)    152.4(3)                                      Cl(1)-Co(1)-Cl(2)  117.29(6)       Cl(1)-Cu(1)-Cl(2)     91.72(3) 

 N(1)-Cd(1)-I(1)      127.81(17)     100.59(5)      

 N(4)-Cd(1)-I(1)      127.95(19) 

 N(3)-Cd(1)-I(1)      104.91(16)     109.93(5) 

 N(6)-Cd(1)-I(1)      102.51(19) 

 N(3)-Cd(1)-I(2)                             113.32(5) 

 N(1)-Cd(1)-I(2)                             118.87(5) 

 I(2)-Cd(1)-I(1)                               125.397(8) 
                                                                      

                                                                   

                                                                                                                                            

                                                                                                      

                                      I3-ZnCl2.MeCN     I8-ZnCl2     I9-ZnCl2.2MeCN         
           Zn(1)-O(1)               1.9286(11)        1.9305(0)         1.9202(13) 

           Zn(1)-N(1)               1.9950(13)        2.0278(0)         2.0361(14) 

           Zn(1)-N(3)               2.0362(13)        2.0306(0)         2.0090(15) 

           Zn(1)-Cl(1)              2.2177(4)          2.2158(0)         2.2233(5) 

           C=Nimine                   1.2972(0)          1.2986(0)         1.2945(0) 

           C – Ophenol                1.3086(0)          1.2821(0)         1.3099(0) 

     

    O(1)-Zn(1)-N(1)             117.41(5)         118.255(1)         120.29(6) 

    O(1)-Zn(1)-N(3)               93.76(5)           95.326(1)           94.90(6) 

    N(1)-Zn(1)-N(3)               92.06(5)           89.918(0)           90.80(6) 

    O(1)-Zn(1)-Cl(1)            109.11(4)         116.927(0)         114.67(4) 

    N(1)-Zn(1)-Cl(1)            118.28(4)         114.462(1)         113.01(4) 

    N(3)-Zn(1)-Cl(1)            123.65(4)         117.082(0)         119.90(5) 
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Table 4.11: Crystallographic Data and Structure Refinement Parameters for [Co(I1)2]Cl, 

M2, M5 and M9 

 
                                                        [Co(1a)2]Cl                   M2                              M5                  M9        

Formula                                          C40H40ClCoN6O2     C58.50H50ClCoN6O4.50       C27H20Cl2CoN4      C34H24ClCoN3O 

Fw (g mol-1)                                    731.16                     1003.43                            530.30                 584.94 

Cryst. syst.                                      Monoclinic              Triclinic                           Monoclinic          Orthorhombic 

Space group                                    P21/n                        Pī                                      P21/n                    pbca 

a (Å)                                               8.4102(2)                 11.6766(4)                       11.917(1)              10.0067(1) 

b (Å)                                               14.7878(4)               12.0221(3)                       7.3736(6)              23.1121(4) 

c (Å)                                               28.6164(9)               18.0503(5)                       26.1852(22)          23.7408(4) 

α (deg)                                            90                             91.260(2)                         90                         90 

β (deg)                                            97.383(1)                 101.215(1)                       96.169(1)              90 

γ (deg)                                            90                             101.085(2)                       90                          90 

V (Å3)                                            3529.47(17)              2434.45(12)                    2287.60(33)           5490.67(14) 

z                                                     4                                2                                      4                            8 

T(K)                                              133(2)                        133(2)                             133(2)                    133(2) 

δCalc(Mg/m3)                                  1.376                         1.369                               1.540                      1.415 

F(000)                                            1528                          1046                                1084                       2408 

μ(mm-1)                                          0.607                         0.564                               0.756                      1.008 

θ range for data collection (deg)  1.55 - 27.44               1.94 – 27.48                     2.76 – 28.13            1.76 – 27.48 

Measd reflns                                  22726                       22961                               39762                      37365 

Unique refln (Rint)                         7939(0.0872)           10899(0.0448)                  5550 (0.0439)          6277(0.1141) 

No. of param                                 463                           644                                    387                          361 

GOF on F2                                     1.115                       1.025                                 1.037                       1.139 

R1[I>2σ(I)]                                   0.0687                      0.0711                               0.0303                     0.0824 

wR2(all data)                                0.1308                      0.1900                               0.0748                     0.2180 
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Table 4.12: Selected bond lengths (Å) and angles (o) 

 
                                         [Co(I1)2]Cl                M2                           M5                           M9 

           Co(1)-O(1)            1.890(2)                  1.884(2)                                                    1.868(3) 

           Co(1)-O(2)            1.899(2)                  1.884(2) 

           Co(1)-N(1)            1.943(3)                  1.958(3)                   2.0815(2)                 2.010(4) 

           Co(1)-N(2)            1.956(3)                  1.958(3)                   2.1484(1)                 2.008(4) 

           Co(1)-N(3)            1.914(3)                  1.927(3)                   2.0697(1) 

           Co(1)-N(4)            1.935(3)                  1.927(3) 

           Co(1)-Cl(1)                                                                           2.3798(1)                 2.2293(15) 

           Co(1)-Cl(2)                                                                           2.2749(1) 

 

           C=Nimine                1.2977(0)                1.2935(0)                 1.2772(1)                 1.3029(0) 

                                         1.2942(0) 

 

           C – Ophenol            1.3024(0)                 1.3141(0)                                                  1.2984(0) 

                                        1.3066(0)  

 

 

    O(1)-Co(1)-O(2)          86.97(11)               179.998(1) 

    O(1)-Co(1)-N(1)          89.31(11)                 90.88(10)                                               119.64(16) 

    O(1)-Co(1)-N(2)          92.87(12)                 89.12(10) 

    O(1)-Co(1)-N(3)          91.81(12)                 90.67(11)                                                 94.72(16) 

    O(1)-Co(1)-N(4)        177.52(12)                 89.33(11) 

    O(2)-Co(1)-N(1)        175.18(12)                 89.12(10) 

    O(2)-Co(1)-N(2)          90.20(11)                 90.88(10) 

    O(2)-Co(1)-N(3)          90.32(11)                 89.33(10) 

    O(2)-Co(1)-N(4)          91.38(11)                 90.67(11) 

    N(1)-Co(1)-N(2)          93.03(12)               180.00(12)                78.784(3) 

    N(1)-Co(1)-N(3)          86.75(12)                 86.92(11)              122.345(4)                  90.36(15) 

    N(1)-Co(1)-N(4)          92.44(12)                 93.09(11) 

    N(2)-Co(1)-N(4)          85.29(12)                 86.92(11) 

   N(2)-Co(1)-N(3)        175.31(13)                 93.08(11)                 76.352(3) 

    N(3)-Co(1)-N(4)         90.04(12)                179.999(1) 

    O(1)-Co(1)-Cl(1)                                                                                                          115.77(12) 

    N(1)-Co(1)-Cl(1)                                                                        118.476(3)                114.86(12) 

    N(1)-Co(1)-Cl(2)                                                                        101.023(3) 

    N(2)-Co(1)-Cl(1)                                                                          84.415(2) 

    N(2)-Co(1)-Cl(2)                                                                        176.181(3) 

    N(3)-Co(1)-Cl(1)                                                                        109.775(2)               116.63(12) 

    N(3)-Co(1)-Cl(2)                                                                        100.713(2) 
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4.5.3 Structural property of NNN imines and their metal complexes 

Unlike the NNO imines, a cyclisation process was observed upon interaction of the 

NNN imines (IN2 and IN4) with Zn(II) and Cd(II) salts, Fig. 4.6. While one of the cyclised 

form of IN4 was outside the coordination sphere in the Zn(II) complex (Fig. 4.6{c}), the 

Cd(II) complex (Fig. 4.6{b}) did not show this. A coordination complex (Fig. 4.6{d}) was 

obtained when IN4 interacted with CdI2, which was not observed for the CdCl2 counterpart 

(Fig. 4.6{b}). In addition to the metal complexes, {[ZnCl(IN2)(IN2c)][ZnCl3(OH2)], 

[CdCl(IN4)(IN4c)CdCl3]MeCN, [ZnCl(IN4)(IN4c)ZnCl3]IN4c2MeOH, 

[CdI(IN4)(IN4c)][CdI4]3MeOH}, the cyclised compounds, (IN2c)H+ClO4
-THF and 

IN2v.MeOH, were also obtained in the presence of Fe(ClO4)3 and Co(OAc)2.4H2O, 

respectively, Fig. 4.7.  The crystallographic data for the compounds are presented in Table 

4.13. 

[ZnCl(IN2)(IN2c)][ZnCl3(OH2)] and [CdCl(IN4)(IN4c)CdCl3]MeCN are 

isostructural and crystallised in the triclinic P-1 space group, respectively; while 

[ZnCl(IN4)(IN4c)ZnCl3]IN4c2MeOH and [CdI(IN4)(IN4c)][CdI4]3MeOH crystallised in the 

monoclinic P21/n and C2/c space groups, respectively. The asymmetric unit of 

[ZnCl(IN2)(IN2c)][ZnCl3(OH2)] contained one Zn(II) ion connected to four heteroatoms 

{two Nimidazole, Nimine and Npy atoms} and one chloride ion, resulting in one five-membered 

and one six-membered chelate ring with a five-coordinate {trigonal bipyramidal} geometry. 

The NNN imines {IN2 and IN2c} acted as neutral ligands resulting in a cationic complex 

{[ZnCl(IN2)(IN2c)]+}. [CdCl(IN4)(IN4c)CdCl3]MeCN had two coordination environments; 

a Cd(II) ion that is structurally similar to the Zn(II) centre in [ZnCl(IN2)(IN2c)]+ and a second 

Cd(II) ion connected to the Npy atom of 2dc and three chloride ions, resulting in a four-

coordinate {distorted tetrahedral} geometry – this four-coordinate centre resulted in a 

neutral complex. Although [ZnCl(IN4)(IN4c)ZnCl3]IN4c2MeOH crystallises distinctly, its 

coordination environments are structurally similar to that of 

[CdCl(IN4)(IN4c)CdCl3]MeCN. Although [CdI(IN4)(IN4c)][CdI4]3MeOH crystallised 

distinctly, its asymmetric unit is similar to [ZnCl(IN2)(IN2c)][ZnCl3(OH2)] and a cationic 

complex {[CdI(IN4)(IN4c)]+} also arose. 
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The Zn-N and Cd-N bond lengths were in the range 2.049 – 2.3238 Å and 2.264 – 

2.4263 Å respectively, while the N-Zn-N and N-Cd-N angles were in the range 74.44 – 

168.29o and 69.05 – 120.90o, respectively {Table 4.14}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

210 
 

 

  

  

 
 

Figure 4.6: Molecular structures of (a) [ZnCl(IN2)(IN2c)][ZnCl3(OH2)] (b) 

[CdCl(IN4)(IN4c)CdCl3]MeCN (c) [ZnCl(IN4)(IN4c)ZnCl3]IN4c2MeOH and (d) 

[CdI(IN4)(IN4c)][CdI4]3MeOH. Solvents and some hydrogens are omitted for clarity. 
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Figure 4.7: Molecular structures of (a) IN2c (b) (IN2c)H+ClO4
-THF and (c) IN2v.MeOH. 

Solvents and some hydrogens are omitted for clarity. 
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Table 4.13: Crystallographic Data and Structure Refinement Parameters for IN2c, 

IN2cH+.ClO4
-.THF, IN2v.MeOH, [ZnCl(IN2)(IN2c)][ZnCl3(OH2)], 

[CdCl(IN4)(IN4c)CdCl3]MeCN,  [ZnCl(IN4)(IN4c)ZnCl3]IN4c·2MeOH, and 

[CdI(IN4)(IN4c)][CdI4]·3MeOH. 

 
                                                           IN2c                IN2cH+.ClO4

-.THF     IN2v·MeOH       [ZnCl(IN2)(IN2c)][ZnCl3(OH2)]    

Formula                                          C27H20N4         C31H29ClN4O5         C28H22N4O           C54H42Cl4N8OZn2  

Fw (g mol-1)                                   400.47              573.03                     430.49                 1091.49         

Cryst. syst.                                     Monoclinic       Triclinic                   Triclinic              Triclinic 

Space group                                    P21/c                P-1                           P-1                       P-1                         

a (Å)                                               15.8578(6)       9.2057(3)                 9.0863(4)             14.1925(2) 

b (Å)                                               10.7742(4)       11.1064(3)               10.7718(4)           15.6136(3) 

c (Å)                                               11.8939(3)       13.3831(5)               12.1969(4)           25.8143(4)    

α (deg)                                            90                     98.891(2)                105.347(2)           86.963(1) 

β (deg)                                            94.867(2)          90.8570(10)             95.438(2)            86.104(1)       

γ (deg)                                             90                     93.835(2)                 108.636(2)          83.546(1)  

V (Å3)                                             2024.81(12)      1348.40(8)               1069.63(7)          5665.02(16) 

z                                                      4                        2                               2                          4  

T(K)                                               133(2)                133(2)                      133(2)                 133(2) 

δCalc(Mg/m3)                                   1.314                  1.411                       1.337                    1.280 

F(000)                                            840                     600                          452                       2232 

μ(mm-1)                                          0.079                  0.192                      0.084                     1.087 

θ range for data collection (deg)   2.29 – 27.45        1.86 – 27.48            1.77 – 27.47        1.50 – 27.48 

Measd reflns                                  14650                  15181                      11056                  42807 

Unique refln (Rint)                         4596 (0.0612)      6110 (0.0747)         4835 (0.0365)     25063 (0.026) 

No. of param                                 360                       378                         300                       1313          

GOF on F2                                    1.132                     1.048                       1.054                  1.068 

R1[I>2σ(I)]                                   0.0592                  0.0669                     0.0630                 0.0609 

wR2(all data)                                0.1209                  0.1890                     0.1371                 0.1498 

 
                                        [CdCl(IN4)(IN4c)CdCl3]·MeCN        [ZnCl(IN4)(IN4c)ZnCl3]IN4c·2MeOH     [CdI(IN4)(IN4c)][CdI4]·3MeOH 

Formula                                          C60H50Cd2Cl4N9O4                   C89H80Cl4N12O8Zn2                     C61H60Cd2I5N8O7   

Fw (g mol-1)                                   1327.69                              1718.19                                      1876.52 

Cryst. syst.                                      Triclinic                             Monoclinic                                Monoclinic             

Space group                                    P-1                                     P21/n                                          C2/c 

a (Å)                                               14.0634(3)                         14.4706(2)                                 30.7277(6) 

b (Å)                                               15.6228(3)                         22.3107(4)                                 13.5061(3) 

c (Å)                                               16.5193(3)                         27.4057(4)                                 33.4618(6) 

α (deg)                                            84.359(1)                           90                                               90  

β (deg)                                            67.762(1)                          103.565(1)                                  112.595(1) 

γ (deg)                                             83.217(1)                          90                                                90  

V (Å3)                                             3330.30(12)                      8601.1(2)                                    12821.1(5)  

z                                                      2                                       4                                                   4  

T(K)                                               133(2)                               133(2)                                          133(2) 

δCalc(Mg/m3)                                   1.324                                1.327                                           1.623  

F(000)                                             1338                                 3560                                            6152 

μ(mm-1)                                          0.847                                 0.744                                          2.002  

θ range for data collection (deg)   1.32 – 27.48                     1.79 – 27.48                                 1.67 – 27.46 

Measd reflns                                  43199                               60605                                          43149  

Unique refln (Rint)                         15176 (0.0365)                19570 (0.0505)                             14537 (0.0479)  

No. of param                                  722                                  1066                                              739  

GOF on F2                                     1.134                                1.142                                             1.090  

R1[I>2σ(I)]                                   0.0682                              0.0594                                            0.0483  

wR2(all data)                                0.1628                              0.1388                                            0.1032 

 



 

213 
 

Table 4.14: Selected bond lengths (Å) and angles (o) 

 
                        [Zn(IN2)(IN2c)Cl]+  [ZnCl(IN4)(IN4c)ZnCl3]                           [CdCl(IN4)(IN4c)CdCl3]    [CdI(IN4)(IN4c)]+  

Zn(1) – N(1)            2.056(3)               2.049(3)                 Cd(1) – N(1)          2.264(4)                    2.269(4) 

Zn(1) – N(3)            2.217(3)               2.200(3)                 Cd(1) – N(3)          2.409(5)                    2.401(4) 

Zn(1) – N(4)            2.101(3)               2.154(3)                 Cd(1) – N(4)          2.338(5)                    2.356(4) 

Zn(1) – N(5)            2.110(3)               2.166(3)                 Cd(1) – N(5)          2.313(4)                    2.333(4) 

Zn(1) – Cl(1)           2.3238(9)             2.2954(9)               Cd(1) – Cl(1)         2.4263(14)       

                                                                                            Cd(1) – I(1)                                             2.7612(4) 

 

N(1)-Zn(1)-N(3)      79.56(11)           79.65(10)             N(1)-Cd(1)-N(3)       73.86(16)                 73.86(13) 

N(1)-Zn(1)-N(4)     116.46(11)        116.66(10)             N(1)-Cd(1)-N(4)      113.89(17)               112.57(14) 

