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ABSTRACT 

 

Overdispersion, often associated with count data is difficult to handle by a single 

parameter regression model such as the Poisson regression model. Previous attempts to 

modify the Poisson regression model with additional parameters did not take 

cognisance of the different levels of overdispersion because there might be no need for 

modification at-times. Modification done without any need affects the standard error 

leading to wrong conclusions. Therefore, this study was aimed at determining the 

threshold for modification in some count data models when the problem of 

overdispersion is unavoidable.  

 

Fuzzy 𝑐-partition was used to classify the degree of overdispersion severity into not 

severe, moderate, severe, and very severe. Membership function was constructed for 

each of the classes with its fuzzy dispersion percentage (𝑑) range: 0 for not severe with 

𝑑 ≤ 10, 
(4𝑑−40)

210
  for moderate with 10 < 𝑑 ≤ 40,  𝑑/70 for severe with 40 < 𝑑 ≤ 70 

and 1 for very severe with 𝑑 > 70. The universal set of the dispersion percentage,  

𝐷 = (
𝑣−𝑚

𝑚
) × 100%, where 𝑣 is the variance and  𝑚, the mean.  Four models: Poisson 

(PO), Negative Binomial (NB), Com-Poisson (CP), and Generalised Poisson (GP) 

were used to simulate the benchmark for modification. Different random sample sizes, 

including 𝑛 = 20  for small sample and 𝑛 = 5000 for large sample were used with 

mean (µ) = 0.01, 0.05, 1.00, 2.00 and variance (σ2) = 0.05, 0.50, 1.50, 2.50,  

respectively. The ratio of the residual deviance of PO (simplest model) to its degree of 

freedom was used to detect the presence of overdispersion in the count data. The 

averaging method was used to determine the threshold ( 𝐷̅). The models were 

validated with monthly road crashes data from the Federal Road Safety Corps in 36 

states and the Federal Capital Territory of Nigeria between 2014-2018 and the Akaike 

Information Criteria (AIC) was used for model selection.
   

The threshold 𝐷̅  for models PO, NB, CP and GP given that 𝑛 =  20, were 24.2, 69.4, 

34.8 and 32.6%; 26.6, 73.6, 26.5 and 27.1%; 23.1, 75.2, 25.1 and 37.1%; 30.4, 77.5, 

54.9 and 24.5%, respectively. The highest 𝐷̅, at different values of µ  and σ2 for PO, 

NB, CP and GP when 𝑛 =  20 were  30.4, 77.5, 54.9 and 37.1%, respectively. For n= 

5000,  𝐷̅  were 27.7, 74.9, 22.1 and 28.3%; 27.6, 74.5, 22.2 and 28.9%; 27.9, 38.2, 

22.2 and 29.2%; 28.2, 29.1, 22.2 and 28.3%, respectively. The highest 𝐷̅, at different 

values of µ  and σ2 for PO, NB, CP and GP when 𝑛 =  5000 were  28.2, 74.9, 22.2 

and 29.2%, respectively, indicating points for modifications. The ratio of the residual 

deviance of PO to its degree of freedom is 42.0 flagging very severe overdispersion 

(95.5%) of road crashes having membership function of 1. The AIC for PO, NB, CP 

and GP were 8826.7, 8657.6, 2211.0 and 2205.4, respectively. This implies that GP is 

the best model. 

The thresholds for modification of severity of overdispersion for Poisson, Negative 

Binomial, Com-Poisson, and Generalised Poisson models were determined. The 

determined thresholds could be used to minimise wrong conclusions arising from 

defective standard errors. 

 

Keywords: Generalised Poisson model, Fuzzy set theory, Severity of overdispersion,  

        overdispersion modification threshold   

Word count:  493 
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CHAPTER ONE 

INTRODUCTION 

1.1  Background to the study 

Count data are statistical data type in which the observations can only have non-

negative integer values and the integers are generated by counting rather than ranking. 

They are made up of discrete numbers defined by a large number of elements or 

objects that are divided into various classes or groups. Such as the number of people 

infected with the Coronavirus (Cov-19), the number of people exposed to Ebola, the 

number of patients admitted to the hospital, the number of road transport accidents, the 

number of people involved in motor accidents and the number of children born by a 

woman. Count data achieved here because the number of the events involved with 

counting and the number of occurrences can be counted. Poisson distribution is 

commonly used to model count data distribution (different from normal distribution 

data) and it is commonly used for rare events. A count variable refers to the individual 

piece of count data. Poisson and Negative Binomial Distributions are the common 

distributions often used. 