N(1)-Zn(1)-N(5)     106.94(11)        105.44(10)             N(1)-Cd(1)-N(5)      106.03(15)               104.47(13) 

N(1)-Zn(1)-Cl(1)    111.82(8)          111.60(8)               N(1)-Cd(1)-Cl(1)     116.07(12)     

N(3)-Zn(1)-N(4)      75.00(11)           74.44(10)             N(3)-Cd(1)-N(4)       68.95(19)                69.05(13) 

N(3)-Zn(1)-N(5)      83.56(11)           83.75(10)             N(3)-Cd(1)-N(5)       82.05(15)                79.71(13) 

N(3)-Zn(1)-Cl(1)    168.29(8)           167.98(7)              N(3)-Cd(1)-Cl(1)    166.94(13)    

N(4)-Zn(1)-N(5)     126.18(11)         127.16(10)            N(4)-Cd(1)-N(5)     119.93(16)               120.90(14) 

N(4)-Zn(1)-Cl(1)     96.69(8)              96.04(8)              N(4)-Cd(1)-Cl(1)      98.50(15) 

N(5)-Zn(1)-Cl(1)     95.20(8)              96.73(7)              N(5)-Cd(1)-Cl(1)    102.14(11) 

N(8)-Zn(2)-Cl(2)                               107.83(8)              N(8)-Cd(2)-Cl(2)    109.93(13) 

N(8)-Zn(2)-Cl(3)                               109.96(8)              N(8)-Cd(2)-Cl(3)      97.03(12) 

N(8)-Zn(2)-Cl(4)                               106.26(8)              N(8)-Cd(2)-Cl(2)    109.42(13) 

Cl(2)-Zn(2)-Cl(3)                              110.89(4)              Cl(2)-Cd(2)-Cl(3)   113.80(8) 

Cl(2)-Zn(2)-Cl(4)                              108.65(4)              Cl(2)-Cd(2)-Cl(4)   115.03(9) 

Cl(3)-Zn(2)-Cl(4)                              113.03(4)              Cl(3)-Cd(2)-Cl(4)   110.11(9) 
                                                                          N(1)-Cd(1)-I(1)                                         115.79(9) 
                                                                          N(3)-Cd(1)-I(1)                                         167.16(9) 

                                                                                         N(4)-Cd(1)-I(1)                                           98.67(10) 

                                                                                         N(5)-Cd(1)-I(1)                                         104.69(9) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

214 
 

 

4.5.4 Structural properties of the pentadentate imines and their metal complexes 

 The crystal structures and crystallographic analyses of H2S1, H2S3 and 

H2S5.CHCl3 are presented in Fig. 4.8 and Table 4.15, respectively.  The compounds 

crystallised in a tetragonal I41/a space group, monoclinic P21/n space group and triclinic P-

1 space group, respectively. The differences in the crystal packing produced slight changes 

in the C-S, C=Nimine and C-Ophenol bond lengths {Table 4.16}; while the unsubstituted H2S1 

was symmetrical, the substituted analogues H2S3 and H2S5.CHCl3 were unsymmetrical 

{about the S-bridge}. The C=Nimine and hydrogen bond distances are similar to those of 

I9.MeOH. The structural properties of H2S1 are in close agreement with earlier report (Guo 

and Yuan 2008), although the crystal of H2S1 was obtained from MeOH while the earlier 

report was from ethyl acetate/toluene {1:4}. 

 X-ray data of the cobalt complexes {Co2S12.MeCN, Co2S22, Co2S42.3THF, 

Co2S52.4DCM, Co2S72.THF and Co2O12} are presented in Fig. 4.9, Table 4.17 and Table 

4.18. Co2S12.MeCN and Co2S72.THF crystallised in the triclinic Pī and P-1 space groups, 

respectively. Co2S22, Co2S42.3THF and Co2O12 crystallised in the monoclinic P21/c, P21/n 

and C2/c space groups, respectively. Co2S52.4DCM crystallised in the orthorhombic Aba2 

space group. The asymmetric units of the complexes contained two Co(II) ions connected 

by oxo-bridges. Each Co(II) ion is connected to six heteroatoms {Ophenol, Nimine and S/O 

atoms}, resulting in two six-membered and two five-membered chelate rings in a distorted 

octahedral {Oh} geometry, except for Co2O12 which assumed a trigonal prismatic {D3h} 

geometry {Table. 4.18 and Fig. 4.13}. The ligands acted as dianionic molecules. 

 X-ray data of the nickel complexes {Ni2S12, Ni2S22.THF, Ni2S32 and 

NiS5(H2O).2THF} are presented in Fig. 4.10 and Table 4.19 respectively. Unlike the 

homo-dinuclear Co(II) complex obtained with H2S5 {Co2S52.4DCM}, a mononuclear 

complex {NiS5(H2O).2THF} was obtained with Ni(II), with oxygen {from water 

molecule} occupying the sixth coordination site. Ni2S12 and NiS5(H2O).2THF crystallised 

in the triclinic P-1 space group, respectively; while Ni2S22.THF and Ni2S32 are 

isostructural and crystallised in the monoclinic P21/c space group. Like the homo-dinuclear 

Co(II) complexes, the asymmetric units of the homo-dinuclear Ni(II) complexes contained 

two Ni(II) ions connected by oxo-bridges. Each Ni(II) ion is connected to six heteroatoms 
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{Ophenol, Nimine and S}, resulting in two six-membered and two five-membered chelate rings 

in a distorted octahedral geometry. The ligands acted as dianionic molecules. The 

asymmetric unit of the mononuclear complex {NiS5(H2O).2THF} also has a Ni(II) ion 

connected to six heteroatoms {Ophenol, Nimine, S and Owater atoms}, resulting in two six-

membered and two five-membered chelate rings in a distorted octahedral geometry. 

 X-ray data for [CrS2(NO3)].MeCN, [ZnS2(Cl)2].THF and [CrO1(NO3)] are 

presented in Fig. 4.11 and Table 4.21 respectively. The complexes crystallised in the 

orthorhombic P n a 21, monoclinic P21/c and triclinic P-1 space groups, respectively. Unlike 

corresponding Co(II) {Fig. 4.9 [a] and [f]} and Ni(II) complexes {Fig. 4.10 [b]}, 

mononuclear complexes were obtained for Cr(III) and Zn(II) cases. In 

[CrS2(NO3)].MeCN, Cr-atom bonds with the bridging S-atom {as observed for the Co(II) 

{Fig. 4.9 [a]} and Ni(II) analogues (Fig. 4.10 [b])}, while the Cr-atom in [CrO1(NO3)] 

does not bond with the bridging O-atom {unlike in the Co(II) analogue (Fig. 4.9 [f])}. The 

inability of the Cr-atom to bond with the bridging O-atom could be attributed to the distance 

{3.1574(1) Å} between the atoms, the corresponding Co-O bond length is ≈2 Å. Similarly, 

the distance {4.1366(1) Å} between the Zn-atom and bridging S-atom, in 

[ZnS2(Cl)2].THF, could be responsible for their inability to bond. 

The asymmetric unit of [CrS2(NO3)].MeCN contained one Cr(III) ion, connected 

to six heteroatoms {Ophenol, Nimine, S and Onitrate}, resulting in two six-membered and two 

five-membered chelate rings in a distorted octahedral geometry. Its Cr-O {1.895(3) Å and 

1.922(4) Å}, Cr-N {2.021(3) Å and 2.044(4) Å} bond lengths as well as the O-Cr-O angle 

{92.63(15)o} are comparable to previously reported complexes, although 1.895(3) Å is 

shorter than for most (Liu et al., 2014; Liu et al., 2015; Schuman et al., 2021). The 

asymmetric unit of [ZnS2(Cl)2].THF has one Zn(II) ion, two oxygen atoms {Ophenol} and 

two chloride ions, in a four-coordinate distorted tetrahedral geometry. The asymmetric unit 

of [CrO1(NO3)] has one Cr(III) ion, connected to six heteroatoms {Ophenol, Nimine, and 

Onitrate}, resulting in two six-membered and one seven-membered chelate rings in a distorted 

octahedral geometry. The Cr-O {1.8946(12) Å and 1.9027(12) Å}, Cr-N {2.0344(14) Å 

and 2.0824(14) Å} bond lengths as well as the O-Cr-O angle {90.84(5)o} in [CrO1(NO3)] 

were very similar to those of [CrS2(NO3)].MeCN. In all cases, the ligands acted as 

dianionic molecules. 
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Crystal structures of [Cu3S12(OAc)2].2DCM, [Cu3S22(OAc)2].6CHCl3, 

[Cu2S22].2THF, [Cu2S32].THF and [Cu2O12].2MeCN are presented in Fig. 4.12. 

Crystallographic data and structure refinement parameters as well as selected bond lengths 

and angles are presented in Table 4.23 and Table 4.24(a), respectively. The complexes 

crystallised in the triclinic P-1, monoclinic P21/n, triclinic P-1, triclinic P-1 and monoclinic 

C2/c space groups, respectively. Although the nuclearity of [Cu3S12(OAc)2].2DCM differs 

from that of [Cu2S22].2THF and [Cu2S32].THF, all three complexes are isostructural. 

More so, phenoxo and acetate bridging were observed in the trinuclear complexes, but not 

in the dinuclear complexes. Similarly, although [Cu2O12].2MeCN is isostructural to 

Co2O12, oxo-bridging was not observed in [Cu2O12].2MeCN but observed in Co2O12 

{Fig. 4.9 [f]}. 

In the trinuclear complexes, the asymmetric units of the terminal ends contained one 

Cu(II) ion, connected to six heteroatoms {Ophenol, Nimine, S and Oacetate}, resulting in one six-

membered and one five-membered chelate rings {with the S-bridged ligand} as well as a 

four-membered chelate ring {with the acetate} in a distorted octahedron; while the 

asymmetric unit at the centre contained one Cu(II) ion, connected to six heteroatoms 

{Ophenol, Nimine and Oacetate}, resulting in two six-membered chelate rings {with the S-

bridged ligand} also in a distorted octahedron. In both complexes, monoatomic bridging 

mode was observed. The asymmetric units in each of the dinuclear complexes are similar 

to one another. Each unit consists of one Cu(II) ion, two oxygen atoms {Ophenol} and two 

nitrogen atoms {Nimine}, resulting in two six-membered chelate rings in a four-coordinate 

environment. Unlike in the trinuclear complexes where all the Cu(II) centres showed similar 

geometry {distorted octahedron}, Continuous Shape Measurements (CSM) {Table 

4.24(b)} revealed the Cu(II) centres in the dinuclear complexes exhibited different 

geometries. The Cu(II) ions in [Cu2S22].2THF exhibited square-planar geometry {D4h 

symmetry}, while the Cu(II) ions in [Cu2O12].2MeCN exhibited seesaw geometry {C2v 

symmetry}. In [Cu2S32].THF however, the Cu(II) ions exhibited two different geometries 

{square-planar and seesaw}. 
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Figure 4.8: Molecular structures of (a) H2S1 (b) H2S3 and (c) H2S5.CHCl3. Solvents and 

some hydrogens are omitted for clarity. 
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Figure 4.9: Molecular structures of (a) Co2S12.MeCN (b) Co2S22 (c) Co2S42.3THF (d) 

Co2S52.4DCM (e) Co2S72.THF and (f) Co2O12. Solvents and some hydrogens are omitted 

for clarity. 
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Figure 4.10: Molecular structures of (a) Ni2S12 (b) Ni2S22.THF (c) Ni2S32 and (d) 

NiS5(H2O).2THF. Solvents and some hydrogens are omitted for clarity. 
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Figure 4.11: Molecular structures of (a) [CrS2(NO3)].MeCN (b) [ZnS2(Cl)2].THF and 

(c) [CrO1(NO3)]. Solvents and some hydrogens are omitted for clarity. 
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Figure 4.12: Molecular structures of (a) [Cu3S12(OAc)2].2DCM (b) 

[Cu3S22(OAc)2].6CHCl3 (c) [Cu2S22].2THF (d) [Cu2S32].THF and (e) 

[Cu2O12].2MeCN. Solvents and some hydrogens are omitted for clarity. 

 

 



 

222 
 

Table 4.15(a): Crystallographic Data and Structure Refinement Parameters for H2S1, 

H2S3, and H2S5.CHCl3. 

 

                                                            H2S1                   H2S3                    H2S5.CHCl3   
Formula                                          C20H20N2O2S      C28H24N2O2S         C27H17Br4Cl3N2O2S 

Fw (g mol-1)                                   424.50                 452.55                    859.47  

Cryst. syst.                                      Tetragonal          Monoclinic            Triclinic  

Space group                                    I41/a                    P 21/n                     P-1    

a (Å)                                               11.1640(3)          9.5767(3)                8.0137(2)  

b (Å)                                               11.1640(3)          24.0341(8)              13.1092(3)  

c (Å)                                               33.0991(6)          20.3301(5)              13.9000(3) 

α (deg)                                            90                        90                            81.596(1) 

β (deg)                                            90                        101.690(2)              86.538(1) 

γ (deg)                                            90                         90                           81.928(1) 

V (Å3)                                            4125.30(17)         4582.3(2)                1429.06(6)  

z                                                     8                           8                              2  

T(K)                                               133(2)                  133(2)                      133(2) 

δCalc(Mg/m3)                                  1.367                    1.312                        1.997 

F(000)                                            1776                    1904                          832  

μ(mm-1)                                          0.184                   0.170                         6.017    

θ range for data collection (deg)    1.93 - 27.47        1.33 – 27.49              2.32 – 27.48  

Measd reflns                                  23889                  30901                        19199   

Unique refln (Rint)                         2376 (0.0828)      10324 (0.0763)         6479 (0.0361) 

No. of param                                 181                       615                            360  

GOF on F2                                     1.226                   1.186                         1.084  

R1[I>2σ(I)]                                   0.0732                  0.0780                       0.0293  

wR2(all data)                                0.1479                  0.1380                       0.0675 

 

 

Table 4.15(b): Selected bond lengths (Å) 

 
                             H2S1                 H2S3         H2S5.CHCl3 

C – S                 1.7759(0)         1.7705(0)         1.7746(0) 

                                                   1.7759(0)         1.7817(0) 

C=Nimine            1.2826(0)         1.2844(0)         1.2781(0) 

                                                   1.2862(0)         1.2871(0) 

C – Ophenol         1.3517(0)         1.3486(0)          1.3407(0) 

                                                  1.3523(0)         1.3389(0) 

C=N….HO         1.8324(0)         1.797(0)            2.0343(0) 

                                                   1.8111(0)         1.8163(0) 

Nimine
….Ophenol    2.5926(0)         2.5975(1)          2.6583(0) 

                                                   2.6241(1)         2.5746(1) 
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Table 4.16: Crystallographic Data and Structure Refinement Parameters for Co2S12-

.MeCN, Co2S22, Co2S42.3THF, Co2S52.4DCM, Co2S72.THF and Co2O12 

 
                                                     Co2S12.MeCN              Co2S22                    Co2S42.3THF              Co2S52.4DCM 
Formula                                      C52H36N4Co2O4S2    C68H44Co2N4O4S2    C64H56Br4Co2N4O7S2   C56H36Br8Cl8Co2N4O4S2 

Fw (g mol-1)                                1044.94                   1163.05                    1494.74                         1933.75 

Cryst. syst.                                   Triclinic                   Monoclinic             Monoclinic                    Orthorhombic 

Space group                                  Pī                             P21/c                       P21/n                             Aba2 

a (Å)                                            12.8956(3)                14.1235(4)              19.2280(5)                    23.4931(6) 

b (Å)                                            14.4316(4)                21.3736(6)              16.5106(5)                    14.6340(4) 

c (Å)                                            14.6966(3)                20.3838(6)              20.5956(5)                    18.9118(5) 

α (deg)                                         63.961(1)                  90                            90                                 90 

β (deg)                                         73.027(1)                  100.468(2)              111.360(1)                    90 

γ (deg)                                         87.096(1)                  90                             90                                 90 

V (Å3)                                         2340.86(10)              6050.8(3)                 6089.3(3)                      6501.8(3) 

z                                                  2                                4                               4                                   4 

T(K)                                           133(2)                        133(2)                      133(2)                           133(2) 

δCalc(Mg/m3)                               1.482                         1.277                        1.630                             1.975 

F(000)                                        1076                          2392                          3000                              3736 

μ(mm-1)                                      0.855                         0.668                         3.295                             5.868 

θ range for data collection (deg) 1.66 – 27.48            2.15 – 27.49              1.75 – 27.47                  1.96 – 27.48 

Measd reflns                               22982                      62412                         43605                            37924 

Unique refln (Rint)                     10626 (0.0284)         13841 (0.0542)          13784 (0.0651)              7410 (0.0474) 

No. of param                              633                           767                             756                                381 

GOF on F2                                 1.084                         1.107                         1.133                              1.121 

R1[I>2σ(I)]                                0.0423                      0.0721                        0.0545                            0.0335 

wR2(all data)                             0.0892                      0.1595                        0.1006                            0.0696 

 

                                                      Co2S72.THF            Co2O12    
Formula                                        C58H48Co2N4O8.5S2    C52H36Co2N4O6 

Fw (g mol-1)                                  1118.98                    930.71 

Cryst. syst.                                    Triclinic                    Monoclinic 

Space group                                  P-1                            C2/c 

a (Å)                                             11.6803(2)                18.5147(3) 

b (Å)                                             18.5194(3)                16.9738(3) 

c (Å)                                             23.9533(4)                19.3087(3) 

α (deg)                                          80.5510(10)              90 

β (deg)                                          77.9450(10)              116.118(1) 

γ (deg)                                           80.7560(10)              90 

V (Å3)                                           4955.32(15)              5448.43(16) 

z                                                    4                               4 

T(K)                                              133(2)                      133(2) 

δCalc(Mg/m3)                                  1.500                       1.135 

F(000)                                           2312                         1912 

μ(mm-1)                                         0.818                        0.654 

θ range for data collection (deg)  1.52 – 27.48             1.75 – 27.48 

Measd reflns                                 49820                       35995  

Unique refln (Rint)                         22490 (0.0636)        6230 (0.0368) 

No. of param                                 1350                         289 

GOF on F2                                    1.100                        1.072 

R1[I>2σ(I)]                                   0.0815                      0.0338 

wR2(all data)                                0.1664                      0.0798 
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Table 4.17: Selected bond length (Å) and bond angle (o) 

 
                          Co2S12.MeCN     Co2S22      Co2S42.3THF    Co2S52.4DCM    Co2S72.THF         Co2O12 

Co(1) – O(2)       1.9778(16)         1.994(3)             1.966(3)              1.966(4)                2.095(3)              1.9387(11) 

Co(1) – O(3)       2.0426(16)         2.043(3)             2.049(3)              2.022(4)                2.029(3)              2.0125(11) 

Co(1) – N(2)       2.0876(19)         2.057(3)             2.093(3)              2.061(5)                2.139(4)              2.0849(14) 

Co(1) – N(1)       2.1025(19)         2.083(3)             2.121(3)              2.109(5)                2.066(4)              2.1014(13) 

Co(1) – O(1)       2.1090(16)         2.102(3)             2.099(3)              2.101(4)                1.976(3)              2.0876(11) 

Co(1) – S(1)       2.6050(7)         2.6973(11)        2.7044(12)        2.7533(19)          2.7442(14) 

Co(2) – O(4)      1.9966(16)       2.000(3)            1.973(3)                                        1.974(3) 

Co(2) – O(1)      2.0424(16)       2.082(3)            2.017(3)                                        2.038(3) 

Co(2) – O(3)      2.0778(16)       2.087(3)            2.106(3)                                        2.124(3) 

Co(2) – N(4)      2.0778(19)       2.057(3)            2.090(3)                                        2.068(4) 

Co(2) – N(3)      2.1185(19)       2.099(3)            2.115(3)                                        2.109(4) 

Co(2) – S(2)       2.6934(7)         2.5801(11)        2.7566(12)                                    2.6744(14) 

Co(1) – Co(2)      3.2030(1)          3.2138(1)           3.2424(1)           3.1998(1)           3.2367(0)            3.1625(0) 

S(1) – S(2)          3.4858(1)         3.5635(1)          3.6048(1)           3.5967(1)           3.7291(1)          

O(2) – O(4)                                                                                                                                                     3.3872(1) 

 

O(2)-Co(1)-O(3)    105.39(7)        106.33(12)         113.55(12)         118.96(18)            117.55(14)           114.83(5) 

O(2)-Co(1)-N(2)      89.49(7)          87.31(12)           90.66(12)           91.81(19)              90.40(14)             92.25(5) 

O(3)-Co(1)-N(2)      98.63(7)        105.95(11)           96.81(11)         101.99(19)           106.65(14)            100.88(5) 

O(2)-Co(1)-N(1)      92.73(7)          97.13(13)           94.47(13)           93.03(19)             99.35(14)              83.23(5) 

O(3)-Co(1)-N(1)    152.20(7)        149.41(12)         144.01(12)         139.14(19)           134.28(14)            140.07(5) 

N(2)-Co(1)-N(1)    102.51(7)          94.29(12)         105.34(13)         101.6(2)                 98.62(16)            102.95(5) 

O(2)-Co(1)-O(1)       91.34(6)         91.73(11)          90.77(12)            85.28(17)             84.31(13)              98.89(5) 

O(3)-Co(1)-O(1)       76.90(6)         77.55(10)          74.93(10)            75.45(19)             73.88(13)              74.47(5) 

N(2)-Co(1)-O(1)    175.51(7)        176.49(12)        171.48(11)          174.5(2)               174.17(14)            166.06(5) 

N(1)-Co(1)-O(1)      81.86(7)          82.48(11)          82.92(12)            83.28(19)             84.69(14)              93.29(5) 

O(2)-Co(1)-S(1)    159.83(5)         159.86(9)       156.73(9)           157.74(14)          161.55(10) 

O(3)-Co(1)-S(1)      91.57(5)           87.44(9)         86.97(8)             81.87(13)            78.17(10) 

N(2)-Co(1)-S(1)      77.01(5)           74.59(9)         75.43(9)             75.11(15)            75.04(11) 

N(1)-Co(1)-S(1)      75.99(6)           75.92(10)       72.03(9)             72.64(15)            72.34(11) 

O(1)-Co(1)-S(1)    103.30(5)         105.80(8)       105.77(8)           109.11(13)          110.63(9) 

O(4)-Co(2)-O(1)    105.52(7)        105.50(11)     108.95(12)                                     111.86(14) 

O(4)-Co(2)-O(3)      93.54(7)          90.02(11)       89.57(11)                                       90.36(15) 

O(1)-Co(2)-O(3)      77.61(6)          77.02(10)       75.43(10)                                       73.07(12) 

O(4)-Co(2)-N(4)      87.71(7)          85.48(12)       90.72(13)                                       81.92(13) 

O(1)-Co(2)-N(4)    105.38(7)        106.05(11)       99.89(12)                                       99.19(15) 

O(3)-Co(2)-N(4)    176.34(7)        175.09(12)     175.12(12)                                     170.92(15) 

O(4)-Co(2)-N(3)       96.25(7)         95.69(12)       97.32(13)                                       84.49(14) 

O(1)-Co(2)-N(3)     150.62(7)        149.01(11)    145.56(12)                                     137.94(15) 

O(3)-Co(2)-N(3)       81.64(7)          80.68(11)      83.10(12)                                     105.76(14) 

N(4)-Co(2)-N(3)      94.81(8)           97.81(12)    101.69(13)                                     101.54(16) 

O(4)-Co(2)-S(2)    159.30(5)         160.95(8)       159.18(9)                                       164.27(10) 

O(1)-Co(2)-S(2)      89.65(5)           87.91(8)         88.49(9)                                         81.01(10) 

O(3)-Co(2)-S(2)     103.59(5)        106.42(9)       106.24(8)                                       111.34(10) 

N(4)-Co(2)-S(2)      74.51(6)           77.71(9)         74.70(10)                                       74.63(11) 

N(3)-Co(2)-S(2)      75.21(5)           78.00(9)         71.90(9)                                         77.04(12) 
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Table 4.18: Continuous Shape Measurements (CSM) for [Co2S12]MeCN, [Co2S22], 

[Co2S42]3THF, [Co2S52]4DCM, [Co2S72]THF and [Co2O12] 

 
 Label HP-6 PPY-6 OC-6 TPR-6 JPPY-6 

Shape Hexagon Pentagonal 

Pyramid 

Octahedron Trigonal 

Prism 

Johnson 

Pentagonal 

Pyramid 

Symmetry D6h C5v Oh D3h C5v 

  

[Co2S12]MeCN  32.040a 

32.429b 

20.277a 

19.823b 
3.305a 

3.530b 

8.426a 

9.908b 

23.809a 

22.817b 

[Co2S22] 31.675a 

32.136b 

18.760a 

18.502b 
3.830a 

3.714b 

9.692a 

8.989b 

21.612a 

21.614b 

[Co2S42]3THF 31.987a 

32.735b 

18.376a 

18.471b 
4.553a 

4.863b 

7.761a 

6.406b 

21.648a 

21.920b 

[Co2S52]4DCM 30.945a 

30.945b 

16.104a 

16.105b 
5.746a 

5.746b 

6.259a 

6.259b 

18.921a 

18.922b 

[Co2S72]THF 32.283a 

31.311b 

16.667a 

14.886b 
4.930a 

5.938b 

6.479a 

6.889b 

20.106a 

17.932b 

[Co2O12] 30.661a 

30.661b 

16.521a 

16.522b 

7.625a 

7.625b 
6.901a 

6.901b 

20.094a 

20.093b 

a = values obtained for same Co(II) ion 

b = values obtained for same Co(II) ion 
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Table 4.19: Crystallographic Data and Structure Refinement Parameters for Ni2S12, 

Ni2S22.THF, Ni2S32 and NiS5(H2O).2THF 

 
                                                               Ni2S12                  Ni2S22.THF              Ni2S32               NiS5(H2O).2THF 

Formula                                          C52H36N4Ni2O4S2     C72H52N4Ni2O5S2    C56H48N4Ni2O4S2     C34H34Br4N2NiO6S 

Fw (g mol-1)                                    962.39                      1234.71                 1022.52                  977.04 

Cryst. syst.                                      Triclinic                    Monoclinic            Monoclinic            Triclinic 

Space group                                    P-1                            P21/c                      P21/c                       P-1 

a (Å)                                               14.6104(3)                14.2178(8)             18.6212(4)               9.1800(2) 

b (Å)                                               15.8796(3)                21.3407(10)           14.7283(4)               13.9926(4) 

c (Å)                                               25.3392(5)                20.2718(9)              23.1267(7)              15.4975(4) 

α (deg)                                            94.784(1)                  90                           90                           65.759(1) 

β (deg)                                            104.350(1)                99.950(3)               94.495(2)                76.361(1) 

γ (deg)                                            108.122(1)                90                           90                            81.929(1) 

V (Å3)                                            5330.08(19)              6058.3(5)                6323.2(3)                 1761.84(8) 

z                                                     4                                4                             8                               2 

T(K)                                               133(2)                       133(2)                    133(2)                      133(2) 

δCalc(Mg/m3)                                   1.199                         1.354                     1.074                        1.842 

F(000)                                            1984                          2560                       2128                         968 

μ(mm-1)                                          0.828                         0.746                      0.701                        5.193 

θ range for data collection (deg)    1.37 - 27.48              1.40 – 27.48           1.64 – 27.48             2.29 – 27.48 

Measd reflns                                   40221                        42342                    45576                       19856 

Unique refln (Rint)                          23213 (0.0640)         13449 (0.0915)      14412 (0.0869)        7960 (0.0356) 

No. of param                                  1142                          766                         617                           459 

GOF on F2                                      1.087                         1.108                     1.039                         1.108 

R1[I>2σ(I)]                                    0.1900                        0.0991                   0.1411                       0.0406 

wR2(all data)                                 0.4715                        0.1873                   0.3432                       0.0815 
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Table 4.20: Selected bond length (Å) and bond angle (o) 

 
                               Ni2S12                     Ni2S22.THF          Ni2S32                   NiS5(H2O).2THF 

Ni(1) – O(1)         2.0098(0)                   2.044(4)              2.0363(1)                    2.038(2) 

Ni(1) – O(2)         1.9877(0)                   1.998(4)              1.9987(0)                    1.988(2) 

Ni(1) – O(3)         2.0407(0)                   2.043(4)              2.0327(0) 

Ni(1) – Owater                                                                                                           2.055(3) 

Ni(1) – N(1)         2.0349(0)                   2.040(5)              2.0490(1)                     2.047(3) 

Ni(1) – N(2)         2.0569(0)                   2.030(5)              2.0556(0)                     2.060(3) 

Ni(1) – S(1)          2.5563(0)                   2.6197(19)          2.5848(1)                     2.5578(10) 

Ni(2) – O(4)         2.001(0)                     2.008(4)               1.9841(1) 

Ni(2) – O(1)         2.0498(0)                   2.068(4)               2.0382(1) 

Ni(2) – O(3)         2.0158(0)                   2.0759(4)             2.0382(1) 

Ni(2) – N(4)         2.0289(0)                   2.028(5)               2.0481(1) 

Ni(2) – N(3)         2.0559(0)                   2.044(5)               2.0532(0) 

Ni(2) – S(2)          2.5753(0)                   2.5458(19)           2.5876(1) 

 

O(2)-Ni(1)-O(1)       89.759(2)                89.87(17)            92.365(1)                     88.26(10) 

O(2)-Ni(1)-O(3)     103.163(2)              101.93(18)            99.615(1) 

O(1)-Ni(1)-O(3)       78.203(2)                79.43(16)            79.241(1) 

O(2)-Ni(1)-Owater                                                                                                      98.58(11) 

O(2)-Ni(1)-Owater                                                                                                      89.16(11) 

N(1)-Ni(1)-Owater                                                                                                    165.89(12) 

Owater-Ni(1)-N(2)                                                                                                      86.13(12) 

Owater-Ni(1)-S(1)                                                                                                       90.84(8) 

O(2)-Ni(1)-N(1)        99.695(2)               97.2(2)               86.317(1)                      94.50(11) 

O(2)-Ni(1)-N(2)        86.972(2)               86.63(19)           95.122(1)                      88.91(11) 

O(1)-Ni(1)-N(1)        86.902(2)               84.69(18)           85.384(1)                      85.97(11) 

O(1)-Ni(1)-N(2)       175.615(2)             176.2(2)            178.619(2)                    174.09(11) 

N(1)-Ni(1)-N(2)       96.213(2)                 94.3(2)              95.135(1)                      99.43(12) 

O(2)-Ni(1)-S(1)      161.323(2)               162.41(13)        160.454(1)                    163.52(8) 

O(1)-Ni(1)-S(1)      106.461(2)               106.29(14)        104.743(1)                    105.46(7) 

O(3)-Ni(1)-S(1)       89.463(2)                 88.14(13)           92.918(1) 

N(1)-Ni(1)-S(1)       78.452(1)                 77.91(16)           77.242(1)                      77.76(9) 

N(2)-Ni(1)-S(1)       77.255(1)                 77.01(15)           76.625(1)                      78.21(9) 

N(1)-Ni(1)-O(3)    157.385(2)               155.02(19)          159.052(1) 

N(2)-Ni(1)-O(3)      93.594(2)               102.74(17)          100.568(2) 
O(1)-Ni(2)-O(3)      77.858(2)                 78.49(15)            92.909(1) 

O(3)-Ni(2)-O(4)      89.196(2)                 89.57(17)            79.329(1) 

O(1)-Ni(2)-O(4)    103.580(2)               101.19(17)            99.654(1) 

O(4)-Ni(2)-N(4)      86.339(2)                 85.65(19)           85.210(1) 

O(4)-Ni(2)-N(3)      93.339(2)                 96.01(19)           94.870(1) 

O(3)-Ni(2)-N(4)    174.801(2)               175.2(2)             179.111(2) 

O(3)-Ni(2)-N(3)     88.748(2)                  83.72(18)          87.964(1) 

O(1)-Ni(2)-N(4)     97.993(2)                102.95(18)        100.357(2) 

O(1)-Ni(2)-N(3)   156.517(2)                155.03(18)        159.230(1) 

O(1)-Ni(2)-S(2)     89.328(2)                  88.37(13)          91.839(1) 

O(3)-Ni(2)-S(2)   105.457(2)                 106.31(13)       103.126(1) 

O(4)-Ni(2)-S(2)   162.360(2)                 162.93(12)       161.795(1) 

N(3)-Ni(2)-S(2)     78.167(1)                    79.92(15)         78.179(1) 

N(4)-Ni(2)-S(2)     77.435(1)                    78.39(15)         76.039(1) 

N(3)-Ni(2)-N(4)    98.548(2)                     96.2(2)            94.892(1) 

 

 



 

228 
 

 

Table 4.21: Crystallographic Data and Structure Refinement Parameters for 

[CrS2(NO3)].MeCN, [ZnS2(Cl)2].THF and [CrO1(NO3)]. 

 
                                                        [CrS2NO3].MeCN    [ZnS2(Cl)2].THF       [CrO1(NO3)]            

Formula                                           C36H25CrN4O5S          C38H32Cl2N2O3SZn     C26H18CrN3O6     

Fw (g mol-1)                                    677.66                         732.98                         520.43                  

Cryst. syst.                                      Orthorhombic               Monoclinic                Triclinic                

Space group                                    P n a 21                        P21/c                           P-1                        

a (Å)                                               16.9966(3)                    11.2253(4)                 9.1725(2)              

b (Å)                                               12.9751(2)                    16.7570(7)                 9.8604(2)              

c (Å)                                               13.5122(2)                    18.5175(7)                13.6151(3)            

α (deg)                                            90                                  90                             80.296(1)              

β (deg)                                            90                                 105.887(2)                 74.373(1)              

γ (deg)                                            90                                  90                              69.700(1)               

V (Å3)                                            2979.88(8)                    3350.1(2)                   1108.38(4)             

z                                                     4                                    4                                2                            

T(K)                                               133(2)                           133(2)                       133(2) 

δCalc(Mg/m3)                                  1.511                             1.453                        1.559                     

F(000)                                            1396                              1512                         534                         

μ(mm-1)                                          0.508                            0.996                         0.567                     

θ range for data collection (deg)    2.18 – 27.48                 2.24 – 27.48             2.21 – 27.48          

Measd reflns                                  32479                            32741                      16775                    

Unique refln (Rint)                         6631 (0.0358)               7664 (0.0519)          5041 (0.0293)       

No. of param                                 426                                432                           325                        

GOF on F2                                     1.040                             1.129                       1.056                      

R1[I>2σ(I)]                                    0.0465                          0.0525                      0.0341                   

wR2(all data)                                 0.1201                          0.1038                      0.0848                   
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Table 4.22: Selected bond lengths (Å) and bond angles (o) 

 
                               [CrS2NO3].MeCN         [ZnS2(Cl)2].THF       [CrO1(NO3)]  

Cr(1) – O(1)              1.895(3)                                                              1.9027(12) 

Cr(1) – O(2)              1.922(4)                                                              1.8946(12) 

Cr(1) – Onitrate            2.039(3)                                                              2.0737(12) 

Cr(1) – Onitrate                                                                                        2.0778(12) 

Zn(1) – O(1)                                                       1.997(2) 

Zn(1) – O(2)                                                       1.977(2) 

Cr(1) – N(1)              2.044(4)                                                               2.0344(14) 

Cr(1) – N(2)              2.021(3)                                                               2.0824(14) 

Cr(1) – S(1)               2.4777(13) 

Zn(1) – Cl(1)                                                       2.2337(8) 

Zn(1) – Cl(2)                                                       2.2231(8) 

 

O(1)-Cr(1)-O(2)       92.63(15)                                                               90.84(5) 

O(1)-Cr(1)-Onitrate     85.78(14)                                                               99.88(5) 

O(2)-Cr(1)-Onitrate     92.69(17)                                                               86.66(5) 

O(1)-Cr(1)-Onitrate                                                                                    86.18(5) 

O(2)-Cr(1)-Onitrate                                                                                  162.33(5) 

Onitrate-Cr(1)-Onitrate                                                                                  62.58(5) 

O(1)-Zn(1)-O(2)                                                  95.53(9) 

O(1)-Cr(1)-N(1)       88.69(16)                                                                90.79(5) 

O(2)-Cr(1)-N(1)     176.44(14)                                                                91.80(6) 

N(1)-Cr(1)-Onitrate     84.10(17)                                                              168.08(5) 

N(1)-Cr(1)-Onitrate                                                                                   105.65(5) 

O(1)-Cr(1)-N(2)       91.32(13)                                                              172.98(5) 

O(2)-Cr(1)-N(2)       86.57(16)                                                                90.50(5) 

N(2)-Cr(1)-Onitrate   176.97(15)                                                                90.46(5) 

N(2)-Cr(1)-Onitrate                                                                                     86.32(5) 

N(1)-Cr(1)-N(2)       96.71(16)                                                                96.05(6) 

O(2)-Cr(1)-S(1)       99.85(11) 

O(1)-Cr(1)-S(1)     163.74(11) 

S(1)-Cr(1)-Onitrate   103.87(11) 

N(1)-Cr(1)-S(1)       79.48(11) 

N(2)-Cr(1)-S(1)       79.16(10) 

O(1)-Zn(1)-Cl(1)                                                100.10(6) 

O(2)-Zn(1)-Cl(1)                                                107.74(7) 

O(1)-Zn(1)-Cl(2)                                                117.44(7) 

O(2)-Zn(1)-Cl(2)                                                115.29(6) 

Cl(1)-Zn(1)-Cl(2)                                               117.65(3) 
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Table 4.23: Crystallographic Data and Structure Refinement Parameters for 

[Cu3S12(OAc)2].2DCM, [Cu3S22(OAc)2].6CHCl3, [Cu2S22].2THF, [Cu2S32].THF and 

[Cu2O12].2MeCN. 

 
                                                       [Cu3S12(OAc)2].2DCM  [Cu3S22(OAc)2].6CHCl3   [Cu2S22].2THF            
Formula                                          C58H46Cl4Cu3N4O8S2        C72H50Cl18Cu3N4O8S2        C76H60Cu2N4O6S2 

Fw (g mol-1)                                    1323.59                            2070.10                              520.43 

Cryst. syst.                                      Triclinic                            Monoclinic                        Triclinic 

Space group                                    P-1                                    P21/n                                   P-1 

a (Å)                                               11.5361(4)                        14.1768(2)                          15.0244(4) 

b (Å)                                               11.8096(4)                        14.0130(2)                          18.9129(5) 

c (Å)                                               12.1254(4)                        21.1027(3)                          22.4967(6) 

α (deg)                                            108.866(1)                        90                                       91.757(2) 

β (deg)                                            94.322(2)                          91.101(1)                           107.640(2) 

γ (deg)                                            102.938(2)                         90                                       90.837(2) 

V (Å3)                                            1530.81(9)                         4191.48(10)                        6087.2(3) 

z                                                     1                                         2                                          4 

T(K)                                               133(2)                                133(2)                                 133(2) 

δCalc(Mg/m3)                                  1.649                                   1.640                                  1.437 

F(000)                                            757                                     2082                                    2728 

μ(mm-1)                                          1.535                                  1.435                                   0.829 

θ range for data collection (deg)    1.89 – 27.48                       1.75 – 27.48                        1.42 – 25.68 

Measd reflns                                  17167                                  33331                                  64037 

Unique refln (Rint)                         6834 (0.0349)                      9575 (0.0360)                     22950 (0.0656) 

No. of param                                 386                                       512                                      1621                        

GOF on F2                                     1.036                                    1.074                                   1.085                      

R1[I>2σ(I)]                                    0.0660                                  0.0403                                 0.0877                   

wR2(all data)                                 0.1747                                  0.0945                                 0.1663 

 

                                                        [Cu2S32].THF           [Cu2O12].2MeCN        
Formula                                          C60H52Cu2N4O5S2       C56H42Cu2N6O6  

Fw (g mol-1)                                    1100.25                       1022.03 

Cryst. syst.                                      Triclinic                       Monoclinic 

Space group                                    P-1                               C2/c  

a (Å)                                               11.5317(2)                   21.9554(7) 

b (Å)                                               15.5408(4)                   18.9854(5) 

c (Å)                                               19.3960(5)                   21.6590(7) 

α (deg)                                            104.330(2)                   90 

β (deg)                                            101.075(1)                   99.211(2) 

γ (deg)                                            103.043(2)                    90 

V (Å3)                                            3165.73(15)                  8911.8(5) 

z                                                     2                                    8 

T(K)                                               133(2)                           133(2) 

δCalc(Mg/m3)                                  1.154                             1.523 

F(000)                                            1140                              4208 

μ(mm-1)                                          0.783                             1.018 

θ range for data collection (deg)    2.96 – 27.48                  1.63 – 27.48 

Measd reflns                                  31965                             56897 

Unique refln (Rint)                         14311 (0.0432)               10219 (0.0621) 

No. of param                                 662                                  634   

GOF on F2                                     1.055                               1.083 

R1[I>2σ(I)]                                    0.0677                            0.0499 

wR2(all data)                                 0.1312                            0.0945 
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Table 4.24(a): Selected bond lengths (Å) and bond angles (o) 

 
                      [Cu3S12(OAc)2].2DCM   [Cu3S22(OAc)2].6CHCl3   [Cu2S22].2THF   [Cu2S32].THF   [Cu2O12].2MeCN 

Cu(1) – O(1)                    1.919(3)                      1.9319(17)                      1.908(4)             1.895(2)             1.9162(19) 

Cu(1) – O(1#)                                                                                             1.896(4)             1.892(2)             1.940(2) 

Cu(1) – O(2)                    2.320(3)                      2.3732(17) 

Cu(1) – Oacetate                 1.948(3)                      1.9427(17) 

Cu(1) – Oacetate                 2.707(3)                      2.7985(0) 

Cu(1) – N(1)                    1.952(3)                      1.943(2)                           1.984(5)             1.974(3)             1.981(2) 

Cu(1) – N(1#)                                                                                              1.989(5)              1.980(3)             1.988(2) 

Cu(1) – S(1)                    2.4063(12)                   2.4015(6) 

Cu(2) – O(2)                   1.914(3)                       1.9229(16)                       1.882(4)             1.888(3)              1.9070(19) 

Cu(2) – O(2#)                                                                                              1.894(4)             1.894(2)              1.9069(19) 

Cu(2) – Oacetate                2.471(3)                       2.5346(0) 

Cu(2) – N(2)                   2.007(4)                       1.9801(19)                       1.981(5)             1.974(3)              1.953(2) 

Cu(2) – N(2#)                                                                                              1.987(5)             1.973(3)               1.953(2) 

 

O(1)-Cu(1)-O(2)           95.59(12)                       95.64(7) 

O(1)-Cu(1)-O(1#)                                                                                        174.31(18)         145.18(11)          127.51(8) 

O(1)-Cu(1)-Oacetate        89.37(13)                       90.92(8) 

O(2)-Cu(1)-Oacetate        86.66(11)                       86.08(7) 

Oacetate-Cu(1)-Oacetate     53.998(2)                       52.156(1) 

O(1)-Cu(1)-N(1)          94.00(14)                       91.63(8)                             89.89(18)          94.60(11)            95.34(9) 

O(1)-Cu(1)-N(1#)                                                                                         89.83(18)          92.92(11)            95.25(9) 

O(1#)-Cu(1)-N(1)                                                                                         90.38(18)          91.42(11)            97.04(9) 

O(1#)-Cu(1)-N(1#)                                                                                       90.18(18)          94.63(10)            95.25(9) 

O(2)-Cu(1)-N(1)          101.82(13)                     101.71(7) 

Oacetate-Cu(1)-N(1)       170.50(13)                     171.52(8) 

O(1)-Cu(1)-S(1)          177.31(10)                     175.16(6) 

O(2)-Cu(1)-S(1)            87.10(8)                         88.52(4) 

Oacetate-Cu(1)-S(1)         90.85(10)                       91.83(5) 

N(1)-Cu(1)-S(1)            85.37(11)                       85.09(6) 

N(1)-Cu(1)-N(1#)                                                                                        177.16(19)         157.17(12)            153.92(9) 

O(2)-Cu(2)-O(2#)        180.0                             180.00(9)                          173.90(19)          156.69(13)           138.88(12) 

O(2)-Cu(2)-N(2#)          89.69(14)                      89.60(7)                            88.14(18)             90.74(12)             95.11(9) 

O(2)-Cu(2)-N(2)            90.31(14)                      90.40(7)                            91.31(19)             92.72(11)             96.58(9) 

O(2#)-Cu(2)-N(2)                                                                                         90.72(18)              91.53(11)             95.11(9) 

O(2#)-Cu(2)-N(2#)                                                                                       89.72(18)              92.57(12)             96.58(9) 

N(2)-Cu(2)-N(2#)      180.0(2)                          180.0                                178.8(2)                161.20(12)           146.28(13) 
 

Table 4.24(b): Continuous Shape Measurements (CSM) for [Cu2S22].2THF, 

[Cu2S32].THF and [Cu2O12].2MeCN 

 Values obtained from CSM calculations 

Label Shape Symmetry [Cu2S22].2THF [Cu2S32].THF [Cu2O12].2MeCN 

SP-4 Square-planar D4h 0.189a 

0.132b 

3.389a 

6.294b 

11.625a 

11.624b 

T-4 Tetrahedron Td 29.944a 

31.567b 

17.603a 

12.904b 

7.808a 

7.808b 

SS-4 Seesaw or Sawhorse 

(cis- divacant 

octahedron 

C2v 15.921a 

16.728b 

8.380a 

5.565b 

2.788a 

2.790b 

vTBPY-

4 

Axially vacant 

trigonal bipyramid 

C3v 31.313a 

32.609b 

19.671a 

14.840b 

9.307a 

9.305b 

a = values obtained for same Cu(II) ion 

b = values obtained for same Cu(II) ion  
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4.5.5 Structural properties of the diazo imine 

 The crystal structure and crystallographic data of H2AI1 is presented in Fig. 4.13 

and Table 4.25 respectively.  H2AI1 crystallises in an orthorhombic Pbca space group. Like 

H2S3 and H2S5.CHCl3, H2AI1 is unsymmetrical {Table 4.25}. The C=Nimine and hydrogen 

bond distances are similar to those of the pentadentate imines, although the hydrogen bond 

distances are relatively shorter. 
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Figure 4.13: Molecular structure of H2AI1. Some hydrogens are omitted for clarity. 
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Table 4.25(a): Crystallographic Data and Structure Refinement Parameters for H2AI1. 

 

                                                          H2AI1                                       
Formula                                          C26H20N4O2       

Fw (g mol-1)                                   420.46               

Cryst. syst.                                      Orthorhombic    

Space group                                    Pbca                                               

a (Å)                                               16.5862(5)                                            

b (Å)                                               11.4376(2)                                          

c (Å)                                               21.1899(6)                                          

α (deg)                                            90                                                           

β (deg)                                            90                                        

γ (deg)                                            90                                        

V (Å3)                                            4019.86(18)                       

z                                                     8                                                        

T(K)                                               133(2)                                      

δCalc(Mg/m3)                                  1.389                                          

F(000)                                            1760                                             

μ(mm-1)                                          0.091                                        

θ range for data collection (deg)    2.28 - 27.48                   

Measd reflns                                  27989                                       

Unique refln (Rint)                         4603 (0.0823)              

No. of param                                 297                                              

GOF on F2                                     1.128                                          

R1[I>2σ(I)]                                   0.0626                                     

wR2(all data)                                0.1300                                     

 

Table 4.25(b): Selected bond lengths (Å) 

 
                             H2AI1      

N – N                 1.2515(0) 

 

C=Nimine            1.285()   

                          1.2812(0)  

C – Ophenol         1.3478(0)   

                          1.3503(0)  

C=N….HO         1.6326(0)   

                          1.6511(0)  

Nimine
….Ophenol    2.5581(1)   

                          2.5720(1)  
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4.6 Spectroscopic properties of the compounds 

4.6.1 Spectroscopic properties of the bis-imidazoles (BI1 – BI7) 

The photophysical properties of the BI1 – BI7 series are summarised in Table 

4.26(a). Absorption bands in the 228 – 258 nm region are assignable to π → π* transitions, 

while bands in the 286 – 366 range are attributed to n → π* transitions (Khan et al., 2019; 

Mamiya et al., 2016). In comparison to BI1 {λmax[abs] 309 nm}, a blue shift {5 – 51 nm} 

was observed in the absorption maxima of the 1,3-series, while a red shift {20 – 57 nm} 

was observed for the 1,4-series. BI7 showed the weakest absorption in the series {Fig. 

4.14[a]}, with extinction coefficients {ε} in the range 6 575 – 7 812 M-1 cm-1. The 1,3-

series {BI1 – BI4} exhibited much higher ε values in comparison to the 1,4-series {BI6 

giving the highest values in this family}. The observed ε values are typical for π → π* 

transitions in arene based systems (Mamiya et al., 2016). 

 

4.6.2 Spectroscopic properties of the imidazole amines (A1 – A9) 

The photophysical properties of A1 – A9 are presented in Table 4.26(b). Like the 

bis-imidazoles, the imidazole amines also exhibited π → π* transitions {in the range 225 – 

262 nm} as well as n → π* transitions {in the range 278 – 373 nm}. A1 absorbed maximally 

at 249 nm. In comparison to A1, other members of the N-H series showed a blue shift {13 

– 24 nm} in their absorption maxima, while the N-Me and N-Ph analogues showed a red 

shift {6 – 34 nm}, except for A7 {which showed a 9 nm blue shift}. The Phen analogues 

exhibited the strongest absorption {ε = 56 700 – 75 100 M-1 cm-1}, while the ethyl analogue 

gave the weakest absorption {ε = 10 000 M-1 cm-1} (Fig. 4.15{a}). A1 exhibited dual 

emission (Fig. 4.15{b}), a primary band at 377 nm {possibly due to enol form} and a 

secondary band at 510 nm {possibly due to keto form}. The introduction of the arene group 

produced a red shift in the emission maxima {24 – 40 nm, in comparison to the primary 

emission of A1}, substitution of the N-H group {generating the N-Me and N-Ph analogues} 

resulted in only a slight red shift. This substitution, however, produced a great effect on the 

Stokes shift {Δv} (Fig. 4.15{e} and {f}). While the N-H analogues gave Δv values in the 

range 42 – 66 nm {3 325 – 4 781 cm-1}, substitution produced Δv values in the range 115 

– 149 nm {10 027 – 13 333 cm-1}. The large Stokes shift {arising from enol-keto 
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tautomerisation} observed for the N-Me and N-Ph derivatives suggested structural 

relaxation in this series as well as potential ability to overcome such problems as 

concentration quenching, scattering, and reabsorption of emitted light (Suzuki et al., 2018; 

Wilbraham et al., 2015). The N-H analogues were more emissive {Fig. 4.15[c]} and Phen 

incorporation greatly affected the fluorescence intensities of the compounds – the Phen 

systems showed the highest intensity in each {N-H, N-Me, and N-Ph} series. The emissive 

nature of the compounds followed the order Phen > MeO > Ph and this enhancement of 

spectroscopic properties could be attributed to the structural rigidity as well as extension of 

π-conjugation in the Phen core.  Substitution at the N-H position led to 1 to 5-fold reduction 

in fluorescence quantum yield {Φf}, while substitution on the arene ring led to 1 to 9-fold 

increase in Φf. The large Stokes shift as well as the bathochromic shift {absorption and 

emission} strongly suggested ESIPT mechanism for the imidazole-amines. 

 

4.6.3 Spectroscopic properties of the imidazole imines (I1 – I9) and (IN2 – IN4) 

The photophysical properties of I1 – I9 and IN2 – IN4 are presented in Table 4.27(a). 

The imidazole imines, like their amine precursor, exhibited π → π* transitions {in the range 

232 – 257 nm} as well as n → π* transitions {in the range 274 – 374 nm}. I1 absorbed 

maximally at 334 nm and {in comparison to I1} all other NNO imines showed a blue shift 

{51 – 102 nm} in their absorption maxima. Similarly, a blue shift {33 – 54 nm}, in 

absorption maxima, was observed for the NNN imines, when compared with IN2 {λmax[abs] 

= 286 nm}. The trend in extinction coefficients {ε} of the NNO series was similar to that 

observed for the amine precursor. The Phen analogues gave the strongest absorptions {ε = 

21 400 – 70 200 M-1 cm-1}, while the ethyl analogue gave the weakest absorption {ε = 3 

600 M-1 cm-1} (Fig. 4.16{a}). In comparison to I2 – I4, IN2 – IN4 showed slightly stronger 

absorptions. In contrast to A1, I1 showed a single emission band {emitting maximally at 

392 nm}. All other members of the NNO series, when compared with I1, exhibited a red 

shifted {11 – 30 nm} emission maxima, except for I5 which showed a 79 nm blue shift. 

Substitution of the phenol group {in the NNO imines} with pyridine {in the NNN imines} 

did not appear to affect emission maxima, as I2 – I4 and IN2 – IN4 emitted maximally at very 

similar wavelengths. In contrast to corresponding amine precursors, the N-H analogues 

{NNO series} showed very large Stokes shift 117 – 147 nm {10 091 – 12 667 cm-1}, except 
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for I1 with Δv of 56 nm {4 252 cm-1} (Fig. 4.16{d}). The N-Me and N-Ph analogues {Fig. 

4.16[e] and [f]} exhibited large Δv 118 – 154 nm {10 152 – 13 898 cm-1}, except for I5 with 

a value {28 nm [3 139 cm-1]} even lower than for I1. The NNN imines {Fig. 4.17[d]} gave 

slightly large Δv 76 – 146 nm {5 832 – 12 687 cm-1}, although they generally showed lower 

values than corresponding NNO analogue. The emission intensities of the NNO imines 

followed a similar trend as the amine precursors, with the order N-H > N-Ph > N-Me. The 

lower intensities of the imines {when compared with the corresponding amine precursor} 

is attributed to C=N isomerisation. The large Stokes shift observed for the imines is 

attributed to ESIPT. 

 

4.6.4 Spectroscopic properties of the pentadentate imines {H2S1 – H2O1} and (H2AI1 

– H2AI3) 

The photophysical properties of H2S1 – H2O1 {except H2S7} are presented in 

Table 4.27(b). The measurements were done in MeOH {except for H2S5 which was 

recorded in CHCl3, due to better solubility}. The compounds absorbed predominantly in 

the n → π* region {269 – 496 nm} (Fig. 4.18{a}). They absorbed maximally around 269 

nm, suggesting little effect of the structural modification. H2S2, however, absorbed 

maximally at 317 nm, the red shift {48 nm} arose due to extension of π-conjugation by the 

naphthalene moiety. In comparison to H2S1, the compounds displayed a red shift in their 

emission maxima {the bromo and nitro groups with the highest shift}. H2S1, H2S2, H2S3 

and H2O1 exhibited Δv < 100 nm which suggested they do not display ESIPT behaviour 

{seen in the NNO and NNN imines which also have the ability for proton transfer}. H2S2, 

however, is the most emissive in this series {Fig. 4.18[b] and [c]}. 

The photophysical properties of H2AI1 – H2AI3 are presented in Table 4.27(c). 

Although the azo-imines showed much lower absorption {ε values 7 900 – 14 700 M-1 cm-

1} than corresponding ONSNO/ONONO imines, they showed mainly n → π* absorptions 

{287 – 499 nm}, with maximum absorptions observed in the range 287 – 316 nm {Fig. 

4.19[a]}. Methyl substitution resulted in ≈2 fold hyperchromic shift in emission band and 

a slight {7 nm} red shift in absorption maxima {Fig. 4.19[b]}. In comparison to the S- and 

O- bridged materials, the N=N bridged H2AI1 showed a red shift in emission band {Fig. 

4.19[c]} – this trend was also observed for the methyl substituted variants. The azo-imines 
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also showed much higher Δv, suggesting ESIPT mechanism, although they showed low 

fluorescence quantum yield. 
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Figure 4.14: (a) Electronic (b) Emission spectra of BI1 – BI7 and Excitation and Emission 

spectra of (c) BI1 – BI4 and (d) BI5 – BI7 
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Figure 4.15: (a) Electronic spectra (b) Emission spectra (c) Emission maxima of A1 – A9 

and Excitation and Emission spectra of (d) A1 – A4 (e) A5 – A7 (f) A8 – A9 
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Figure 4.16: (a) Electronic spectra (b) Emission spectra (c) Emission maxima of I1 – I9 and 

Excitation and Emission spectra of (d) I1 – I4 (e) I5 – I7 (f) I8 – I9 
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Figure 4.17: (a) Electronic (b) Emission {inset: (c) Emission maxima} of IN2 – IN4 and (d) 

Excitation and Emission spectra of IN2 – IN4  
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Figure 4.18: (a) Electronic spectra of H2S1 – H2O1 and Excitation and Emission spectra 

of (b) H2S1 – H2S3, H2O1 (c) H2S4 – H2S6 
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Figure 4.19: (a) Electronic (b) Excitation and Emission spectra of H2AI1 – H2AI3 and (c) 

Effect of S, O and N=N substitution on emission profile. 
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Table 4.26(a): Photophysical properties of BI1 - BI7 

 
 λ (Abs) /nm λ (Ex) /nm λmax (Em) /nm Δv   /nm ε x 104 /M-1 cm-1 Φf 

BI1 228, 309a 316 397 81 (6,457b) 5.53 0.28 

BI2 239, 304a 328 423 95 (6,847b) 5.27 0.44 

BI3 286a 300 384 84 (7,292b) 4.79  

BI4 231, 258a, 311, 360 322 371 49 (4,102b) 9.99  

BI5 234, 355a 354 424 70 (4,664b) 2.22 0.67 

BI6 239, 299, 366a 361 443 82 (5,127b) 5.09 0.85 

BI7 240, 291, 329a 333 418 85 (6,107b) 0.78 0.56 

a = λmax  b = Stokes shift in cm-1    

 

Table 4.26(b): Photophysical properties of A1 – A9 

 
 λ (Abs) /nm λ (Ex) /nm λmax (Em) /nm Δv /nm ε x 104 /M-1 cm-1 Φf 

A1 231, 249a, 278, 336  335 377 (510) 42 (175) 1.00 0.222 

    3,325 (10,242b)   

       

A2 225a, 294, 340 340 406 66 (4,781b) 3.46 0.175 

A3 231a, 248, 262, 

307, 356, 373 

355 411 56 (3,838b) 6.21 0.703 

A4 236a, 289, 343 342 404 62 (4,487b) 3.27 0.618 

       

A5 283a 288 408 120 (10,212b) 1.69 0.111 

A6 258a, 284, 308, 358 270 413 143 (12,824b) 5.67 0.549 

A7 240a, 284 286 401 115 (10,027b) 1.53 0.136 

       

A8 278a 288 409 121 (10,272b) 1.41 0.044 

A9 257a, 307 268 417 149 (13,333b) 7.51 0.392 

a = λmax  b = Stokes shift in cm-1 
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Table 4.27(a): Photophysical properties of I1 – I9 and IN2 – IN4 

 
 λ (Abs) /nm λ (Ex) /nm λmax (Em) /nm Δv   /nm ε x 104 /M-1 cm-1 Φf 

I1 256, 280, 334a 336 392 56 (4,252b) 0.36 0.057 

       

I2 253a, 282, 334 284 405 121 (10,520b) 1.54 0.434 

I3 255a, 310, 358, 374 275 422 147 (12,667b) 2.14 0.819 

I4 283a, 339 287 404 117 (10,091b) 2.37 0.172 

       

I5 238, 274a, 340 285 313 28 (3,139b) 2.91 0.001 

I6 257a, 282, 341, 356 266 420 154 (13,784b) 7.02 0.004 

I7 232a, 276, 338 283 403 120 (10,522b) 3.55 0.002 

       

I8 274a, 339 287 405 118 (10,152b) 3.40 0.004 

I9 257a, 282, 339, 354 264 417 153 (13,898b) 6.43 0.022 

       

IN2 286a, 338 325 401 76 (5,832b) 1.84 0.006 

IN3 253a, 311, 374 274 420 146 (12,687b) 5.03 0.422 

IN4 232a, 287, 342 298 403 105 (8,743b) 3.13 0.104 

a = λmax  b = Stokes shift in cm-1 

 

Table 4.27(b): Photophysical properties of H2S1 – H2O1a 

 
 λ(Abs) /nm λ (Ex) /nm λmax (Em) /nm Δv   /nm ε x 104 /M-1 cm-1 Φf 

H2S1 269b, 344 277 303 26 (3,098c) 2.56 0.0035 

H2S2 317b, 372, 464 276 354 78 (7,983c) 1.83 0.0812 

H2S3 271b, 353 284 312 28 (3,160c) 3.39 0.0020 

H2S4 270b, 352 354 538 184 (9,661c) 3.11 0.0053 

H2S5d 270b, 303 338 523 185 (10,465c) 3.81 0.0020 

H2S6 269b, 305, 496 340 525 185 (10,364c) N.De N.De 

H2O1 269b, 341 281 343 62 (6,433c) 2.81 0.0083 

a = H2S7 is not included due to very poor solubility in solvents tested, b = λmax, c = Stokes 

shift in cm-1, d = done in CHCl3, e = Not determined due to incomplete solubility 

 

 

Table 4.27(c): Photophysical properties of H2AI1 – H2AI3 

 
 λmax (Abs) /nm λ (Ex) /nm λmax (Em) /nm Δv   /nm ε x 104 /M-1 cm-1 Φf 

H2AI1 287a 326 455 129 (8,697b) 1.47 0.0019 

H2AI2 316a, 341, 499 275 302 27 (3,251b) N.Dc N.Dc 

H2AI3 294a 336 469 133 (8,440b) 0.79 0.0054 

a = λmax, b = Stokes shift in cm-1, c = Not determined due to incomplete solubility 
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Figure 4.20: Intramolecular hydrogen bonding leading to ESIPT in the imidazole amines 
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4.7 Magnetic properties of the metal complexes 
 

4.7.1 Magnetic properties of the NNO/NNN imine complexes 
 

The dc susceptibility measurements for the NNO/NNN imine complexes (M1, M3, 

M5, M7 and M9) were performed on powder samples and recorded over a temperature 

range of 2 – 300 K. The data is presented in Fig. 4.21 – Fig. 4.25. 1H nmr study of M2 {Fig. 

S56} revealed protons in the aromatic region only, suggesting the octahedral d6 CoIII ions 

is in a low-spin state {t2g
6 eg

0 configuration} – thus, M2 is diamagnetic. 

In the four-coordinate complexes (M1, M3, M7 and M9) the observed room 

temperature effective magnetic moment {μeff} of 4.5, 4.7, 4.3 and 4.05 μB, respectively were 

higher than expected for square planar geometry {2.1 – 2.8 μB}, but typical for high spin d7 

systems in a tetrahedral field {4.2 – 4.8 μB}, suggesting e4t2
3 configuration. The values were 

much larger than the spin-only value {3.87 μB; three {3} unpaired electrons} for systems 

with S = 3/2 and g = 2.0, suggesting significant influence of orbital contribution to the 

magnetic moment. Although the μeff value of M9 was lower than for M1, M3 and M7, it 

still conforms to tetrahedral d7 CoII ions possessing orbital contribution (Holm and Cotton 

1959; Holm and Cotton 1960). The room temperature χMT values of the complexes M1, 

M3, M7 and M9 {2.6, 2.7, 2.35 and 2.05 cm3Kmol-1, respectively} were larger than 

expected for mononuclear CoII ions {1.875 cm3Kmol-1 for S = 3/2 and g = 2.0}, also 

indicating strong contribution of orbital angular momentum. The observed μeff of the five-

coordinate M5 {4.5 μB} was higher than expected for d7 high spin CoII ions {three (3) 

unpaired electron} system {3.87 μB}; the higher value probably due to second-order 

Zeeman effect as well as SOC {arising from mixing of ground and higher terms} – the 

orbital contribution is believed to be more significant than the Zeeman effect; and the value 

also supports a trigonal bipyramidal geometry {Fig. 4.5[c]} (Dori and Gray 1968; Preti et 

al., 1977; Thompson et al., 1977; Carabineiro et al., 2008; Spillecke et al., 2022). Like the 

four-coordinate complexes, the χMT value (at 300 K) for M5 {2.5 cm3Kmol-1} fits 

commonly observed values {2.1 – 3.4 cm3Kmol-1} and was larger than expected for 

mononuclear CoII ions {1.875 cm3Kmol-1}, indicating strong orbital contribution to angular 

momentum (Massoud et al., 2008; Mondal et al., 2019; Acharya et al., 2020). The observed 

decrease in the μeff and χMT values of the complexes {plots a and b in Fig. 4.21 – Fig. 4.25}, 
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upon cooling, indicated depopulation of the S = 3/2 sublevel, presence of SOC as well as 

possible antiferromagnetism (Buchholz et al., 2012; Huang et al., 2014; Nemec et al., 2015; 

Antal et al., 2016; Smolko et al., 2017; Acharya et al., 2020). Replacing Cl- (in M1) with 

AcO- (in M3) generated only a slight increase in μeff and χMT (at 300 K), while the 

introduction of MeO group (in M7) appeared to cause a decrease in both values (at 300 K). 

The complexes showed good conformity with the Curie-Weiss law, χM  = C/(T - ϴ), {plot c 

in Fig. 4.21 – Fig. 4.25}, suggesting presence of antiferromagnetism (Narayanan et al., 

2008). 
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Figure 4.21: Variable Temperature plots of (a) effective magnetic moment {μeff} (b) χMT 

(c) Curie-Weiss law of M1 
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Figure 4.22: Variable Temperature plots of (a) effective magnetic moment {μeff} (b) χMT 

(c) Curie-Weiss law of M3 
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Figure 4.23: Variable Temperature plots of (a) effective magnetic moment {μeff} (b) χMT 

(c) Curie-Weiss law of M5 
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Figure 4.24: Variable Temperature plots of (a) effective magnetic moment {μeff} (b) χMT 

(c) Curie-Weiss law of M7 
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Figure 4.25: Variable Temperature plots of (a) effective magnetic moment {μeff} (b) χMT 

(c) Curie-Weiss law of M9 
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Figure 4.26: (a) Ligand field {d-orbital} splitting {for d7 CoII ion} and (b) simplified energy 

level diagram for tetrahedral ligand field. (c) Ligand field {d-orbital} splitting {for d7 CoII 

ion} and (d) simplified energy level diagram for trigonal bipyramidal {D3h} ligand field. 
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4.7.2 Magnetic properties of the pentadentate imine complexes 
 

 The susceptibility (χMT) for the mononuclear CrIII complex, the di- and mono-

nuclear NiII complexes {[Ni2S22]4H2O and [NiS5(H2O)]} and the di- and tri-nuclear CuII 

complexes {[Cu3S12(OAc)2]2.75H2O, [Cu3S22(OAc)2]5.5H2O, [Cu2S22]2THF and 

[Cu2O12]1.5H2O} were recorded at 2 kOe, over a temperature range of 2 – 300 K; while 

that of the eight dinuclear CoII complexes were recorded under a 1000 G field, over a 

temperature range of 2 – 300 K. The effective magnetic moment, μeff, were calculated using 

μeff = 2.828(χMT)½. 

The room temperature χMT value {Fig. 4.27(a)} of the CrIII complex {1.88 

cm3Kmol-1} was close to the spin-only value for a free or weakly coupled d3 CrIII ion {1.875 

cm3Kmol-1 for S = 3/2} suggesting absence of orbital contribution to the angular momentum. 

This value was nearly constant even up to 50 K, with a sharp decrease observed at < 20 K. 

The plot trend suggested zero-field splitting (ZFS) and/or weak antiferromagnetic 

interactions (Chérif et al., 2013; Liu et al., 2014; Su et al., 2016; Dridi et al., 2018; 

Bazhenova et al., 2021). The observed μeff of the CrIII complex {3.88 μB at 300 K} was in 

close agreement with the spin-only value {3.87 μB, S = 3/2} expected for three unpaired 

electrons in an isolated CrIII ion {t2g
3 configuration} and supports the octahedral geometry 

around the CrIII ion (Chandra and Gupta 2002; Alonso et al., 2011; Liu et al., 2014; Su et 

al., 2016; Schuman et al., 2021). Fitting was performed applying the simple Hamiltonian 

in Eq. (4.1) and using PHI (Chilton et al., 2013) to arrive at the following values g = 2.00 

{which was close to the isotropic value ge = 2.0023}, D = –1.17 ± 0.05 cm-1 {an “easy-

axis” type magnetic anisotropy}, and zJ = –0.064 ± 0.001 cm-1. The zJ represents 

intermolecular coupling between CrIII centres in neighbouring molecules, which occurs via 

π-π interactions. Since the ground and excited states in d3 CrIII ions {in a distorted Oh field} 

are well separated, the low ZFS value {D = –1.17 ± 0.05 cm-1} was expected (Pedersen and 

Toftlund 1974; Karunadasa et al., 2010). Although the D value was lower than observed 

for some reported CrIII complexes (Pedersen and Toftlund 1974; Goswami and Misra 2012; 
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Semenaka et al., 2010; Karunadasa et al., 2010), the negative sign suggested 

[CrO1(ONO2)]0.5H2O.0.2MeCN was a good SMM candidate (Goswami and Misra 2012). 

 

Ĥ = gµBBŜ + D[Ŝ𝑧
2 – ⅓S(S + 1)]                               Equation 4.1 

The first term in Eq. (4.1) takes into consideration the Zeeman contribution, where 

g is the Landé factor {or Zeeman/giromagnetic tensor}; µB is the Bohr magneton; B is the 

applied magnetic field. The second term takes into consideration the zero-field splitting 

{ZFS} of the d3 CrIII quartet species {S = 3/2}, with D as the axial second order ZFS 

parameter. 
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                                      (a) 

 

 

 

Figure 4.27: (a) Temperature-dependent χMT plot for [CrO1(ONO2)]0.5H2O.0.2MeCN. 

Red line represented best fit of data. (b) Ligand field {d-orbital} splitting {for d3 CrIII ion} 

and (c) simplified energy level diagram for Octahedral {Oh} ligand field. 
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The room temperature χMT values {Fig. 4.28} of the dinuclear CoII complexes were 

in the range 4.09 – 5.20 cm3Kmol-1. These values {5.20, 4.78, 4.23, 4.33, 4.53, 4.09, 4.28 

and 4.60 cm3Kmol-1, respectively} were larger than those expected for two non-interacting 

CoII ions {3.75 cm3Kmol-1 for S = 3/2 and g = 2.0} suggesting orbital contribution to their 

angular momentum. Upon temperature lowering, the χMT values decreased smoothly due to 

depopulation of the higher energy states {Kramer’s doublet} of the CoII ions with 4T1g 

ground state, arising from SOC as well as the strong possibility of antiferromagnetic 

exchange interactions between the CoII ions (Mishra et al., 2006). The SOC splits the 

ground state {4T1g} into 12 fold degenerate levels {consisting of a Kramer’s doublet, a 

quartet and a sextet} (Fink et al., 1999; Fabelo et al., 2008; Frost et al., 2016). The μeff 

values of the complexes {6.45, 6.18, 5.82, 5.88, 6.02, 5.72, 5.85 and 6.07 μB respectively} 

were larger than the expected spin only {μso} value {μso = {4S(S + 1)}1/2 = 3.87 μB; S = 3/2}; 

they were also larger than the value expected when spin momentum and orbital momentum 

exist independently {μLS = {L(L + 1) + 4S(S + 1)}1/2 = 5.20 μB, L = 3, S = 3/2} therefore 

supporting the contribution of orbital angular momentum typical for the 4T1g term. The CoII 

ions existed predominantly in severely distorted octahedral {Oh} environment {Table 

4.18}, and were bridged over a μ2-phenoxo bridge {Fig. 4.9}. The Oh geometry around the 

metal ions suggested the Lloret approach as the best way to describe the magnetic 

behaviour. As mentioned in section 2.5.2.1, the Heisenberg-Dirac-van Vleck model does 

not sufficiently represent anisotropic high-spin d7 CoII centres {especially in Oh field}, 

hence, the coupling exchange {Jex}, axial distortion parameter {Δ}, orbital reduction factor 

(α) and spin-orbit coupling parameter (λ) were selected, while fitting was carried out using 

PHI (Chilton et al., 2013). A single set of parameters was applied {to avoid 

overparameterisation} to both CoII centres. The applied Hamiltonian is in Eq. (4.2) below: 

 

Ĥ = (-2Jex)Ŝ1Ŝ2 + αλLi·Ŝi + α2Δ(3𝐿𝑧𝑖
2  – 𝐿𝑖

2) + µB(α𝐿𝑖 + 𝑆𝑖·go)B      Equation 4.2 

where i = 1, 2 and go = 2.0023. Also due to the correlation between the λ and α 

parameters, as seen in the second term of the Hamiltonian, the former is fixed as -170 cm-

1, close to the value for the free ion (Hossain et al., 2002). Experimental data in each case 

was obtained using the values in Table 4.28. 
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The sign of the exchange {Jex} in all eight compounds was consistent with the 

decrease in the χMT data {Fig. 4.28}. The observed antiferromagnetic exchange followed 

expected trend for dinuclear CoII complexes with Co-O-Co bond angles > 90o (Brown et 

al., 2001; Hossain et al., 2002; Zeng et al., 2004; Jung et al., 2009; Daumann et al., 2013; 

Li et al., 2015; Khandar et al., 2015; Alam et al., 2016; Sushila et al., 2022). The exchange 

was expected to be mediated through the two phenoxo bridges linking the CoII ions in each 

complex. The slight variation in magnitude of the coupling suggested that the nature of the 

phenoxo-bridges can and does influence the strength of the interactions between the two 

metal ions {Fabelo et al., 2009; Alam et al., 2016; Sushila et al., 2022}.  

A variation is seen in the axial distortion parameter, Δ, of the complexes except for 

[Co2S22]3.5H2O and [Co2S32]2H2O {Table 4.28}. This {variation} could be attributed to 

the distorted octahedral environment of the CoII ions in each case; which was in part due to 

the steric factors as well as the presence of the sulphur donor which should result in an 

elongation along the Co–S bond vector. The aforementioned steric factors would come into 

play due to the way the materials were expected to pack resulting in medium to large scale 

distortions around the CoII ions. The similarities in the values for the distortion parameter 

in [Co2S22]3.5H2O and [Co2S32]2H2O should be regarded as mere coincidence as the 

geometrical influence of both their ligands is expected to be quite different. 

As described in section 2.5.2.1, the α parameter gives an idea of the measure of 

covalency as well as the extent of the admixture between the T1g states of the F and P terms. 

The greater the covalency {or the stronger the admixture}, the lower the value of α. Except 

for [Co2S12]3H2O, the values of α observed for the complexes fall below the range {-1.05 

to -1.425} expected for CoII ions in a high spin octahedral geometry {Fabelo et al., 2009}. 

Although, the observed lower values might suggest increased covalence arising from the 

Co–S bond, it is much more likely that it was due to stronger admixing between the T1g 

states of the F and P terms {Lloret et al., 2008}. 
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Figure 4.28: Temperature-dependent plots of χMT for [Co2S12]3H2O – [Co2O12]0.5H2O 

measured at dc field of 1000 G. Lines represent best fit of data. 
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Table 4.28: Summary of fitted parameters obtained for [Co2S12]3H2O – 

[Co2O12]0.5H2O*. 

 

 Jex (cm-1) Δ (cm-1) α 

[Co2S12]3H2O -5.04 ± 0.13 -214 ± 18 -1.01 ± 0.012 

[Co2S22]3.5H2O -2.80 ± 0.06 -283 ± 20 -0.51 ± 0.010 

[Co2S32]2H2O -10.5 ± 0.28 -283 ± 29 -0.60 ± 0.008 

[Co2S42]1.5H2O -4.41 ± 0.14 -243 ± 33 -0.57 ± 0.011 

[Co2S52] -3.18 ± 0.07 -440 ± 32 -0.71 ± 0.009 

[Co2S62]2H2O -6.44 ± 0.24 -355 ± 48 -0.50 ± 0.014 

[Co2S72]6H2O -1.63 ± 0.05 -361 ± 34 -0.51 ± 0.010 

[Co2O12]0.5H2O -4.86 ± 0.12 -278 ± 22 -0.72 ± 0.009 

 

*Displayed error values refer to uncertainties in calculation from PHI and not experimental 

error from measurements. 
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Figure 4.29: (a) Ligand field {d-orbital} splitting and (b) simplified energy level diagram 

for six coordinate, d7 CoII ion. 
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Figure 4.30: Co-Co distance and Co-O(phenoxo)-Co bridge angles for (a) [Co2S12]3H2O (b) 

[Co2S22]3.5H2O (c) [Co2S42]1.5H2O (d) [Co2S52] (e) [Co2S72]6H2O and (f) 

[Co2O12]0.5H2O   
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The room temperature χMT values {Fig. 4.31(a) and (b)} for the dinuclear 

[Ni2S22]4H2O {2.3 cm3Kmol-1} and the mononuclear [NiS5(H2O)] {1.23 cm3Kmol-1} 

were slightly higher than expected for two non-interacting NiII ions and a single NiII ion 

{2.0 and 1.0 cm3Kmol-1, for S = 1} respectively. The slightly higher values might be 

ascribed to minimal spin-orbital contribution from the 3T2g state, since no orbital 

contribution is expected from the 3A2g ground term (Horn Jr., et al., 2018). Upon cooling 

{in both cases}, a slight increase in the χMT value was observed until a maximum around 

17.5 K. The downturn in the χMT curve {at < 17.5 K} can be attributed to the ZFS at low 

temperatures. The μeff values of the complexes {4.29 μB, for [Ni2S22]4H2O and 3.14 μB for 

[NiS5(H2O)]} were larger than the expected spin only {μso} values {4.00 μB and 2.83 μB 

respectively, for S = 1} and also supported orbital contribution from the excited 3T2g term. 

Fitting for [Ni2S22]4H2O was performed by applying the Hamiltonian in Eq. (4.3) and using 

PHI (Chilton et al., 2013) to arrive at the following values g = 2.16, D = –20 cm-1 {an “easy-

axis” type magnetic anisotropy}, Jex = –1.96 cm-1 and zJ = –0.7 cm-1; while the fitting for 

[NiS5(H2O)] was performed by applying the Hamiltonian in Eq. (4.1) and using PHI to 

arrive at the following values g = 2.20, D = +12.8 cm-1 {an “easy-plane” type magnetic 

anisotropy}, and zJ = +0.83 cm-1. 

Ĥ = Jex(S1S2) + gµBBŜ + D[Ŝ𝑧
2 – ⅓S(S + 1)]                               Equation 4.3 

 

Comparison of the fits obtained using PHI and the relevant Hamiltonians in Eqs. 

(4.1) and (4.3) showed a few differences. The similarity in their g-tensors could be as a 

result of the likeness in their geometric environments {Table 4.20}. The dinuclear analogue 

showed a weak antiferromagnetic exchange which was mediated over its µ2-phenoxo 

bridge. In addition both complexes displayed weak π – π interactions of similar magnitudes 

and this would account for the slight increase in the χMT values as the temperature decreased. 

Another difference between the two complexes can be seen in the type of ZFS they 

displayed, while [Ni2S22]4H2O displayed an “easy-axis” type of anisotropy {D = –20 cm-

1}, [NiS5(H2O)] displayed an “easy-plane” type of anisotropy {D = +12.8 cm-1}. The 

difference in the values of this last parameter in both cases may be simply attributed to the 

nuclearity displayed by both compounds resulting in an alteration in the lowest lying levels 

arising from the split of the 3A2g term. 
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Figure 4.31: Temperature-dependent χMT plot for (a) [Ni2S22]4H2O and (b) [NiS5(H2O)]. 

Red lines represent best fit of data. (c) Ligand field {d-orbital} splitting and (d) simplified 

energy level diagram for six coordinate, d8 NiII ion. 
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The room temperature χMT values {Fig. 4.32} for the trinuclear 

[Cu3S12(OAc)2]2.75H2O and [Cu3S22(OAc)2]5.5H2O {1.18 and 1.21 cm3Kmol-1, 

respectively} and the dinuclear [Cu2S22]2THF and [Cu2O12]1.5H2O {0.86 and 0.82 

cm3Kmol-1, respectively} were only slightly larger than expected for three non-interacting 

CuII ions {1.125 cm3Kmol-1, S = ½ and g = 2.0}, and two non-interacting CuII ions {0.75 

cm3 K mol-1, S = ½ and g = 2.0}. In the dinuclear complexes, these values remained constant 

until low temperatures when they began to decrease suggesting the onset of 

antiferromagnetic exchange between the CuII ions, while in the trinuclear complexes a 

decrease was seen at temperatures around 100 K suggesting stronger antiferromagnetic 

interactions in the trinuclear complexes as compared with the dinuclear complexes. 

The dinuclear complexes were fitted with the simple HDvV Hamiltonian Ĥ = -JŜ1Ŝ2, 

giving rise to the values g = 2.10 and Jex = –0.4 cm-1 {for [Cu2S22]2THF} and g = 2.13 and 

Jex = –1.7 cm-1 {for [Cu2O12]1.5H2O}. In the case of the trinuclear complexes, this HDvV 

Hamiltonian was modified to account for a third CuII centre within a linear arrangement 

resulting in the new equation Ĥ = –J(Ŝ1Ŝ2 + Ŝ2Ŝ3) and the derived values were g = 2.13 and 

Jex = –33.0 cm-1 {for [Cu3S12(OAc)2]2.75H2O} and g = 2.12 and Jex = –30.5 cm-1 {for 

[Cu3S22(OAc)2]5.5H2O}. 

Like in the case of the NiII complexes, the similarities in the g-tensors {of the four 

complexes} could be due to the similar geometric environment of the CuII centres {Table 

4.24(a)}. The exchange coupling {Jex} showed an organisation in two groups – the 

extremely weakly-coupled and the weakly coupled systems. The differences in magnitude 

of coupling in both groups {extremely weakly-coupled and weakly coupled} can be simply 

ascribed to the variation in the structures of the relevant magnetic units {that is, di- and tri-

nuclear cores}. In the case of the dinuclear complexes, the CuII centres are well-separated 

{4.9924(1) Å for [Cu3S12(OAc)2]2.75H2O and 4.7026(1) Å for [Cu2O12]1.5H2O} and the 

possibility of exchange was limited to the chance of weak interaction via the O and S atoms, 

respectively, bridging the phenyl groups in their ligands. In contrast, within the trinuclear 

units, the CuII atoms are much closer {3.2033(1) Å for [Cu2S22]2THF and 3.2609(0) Å for 

[Cu2O12]1.5H2O} and with the shorter distance between the bridging O atoms and the Cu 

atoms, there was a higher possibility of exchange interactions within the Cu3 units of both 
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{[Cu3S12(OAc)2]2.75H2O and [Cu3S22(OAc)2]5.5H2O} complexes. The similarities in 

their structures was further highlighted by the insignificant differences in the values of the 

exchange between their CuII centres. The oxo bridging angles of the trinuclear complexes 

were very close {Cu-O(phenoxo)-Cu is 97.855(2)o for [Cu3S12(OAc)2]2.75H2O and 

98.216(1)o for [Cu3S22(OAc)2]5.5H2O; while Cu-O(acetate)-Cu was 92.147(2)o for 

[Cu3S12(OAc)2]2.75H2O and 92.533(1)o for [Cu3S22(OAc)2]5.5H2O}. The Cu-O-Cu bond 

angle is believed to play a vital role in coupling exchange, with higher angles resulting in 

higher Jex values (Biswas et al., 2011). 
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(a)                                                              (b) 

   
 

           (c)                                                              (d) 

   
 

 
Figure 4.32: Temperature-dependent χMT plot for (a) [Cu3S12(OAc)2]2.75H2O, (b) 

[Cu3S22(OAc)2]5.5H2O, (c) [Cu2S22]2THF and (d) [Cu2O12]1.5H2O. Red lines represent 

best fit of data. (e) Ligand field {d-orbital} splitting and (f) simplified energy level diagram 

for six coordinate, d9 CuII ion. 
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The ESR spectra are displayed in Fig. 4.33 – 4.36 while the derived parameters from 

simulating the plots are displayed in Tables 4.29(a) and (b). With the exception of 

[Cu2O12]1.5H2O, the ESR spectra obtained {at room and low temperatures} were similar; 

while the other complexes displayed axial structure in their spectra {due to the geometric 

environments within which the CuII centres reside}, [Cu2O12]1.5H2O adopted an isotropic 

structure {possibly due to the geometry around the CuII centres which leaned toward a more 

exotic see-saw geometry [Table 4.24(b)]}. The generally observed trend, in the complexes, 

g|| > g⊥ > ge {where ge = 2.0023} corroborated a distorted geometry {in the complexes} 

with tetragonal distortion along the z-axis as well as a 2B1g ground term {in the six-

coordinate complexes} (Chakradhar et al., 2003). 

Upon dissolution in dichloromethane {DCM} followed by freezing, the behaviours 

of the complexes became even more differentiated. [Cu3S12(OAc)2]2.75H2O and 

[Cu2O12]1.5H2O showed a mixture of rhombic and axial spectra and gave rise to an 

intermediate appearance, while [Cu3S22(OAc)2]5.5H2O and [Cu2S22]2THF showed a 

retention of their solid state axial spectra with increased broadening in the linewidths. These 

differences can be explained by their structures in which [Cu3S12(OAc)2]2.75H2O and 

[Cu2O12]1.5H2O showed the possibility of additional coordination or reorientation in a 

rhombic fashion around one of the CuII centres, whereas the other two complexes did not 

demonstrate this likelihood in their structures. Overall, the variation in the structure was 

clearly demonstrated and proven using both SQUID magnetometry as well as CW-ESR 

measurements. The solution behaviour of the complexes was even more intriguing 

particularly with the differentiation in behaviour based on possibility of coordination 

rearrangements in each of the structures. 
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Figure 4.33: ESR spectra for [Cu3S12(OAc)2]2.75H2O recorded in powder at (a) 295 K 

(b) 95 K and (c) in DCM {frozen solution} at 93 K. 
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Figure 4.34: ESR spectra for [Cu3S22(OAc)2]5.5H2O recorded in powder at (a) 295 K (b) 

95 K and (c) in DCM {frozen solution} at 95 K. 
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Figure 4.35: ESR spectra for [Cu2S22]2THF recorded in powder at (a) 295 K (b) 93 K and 

(c) in DCM {frozen solution} at 93 K. 
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Figure 4.36: ESR spectra for [Cu2O12]1.5H2O recorded in powder at (a) 295 K (b) 97 K 

and (c) in DCM {frozen solution} at 85 K. 
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Table 4.29(a): ESR data for [Cu3S12(OAc)2]2.75H2O and [Cu2O12]1.5H2O 

 
 [Cu3S12(OAc)2]2.75H2O 

 295 K 95 K 

g⊥ 2.06 2.07 

g|| 2.28 2.26 

H⊥ Strain (MHz) 388 263 

H|| Strain (MHz) 725 800 

 93 K (Frozen) 

gx 2.18 

gy 2.09 

gz 2.06 

Hx Strain (MHz) 1290 

Hy Strain (MHz) 250 

Hz Strain (MHz) 626 

 

 

Table 4.29(b): ESR data for [Cu3S22(OAc)2]5.5H2O and [Cu2S22]2THF  

 
 [Cu3S22(OAc)2]5.5H2O  [Cu2S22]2THF 

 295 K 95 K 295 K 93 K 

g⊥ 2.05 2.05 2.06 2.06 

g|| 2.26 2.27 2.17 2.17 

H⊥ Strain (MHz) 363 325 293 236 

H|| Strain (MHz) 562 586 1304 1087 

 95 K (Frozen) 93 K (Frozen) 

g⊥ 2.08 2.08 

g|| 2.19 2.15 

H⊥ Strain (MHz) 471 448 

H|| Strain (MHz) 1604 1576 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [Cu2O12]1.5H2O 

 295 K 97 K 

giso 2.13 2.13 

Aiso (MHz) 75.1 78.3 

Linewidth (mT) 12.4 11.4 

 85 K (Frozen) 

gx 2.17 

gy 2.16 

gz 1.97 

Hx Strain (MHz) 689 

Hy Strain (MHz) 115 

Hz Strain (MHz) 159 
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4.8 Sensor properties of the receptors (Ligands) 
 

4.8.1 Sensing properties of the bis-imidazoles (BI1 – BI7) 

 

In the 1,3-bisimidazole series, BI4 exhibited a clear sensitivity {turn-off} towards 

Cr3+ and Fe3+ ions {Fig. 4.37[d]} while other tested ions {Ag+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, 

K+, Li+, Mg2+, Na+, Ni2+, Pb2+, and Zn2+} showed very minimal effect. The dual emission 

of the receptor {BI4} also disappeared upon contact with Cr3+ and Fe3+ ions. Although BI2 

showed ratiometric turn-off in the presence of the +3 ions {Al, Cr, Fe}; turn-off was also 

observed for Cu2+, Hg2+ and Zn2+ {Fig. 4.37[b]}. Substitution at the N-H position appeared 

to affect the quenching property of Cu2+ ion. While the N-H analogues {BI1 and BI2} 

showed almost complete quenching, upon contact with Cu2+, the N-Ph analogues {BI3 and 

BI4} gave minimal reduction in fluorescence intensity {BI4 showing the least} (Fig. 4.37). 

The 1,4-series, however, did not show selectivity, although BI6 and BI7 exhibited 

ratiometric behaviour in the presence of the +3 ions {Al, Cr and Fe}. While BI6 showed a 

turn-off {Fig. 4.38[b]}, BI7 showed a turn-on {Fig. 4.38[c]}. As observed in the 1,3-series, 

interaction with Cu2+ ions produced different effects in the N-H and N-Ph members of the 

1,4-series {Fig. 4.38}. 

 

4.8.2 Sensing properties of the imidazole amines (A1 – A9) 

 

The effect of metal ions {Ag+, Al3+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, K+, Li+, 

Mg2+, Na+, Ni2+, Pb2+, and Zn2+} on the imidazole amine receptors is presented in Fig. 4.39 

{N-H analogues}, Fig. 4.40 {N-Me analogues} and Fig. 4.41 {N-Ph analogues}. 

Generally, the imidazole amines appeared to have preference for the +3 ions {Al, Cr, Fe}. 

The ethyl based A1 showed the most sensitivity, with a disappearance of its dual emission 

{in the presence of the ions} (Fig. 4.39{a}); while A2 exhibited a ratiometric turn-on for 

the ions, A7 showed a ratiometric turn-off {Fig. 4.39[a] and Fig. 4.40[c]}. In addition to 

the +3 ions, A4 showed prospect in the detection of Zn2+ {Fig. 4.39[d]}. Unlike the bis-

imidazoles, interaction of Cu2+ ions with the N-H analogues did not lead to complete 

quenching {except for A1}, with a turn-on observed for A3. Substitution at the N-H 

position however, still resulted in reduction in fluorescence intensity, although a turn-on 

was observed for A6 and almost complete quenching in A7. 
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Figure 4.37: Emission spectra of (a) BI1 (b) BI2 (c) BI3 and (d) BI4 in the presence of tested 

cations. 
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Figure 4.38: Emission spectra of (a) BI5 (b) BI6 {inset colour change in the presence of 

Cu2+} and (c) BI7 in the presence of tested cations. 
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Figure 4.39: Emission spectra of (a) A1 (b) A2 (c) A3 and (d) A4 in the presence of tested 

cations. 
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Figure 4.40: Emission spectra of (a) A5 (b) A6 and (c) A7 in the presence of tested cations. 

 

 



 

281 
 

360 420 480 540

0

40

80

120

E
m

is
si

o
n

 (
a

u
)

 A8

 Ag+

 Al3+

 Cd2+

 Co2+

 Cr3+

 Cu2+

 Fe3+

 Hg2+

 K+

 Li+

 Mg2+

 Na+

 Ni2+

 Pb2+

 Zn2+

(a)

Wavelength (nm)   
 

360 420 480 540
0

30

60

90

 A9

 Ag+

 Al3+

 Cd2+

 Co2+

 Cr3+

 Cu2+

 Fe3+

 Hg2+

 K+

 Li+

 Mg2+

 Na+

 Ni2+

 Pb2+

 Zn2+

E
m

is
si

o
n

 (
a
u

)

(b)

Wavelength (nm)  
 

Figure 4.41: Emission spectra of (a) A8 and (b) A9 in the presence of tested cations. 
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4.8.3 Sensing properties of the NNO imines (I1 – I9) and NNN imines (IN2 – IN4) 

 

The interaction of the NNO receptors with metal ions {Ag+, Al3+, Cd2+, Co2+, Cr3+, 

Cu2+, Fe3+, Hg2+, K+, Li+, Mg2+, Na+, Ni2+, Pb2+, and Zn2+} is presented in Fig. 4.42 {N-H 

analogues}, Fig. 4.43 {N-Me analogues} and Fig. 4.44 {N-Ph analogues}. I2 {Fig. 

4.42[b]} and I4 {Fig. 4.42[d]} showed similar tendency as the imidazole amines towards 

+3 ions. Only I6 {Fig. 4.43[b]} and I9 {Fig. 4.44[b]} showed remarkable sensitivity 

towards Zn2+ ion, and I9 gave the best selectivity and ≈ 4-fold increase in fluorescence 

intensity. 

Upon interaction with Zn2+, I9 showed a red shifted emission {a major emission 

band at 503 nm with a shoulder at 422 nm – possibly due to keto-enol tautomerism}. 

Fluorescence titration {Fig. 4.45[a]} revealed a decrease in intensity at 422 nm with an 

increase at 503 nm. The UV-Vis titration {Fig. 4.45[b]} showed a gradual decrease in the 

π-π* region and the appearance of a metal-to-ligand charge transfer {MLCT} band {which 

increased with volume of Zn2+} at 410 nm. These observations suggested formation of I9-

Zn2+. ESI-MS {Fig. S86} gave a peak at m/z 593.6 {[I9 + Zn2+ + MeCN]+, Calc. 594.99} 

suggesting a 1:1 interaction between I9 and Zn2+; this was also corroborated by Job’s plot 

{Fig. 4.45[c]}. The association constant of I9-Zn2+ was determined by fluorescence titration 

to be 2.9 x 104 M-1 and the limit of detection {LOD} was 4.45 nM {R2 = 0.989} (Fig. 

4.46{a}). The addition of equivalent amount of solution of other metal ions tested to a 

solution of I9-Zn2+ revealed a significant change in the emission associated with the enol 

form {lower wavelength} than the keto form {higher wavelength} (Fig. 4.46{b}) – the band 

at 422 nm was not seen upon addition of Cr3+, Cu2+ and Fe3+ ions. Cu2+ ion showed the 

strongest inhibition of the Zn2+ turn-on {Fig. 4.46[c]}, while Cd2+ ion did not interfere. The 

weak effect of Cd2+ ion could be attributed to weak binding to the phenol group {phenolic 

-OH not removed} – while the presence of Zn2+ ion {Fig. 4.47} produced a change in the 

absorption spectrum of the ligands, Cd2+ did not. Since this change was observed for turn-

on {Fig. 4.47[a] and [b]} and turn-off {Fig. 4.47[c]} systems, the increase in fluorescence 

intensities could be as a result of excited state phenomena (Wang et al., 2014; Saluja et al., 

2014). The deprotonation of the phenolic -OH, in the presence of Zn2+ ions, could be seen 

in the crystal structures of I3, I8 and I9 {Fig. 4.4}. 
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Figure 4.42: Emission spectra of (a) I1 (b) I2 (c) I3 and (d) I4 in the presence of tested 

cations. 
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Figure 4.43: Emission spectra of (a) I5 (b) I6 and (c) I7 in the presence of tested cations. 
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Figure 4.44: Emission spectra of (a) I8 and (b) I9 in the presence of tested cations. 
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Figure 4.45: (a) Fluorescence titration (inset: intensity at 422 nm {black} and at 503 nm 

{red}) (b) UV-Vis titration of I9 in presence of Zn2+ and (c) Job’s plot for I9-Zn2+.  
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Figure 4.46: (a) LOD determination and competition experiment (b) and (c) of I9. 
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Figure 4.47: Absorption spectra of (a) I6 (b) I9 and (c) I3 {inset: emission spectra} in the 

presence of equivalent amount of Cd2+ and Zn2+ ions. 
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Substitution of the phenol group (in I2, I3 and I4) with pyridine (in IN2, IN3 and IN4) 

favoured +3 {Al, Cr and Fe} ions detection, with IN3 showing the best selectivity {Fig. 

4.48} – in comparison to the NNO analogues, the intensity of Zn2+ ion was almost 

completely diminished in the NNN analogues {Fig. 4.49}. In the presence of the trivalent 

ions, IN2 and IN4 gave almost 40-fold increase in fluorescence intensities {in comparison to 

IN2 and IN4 alone}, while IN3 gave the least {≈ 1-fold}, however, IN3 efficiently 

discriminates the M3+ ions from the M2+ and M+ ions. The receptors (IN2, IN3 and IN4) 

showed ratiometric behaviour {Fig. 4.50} and IN3 (Fig. 4.50{b}) exhibited the best 

performance. 

Upon interaction with the metal ions, a red-shifted absorption {Fig. 4.51} was 

observed only in the presence of the +3 ions {Al, Cr, Fe}. Titration experiments {Fig. 4.52} 

indicated that this red-shift was more pronounced in IN2 and IN4 {in comparison to IN3}. 

Job’s plot {Fig. 4.53} suggested a 1:1 stoichiometric ratio, for all three {3} ions upon 

interaction with the receptors. Interference experiments {Fig. 4.54} showed that Co2+, Cu2+, 

Hg2+ and Zn2+ affected the detection of the +3 ions {Cu2+ ions showed the most effect, for 

all three [3] receptors}. In the case of IN2, the effect of Hg2+ was more pronounced against 

Fe3+ {Fig. 4.54[c]}; and the effect of Zn2+ was more pronounced against Al3+ {Fig. 4.54[a]} 

– this effect of Zn2+ {against Al3+} was seen also in IN3 {Fig. 4.54[d]}. 

Although Cd2+ and Zn2+ ions do not show a turn-on with the receptors, they bring 

about a cyclisation of the receptors resulting in structures shown in Fig. 4.6. 
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Figure 4.48: Emission spectra of (a) IN2 (b) IN3 and (c) IN4 in the presence of tested cations. 
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Figure 4.49: Emission intensities of (a) NNO and (b) NNN ligands and tested metal ions 

(upon interaction with respective ligands) 
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Figure 4.50: Bar chart showing fluorescence ratio of (a) IN2 (b) IN3 and (c) IN4 in the 

presence tested ions. 
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Figure 4.51: Absorption spectra of (a) IN2 (b) IN3 and (c) IN4 in the presence of tested cations 
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Figure 4.52: UV-Vis titration of (a) – (c) IN2, (d) – (f) IN3 and (g) – (i) IN4 with Al3+, Cr3+ 

and Fe3+, respectively. 
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Figure 4.53: Job’s plot of (a) – (c) IN2, (d) – (f) IN3 and (g) – (i) IN4 with Al3+, Cr3+ and 

Fe3+, respectively. 
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Figure 4.54: Interference experiment of (a) – (c) IN2, (d) – (f) IN3 and (g) – (i) IN4 with Al3+, 

Cr3+ and Fe3+, respectively, in the presence of other cations tested. 
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4.8.4 Sensing properties of the ONSNO/ONONO imines {H2S1 – H2O1} 

 

The interaction of the pentadentate {ONSNO/ONONO} receptors with metal ions 

{Ag+, Al3+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ga3+, Hg2+, In3+, K+, Li+, Mg2+, Na+, Ni2+, Pb2+, 

Tl3+ and Zn2+} is presented in Fig. 4.55 and Fig. 4.56. Although the receptors bear similar 

heteroatoms to the NNO imines, their metal ions sensing patterns differ – they however 

showed tendency towards +3 ions {like the NNN imines}, especially group 13 ions. 

H2S1, H2S2 and H2S3 showed dual emissions in the presence of Al3+ ions {Fig 

4.55}; with H2S1 and H2S3 exhibiting red-shifted emissions in the presence of Ga3+ and 

In3+ ions. These ligands in the presence of Al3+ ions, had the primary emissions at 302 nm, 

354 nm and 312 nm, respectively; while the secondary emissions were observed at 473 nm, 

494 nm and 485 nm, respectively. A 16 – 25-fold increase in fluorescence quantum yield 

was also observed. The red-shifted emissions {Ga3+ and In3+} occurred at 497 nm and 509 

nm, respectively {H2S1}; as well as 530 nm and 537 nm {H2S3} – with a 3 – 6-fold increase 

in fluorescence quantum yield. As in the case of the NNO imines, the dual emission was 

probably due to keto-enol tautomerism. 

The introduction of electron-withdrawing groups {Br, NO2} appeared to inhibit 

sensitivity towards group 13 ions (Fig. 4.56{a} – {c}); although H2S4 showed sensitivity 

towards the group 13 ions, a slight turn-on in the presence of Cd2+ ion was also observed 

(Fig. 4.56{a}). 

Although dual emission had been reported to be more advantageous, in comparison 

to single emission (Upadhyay and Kumar 2010; Jung et al., 2009), H2O1 {with a single 

emission} showed a more appreciable and distinctive response in the presence of Al3+ ion 

{Fig. 4.56[d]} – with a colour change observable to the eye. Al3+ emits maximally at 482 

nm {with ≈38-fold increase in fluorescence quantum yield}; while maximum emission in 

the presence of Ga3+ was at 487 nm {with ≈2-fold increase in fluorescence quantum yield} 

and In3+ at 501 nm {with ≈4-fold increase in fluorescence quantum yield}. Fluorescence 

titration of H2O1 with Al3+, Ga3+ and In3+ {Fig. 4.57} showed, generally, a non-linear curve 

fitting. The UV-Vis titration {Fig. 4.58} showed a gradual decrease in the n-π* transition 

at 341 nm with increase in volume of Al3+ {Fig. 4.58[a]}. ESI-MS {Fig. S87} showed a 

peak at m/z 492.2 {[H2O1 + Al3+ + NO3] Calc. 495.42} which suggested a 1:1 interaction 
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between H2O1 and Al3+, which was corroborated by Job’s plot {Fig. 4.59[a]}. The 

association constant, determined by fluorescence titration, of H2O1-Al3+ was 1.6 x 104 M-1 

while the LOD was 5.48 nM {R2 = 0.989} (Fig. 4.59{b}). 

A comparison of the NMR spectrum of H2O1 and H2O1-Al3+ {Fig. S88}, showed 

a loss of the phenolic proton {at ≈13 ppm}, change of the imine proton {at 9.00 ppm} from 

a singlet to a doublet and the appearance a new peak {around 10.25 ppm}, attributable to 

the formation of an iminium {=NH+-} group. These observation, suggested a migration of 

the -OH proton to the imine N. Attempts to show this interaction by crystal growth did not 

yield any crystal, however, this migration was observed in the crystal structure of Zn2+ ion 

{Fig. 4.11[b]}. Thus, while donor-acceptor N...H–O functionality resulted in a turn-off 

effect in H2O1, this same functionality gives rise to an ESIPT-inspired turn-on effect in the 

presence of Al3+ {Scheme 4.16}. Interference study {Fig. 4.59[c]} of H2O1-Al3+ {upon 

addition of equivalent amounts of solutions of other metal ions tested} revealed H2O1 to 

be a good sensor for Al3+. An investigation of the effect of water on Al3+ sensing by H2O1 

is presented in {Fig. 4.59[d]}. Our result revealed that, contrary to the observation made by 

Li et al. (2017), the introduction of water does not affect Al3+ sensing by H2O1. Attempts 

to use more than 10% water was not successful, as we could not achieve complete 

dissolution of the receptor at > 10% water. 
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Scheme 4.16: Donor-acceptor N...H–O effect on fluorescent “turn-off/on” of H2O1 and 

H2O1-Al3+. 
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Figure 4.55: Emission spectra of (a) H2S1 (b) H2S2 and (c) H2S3 in the presence of tested 

cations. 
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Figure 4.56: Emission spectra of (a) H2S4 (b) H2S5 (c) H2S6 and (d) H2O1 {Inset: colour 

change in the presence of Al3+} in the presence of tested cations. 

 

 

 



 

302 
 

 

 

400 500

0

50

100

150

200

0 2 4 6 8 10

0

50

100

150

200

250

E
m

is
si

o
n

 (
a
u

)

[Al3+] (uL)

 482 nm

E
m

is
si

o
n

 (
a
u

)

0 – 10 µL

(a)

Wavelength (nm)    
350 400 450 500 550

0

5

10

15

20

25

0 2 4 6 8 10

0

5

10

15

20

25

E
m

is
s
io

n
 (

a
u

)

[Ga3+] (uL)

 486 nm

E
m

is
si

o
n

 (
a

u
)

(c)

0 – 10 µL

Wavelength (nm)  

350 400 450 500 550

0

7

14

21

28

35

0 2 4 6 8 10

0

7

14

21

28

35

E
m

is
s
io

n
 (

a
u

)

[In3+] (uL)

 501 nm

E
m

is
si

o
n

 (
a

u
)

(c)

0 – 10 µL

Wavelength (nm)  
    

Figure 4.57: Fluorescence titration of H2O1 with (a) Al3+ (b) Ga3+ and (c) In3+ (Inset: 

Change in emission intensity at 482 nm, 487 nm and 501 nm, respectively) 
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Figure 4.58: UV-Vis titration of H2O1 with (a) Al3+ (b) Ga3+ and (c) In3+ ions 
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Figure 4.59: (a) Job’s plot of H2O1 with Al3+ (b) Determination of LOD of Al3+ by H2O1 

(c) Interference study of H2O1-Al3+ by other ions and (d) Emission spectra of H2O1 using 

9:1 MeOH/H2O (inset colour change under UV-lamp) in the presence of tested cations. 
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4.8.5 Sensing properties of the azo-imines (H2AI1 – H2AI3) 

 

The interaction of the pentadentate azo-imine receptors with metal ions {Ag+, Al3+, 

Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, K+, Li+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+} is presented in 

Fig. 4.60 and Fig. 4.61. Substitution of the S/O groups in the pentadentate 

{ONSNO/ONONO} imines with the azo function {N=N} did not appear to affect Al3+ ion 

sensitivity. In addition to Al3+, however, Cr3+ ion showed a turn-on effect. More so, the dual 

emission seen in analogous ONSNO receptors {H2S1 – H2S3} was not observed for the 

azo-imines. 

Methyl substitution gave similar sensing pattern {Fig. 4.60[c]} as the unsubstituted 

receptor {Fig. 4.60[a]}; while phenyl substitution produced a somewhat similar pattern 

{Fig. 4.60[b]}, Hg2+ ion also showed a turn-on effect {not seen in H2AI1 and H2AI3}. Al3+ 

sensing in H2AI1 and H2AI3 exhibited a shoulder at 375 nm and 402 nm, respectively; while 

the major peaks were observed at 452 nm and 466 nm, respectively. In both cases, a change 

in colour was observed under UV light {Fig. 4.60{a}[i]} and {Fig. 4.60{c}[i]}; while Cr3+ 

showed a faint colour change in H2AI1 a more intense colour is observed in H2AI3. 

Although Cu2+ ion showed low intensities, even in comparison to the receptors {Fig. 4.61}, 

a colourimetric effect was seen upon interaction of Cu2+ ion with H2AI1 {Fig. 4.60{a}[ii]} 

and H2AI3 {Fig. 4.60{c}[ii]}. 
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Figure 4.60: Emission spectra of (a) H2AI1, (b) H2AI2 and (c) H2AI3 in the presence of 

tested cations {Inset: (i) colour change in the presence of Al3+ under UV lamp and (ii) 

colourimetric detection of Cu2+}. 
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Figure 4.61: Emission intensities of the azo-imines and tested cations (upon interaction 

with respective receptors). 
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CHAPTER FIVE 

 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

 

5.1 Summary 

 

This study reports the preparation of four {4} 1,3-bis-imidazoles {BI1 – BI4}, three 

{3} 1,4-bis-imidazoles {BI5 – BI7}, nine {9} nitro-imidazoles {N1 – N9}, nine {9} 

imidazole amines {A1 – A9}, nine {9} NNO imidazole-imines {I1 – I9}, three {3} NNN 

imidazole-imines {IN2 – IN4}, three {3} cyclisation products {imidazo 

quinazoline/quinazolin-1-ium}, eight {8} S-/O-bridged pentadentate imines {H2S1 – 

H2O1}, and three {3} azo-bridged imines {H2AI1 – H2AI3}. Forty-three {43} metal 

complexes were also prepared. NMR, MS, IR, UV-Vis, thermal and micro (elemental) 

analyses gave good agreement with expected outcomes, while X-ray crystallography 

confirmed the structures {and geometry} of some of the compounds. 

The 1,2-bis-imidazole proved difficult to obtain {only 2,4,5-triphenyl-1H-imidazole 

was observed (Fig. S8)}; the preparation of the 1,4-bis-imidazoles was also challenging 

{with BI7 and BI6 obtained in 6 % and 38 % yields, respectively}, although BI5 was 

obtained in 88 % yield. The nitro-imidazole, imidazole amines as well as the tridentate 

NNO and NNN imines were obtained in good to excellent yield; the pentadentate {S-

bridged, O-bridged and diazo-bridged} imines generally were obtained in excellent yield. 

The S-/O-bridged bis-imines showed low quantum yields {desired for turn-on 

sensing} and although they fail to show ESIPT in the absence of analyte, this feature 

{ESIPT} proved useful upon analyte binding {especially in H2S1, H2S2, H2S3 and H2O1}. 

Analogues possessing EDG or with no ring substituent showed sensitivity towards Al3+, 

with the “hard” O-bridged H2O1 having the best selectivity. The Al3+ detection limit of 

H2O1 {5.48 nM} as well as its high fluorescence turn-on ratio {528-fold} and naked-eye 

visibility make it very attractive for Al3+ monitoring and detection. 

The Kramer’s d3 CrIII ion {in [CrO1(ONO2)]0.5H2O.0.2MeCN} did not show 

orbital contribution, while the Kramer’s d7 CoII ions {in [Co2S12]3H2O – 

[Co2O12]0.5H2O} showed significant contribution to orbital angular momentum – the A2g 
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{in CrIII} and T1g {in CoII} ground terms were partially responsible for this observation. 

The magnetic behaviours of the NiII complexes {[Ni2S22]4H2O and [NiS5(H2O)]} as well 

as the CuII complexes {[Cu3S12(OAc)2]2.75H2O, [Cu3S22(OAc)2]5.5H2O, 

[Cu2S22]2THF and [Cu2O12]1.5H2O} showed correlation with structural features like 

nuclearity {which affected the direction of D in the NiII complexes}, Cu···Cu, Cu-O-Cu 

bond angles etc. Elongation along the z-axis {with dx
2 – y2 ground state} of the six-coordinate 

CuII complexes was supported by esr. 

 

5.2 Conclusion 

Synthetic manipulations arising from systematic substituent variation showed 

benefit in the isolation and tuning of materials, based on imidazole and bis-phenol imine 

cores, with application in host-guest chemistry and magnetochemistry. 

 

5.3 Recommendations 

1. Imidazoles and Schiff bases (as well as their metal complexes) are known to exhibit 

biological potency – this property should be investigated 

2. The copper complexes of the imidazoles should be prepared and their activity in 

phenoxazinone synthase investigated 

3. Further attempts, possibly involving other methods of crystal growth, should be 

explored to establish the binding mode of H2O1 with Al3+. 

4. The interesting proton movement observed for the Zn(II) complex in Fig. 4.11{b} 

should be investigated in other families of the series. 

 

5.4 Contribution to knowledge 

 A series of bis-imidazoles, imidazole amines/imines and bis-phenol imine ligands 

have been added to library of materials with potential for analyte recognition. The use of 

multi-donor ligand architecture was shown to be beneficial in the detection of MIII ions 

{with Al3+ successfully discriminated from other competing MIII ions}. The low detection 

limit exhibited by I9 {for Zn2+} and H2O1 {for Al3+} makes these compounds useful 

candidate molecular recognition. More so, relationship between structure and magnetic 

behaviour was established. 
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Figure S1: nmr of BI1 
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Figure S2: nmr of BI2 
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Figure S3: nmr of BI3 
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Figure S4: nmr of BI4 
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Figure S5: nmr of BI5 
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Figure S6: nmr of BI6 
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Figure S7: nmr of BI7 
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Figure S8: Failed attempt at the preparation of the 1,2-series 

 

 

 



 

372 
 

 

 
 

 
 

 
Figure S9: 1H, 13C NMR and MS of N1 
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Figure S10: 1H, 13C NMR and MS of N2 
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Figure S11: 1H, 13C NMR and MS of N3 
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Figure S12: 1H, 13C NMR and MS of N4 
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Figure S13: 1H, 13C NMR and MS of N5 
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Figure S14: 1H, 13C NMR and MS of N6 
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Figure S15: 1H, 13C NMR and MS of N7 
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Figure S16: 1H, 13C NMR and MS of N8 

 



 

380 
 

 

 

 

 
Figure S17: 1H, 13C NMR and MS of N9 
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Figure S18: 1H, 13C NMR and MS of A1 
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Figure S19: 1H, 13C NMR and MS of A2 
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Figure S20: 1H, 13C NMR and MS of A3 
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Figure S21: 1H, 13C NMR and MS of A4 



 

385 
 

 

 

 

 
Figure S22: 1H, 13C NMR and MS of A5 
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Figure S23: 1H, 13C NMR and MS of A6 
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Figure S24: 1H, 13C NMR and MS of A7 
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Figure S25: 1H, 13C NMR and MS of A8 
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Figure S26: 1H, 13C NMR and MS of A9 
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Figure S27: 1H, 13C NMR and MS of I1 
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Figure S28: 1H, 13C NMR and MS of I2 
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Figure S29: 1H, 13C NMR and MS of I3 
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Figure S30: 1H, 13C NMR and MS of I4 
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Figure S31: 1H, 13C NMR and MS of I5 
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Figure S32: 1H, 13C NMR and MS of I6 
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Figure S33: 1H, 13C NMR and MS of I7 
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Figure S34: 1H, 13C NMR and MS of I8 
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Figure S35: 1H, 13C NMR and MS of I9 
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Figure S36: 1H and 13C NMR of H2S1 
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Figure S37: 1H and 13C NMR of H2S2 
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Figure S38: 1H and 13C NMR of H2S3 
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Figure S39: 1H and 13C NMR of H2S4 
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Figure S40: 1H and 13C NMR of H2S5 
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Figure S41: 1H NMR of H2S6 
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Figure S42: 1H of H2S7 
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Figure S43: 1H and 13C NMR of H2O1 
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Figure S44: 1H nmr of BI1 (dark red); BI2 (blue); BI3 (red) and BI4 (magenta) 

 

 
Figure S45: 1H nmr of BI5 (dark red); BI6 (blue) and BI7 (red) 
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Figure S46: 1H nmr of N1 (dark red); N2 (blue); N3 (red) and N4 (magenta) 

 

 
Figure S47: 1H nmr of A1 (dark red); A2 (blue); A3 (red) and A4 (magenta) 
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Figure S48: 1H nmr of A2 (dark red); A5 (blue) and A8 (red) 

 

 
Figure S49: 1H nmr of A3 (dark red); A6 (blue) and A9 (red) 
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Figure S50: 1H nmr of A4 (dark red) and A7 (blue) 

 

 
Figure S51: 1H nmr of I2 (dark red); I5 (blue) and I8 (red) 
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Figure S52: 1H nmr of I3 (dark red); I6 (blue) and I9 (red) 

 

 
Figure S53: 1H nmr of I4 (dark red) and I7 (blue) 
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Figure S54: 1H nmr of H2S1 (dark red), H2S2 (blue), H2S3 (red), H2S4 (magenta) and 

H2S5 (dark green) 

 

 
Figure S55: 1H nmr of H2S1 (dark red), H2S7 (blue) and H2O1 (red) 
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Figure S56: 1H nmr of A2 (dark red), I2 (blue) and M2 (red) 

 

 
 

Figure S57: Thermal stability of I2 
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Figure S58: Thermal stability of I3 

 

 
 

Figure S59: Thermal stability of I4 
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Figure S60: Thermal stability of I5 

 

 
 

Figure S61: Thermal stability of I6 
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Figure S62: Thermal stability of I7 

 

 
 

Figure S63: Thermal stability of I8 
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Figure S64: Thermal stability of I9 

 

 
 

Figure S65: Thermal stability of M1 
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Figure S66: Thermal stability of M3 

 

 
 

Figure S67: Thermal stability of M4 
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Figure S68: Thermal stability of M5 

 

 
 

Figure S69: Thermal stability of M6 
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Figure S70: Thermal stability of M7 

 

 
 

Figure S71: Thermal stability of M9 
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Figure S72: Thermal stability of [Co2S12]3H2O 

 

 

 
 

Figure S73: Thermal stability of [Co2S22]3.5H2O 
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Figure S74: Thermal stability of [Co2S32]2H2O 

 

 

 
 

Figure S75: Thermal stability of [Co2S42]1.5H2O 
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Figure S76: Thermal stability of [Co2S52] 

 

 

 
 

Figure S77: Thermal stability of [Co2S62]2H2O 
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Figure S78: Thermal stability of [Co2S72]6H2O 

 

 
 

Figure S79: Thermal stability of [Co2O12]0.5H2O 
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Figure S80: Thermal stability of [Cu3S12(OAc)2]2.75H2O 

 

 

 
 

Figure S81: Thermal stability of [Cu3S22(OAc)2]5.5H2O 
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Figure S82: Thermal stability of [Cu2S22]2THF 

 

 

 
 

Figure S83: Thermal stability of [Cu2S32]3H2O 
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Figure S84: Thermal stability of [Cu2O12]1.5H2O 

 

 

 
 

Figure S85: Thermal stability of [CrIIIO1(ONO2)]0.5H2O,0.2MeCN 
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Figure S86: ESI-MS for I9-Zn2+ in MeCN at 1 x 10-5 M 

 

 
 

Figure S87: ESI-MS for H2O1-Al3+ in MeOH at 1 x 10-5 M 
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Figure S88: 1H nmr spectra of H2O1 (dark red), H2O1-Al3+ (blue) in DMSO. 

 

 