The Poisson regression model is a popular model for count data (Gschlobl 2013). It 

belongs to the class of Generalised Linear Model (GLM) because the error term is not 

normally distributed but Poisson distributed and also belongs to the Exponential class 

family. The mean of the model is assumed to be equal to its variance.  

 A popular assumption of Poisson distribution known as equi-dispersion is a 

phenomenon whereby the parameter of interest or location parameter is equal to its 

variance, that is, equality of mean and variance.  Although, in real life settings, 

variance may not be equal to mean this leads to violation of one of the assumptions of 

Poisson distribution. The dispersion may be under-dispersion or over-dispersion. 

Whenever Poisson distribution is applied to count data and dispersion occurs, it is a 

problem. Why?  This is because Poisson distribution has only one parameter and there 
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is a need to model the extra-variation, that is why Consul and Famoye (1992), Famoye 

(1993), Winkerman and Zimmermann (1994)  and Endo (2020), stated that Poisson 

distribution is too restrictive and inappropriate to handle dispersion, it is incapable of 

handling dispersion because it has only one parameter. 

In count data, whenever variance is less than mean there will be under dispersion, this 

may be encountered in real life situations but under dispersion is not common  as over-

dispersion.  Modeling under-dispersed data with a Poisson distribution will pose a 

problem and cause wrong estimation when under dispersed data are fitted with Poisson 

distribution. This makes the standard error to be over-estimated; which will lead to 

wrong conclusion about the predictors as not significant when indeed they are 

significant. Generalised Poisson among other models is commonly used in modeling 

under-dispersed data in the Poisson model. According to Consul (1989) "Generalized 

Poisson and Negative Binomial models are appropriate for modeling dispersion in 

count data”. 

 Overdispersion underestimates the standard error, thereby leading to the wrong 

conclusion and in the effect making the parameters of predictors significant when they 

are not. It makes the standard error small when it is large; a misleading and wrong 

conclusion is given.  Count data with many zeros are common in many applications 

(Bohning et al (1996), Rideout et al (1998), Agarwal (2002), Boanafede (2015). Apart 

from under dispersion and overdispersion, the problem of excessive zeros may occur in 

count data.  That is, occurrence of too many zeros, Gardner et al (1995), German 

(2007), Guikema and Coffeit (2008),  Lawless (2012), Gul Inan  (2017), which may 

lead to Zero  inflation. Whenever this occurs, standard error of the parameter is 

affected and the model will not be properly fitted. The model for excess zero consists 

of two generating processes; binary one that generates the structural zeros and the 

other which is the count from Poisson distribution (Lambert (1992), Lord et al (2005), 

Ver (2007), Lee (2012). 

Many factors contribute over dispersion in count data; below are some itemised factors 

responsible for the  overdispersion: 

➢ Variability in the population of interest 

➢ Omission of key or relevant predictors 

➢ Incorrect functional form 

➢ Outliers 
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The Poisson regression model is used to fit the data set and check if the violation of the 

assumption of the model exists, the ratio of residual deviance to its degree of freedom, 

if roughly equals one, is the evidence that  Poisson regression model is adequate for 

the model, if not, then the alternative model is used Vuong (1989), Stram (1994), 

Stram (1995), Lindsey (1999), Marchini (2005),  Richard (2007), Ismail (2007), Hinde 

(2008), Yang (2009),  Ismail, et al (2013), Yan (2015).  The question is, how can we 

detect overdispersion in count data? The rule of thumb is that when the ratio of 

residual deviance to its degrees of freedom roughly equals one, it means that 

dispersion does not exist and vice versa. Dispersion in count data is a problem to count 

data whenever it is modeled with Poisson regression model, The model will not  be  

properly  fitted, that is why, to account for the extra variation in count data, a model 

that can account for or allow for overdispersion is used as earlier stated by Winkerman 

(1994) and Nwankwo (2015).  In the light of this, to account for overdispersion in 

count data, a model which has more than one parameter is used to take care of the 

extra variability.  

One of the ways to handle dispersion is the introduction of additional parameter(s). 

Distributions that allow for dispersion are introduced. The commonly used distribution 

to address overdispersion is the Negative Binomial Distribution while Generalised 

Poisson Distribution handles both under and over dispersion. Nwankwo (2015) stated 

that “Negative Binomial regression addresses the issue of over-dispersion by including 

a dispersion parameter to accommodate the unobserved heterogeneity in the count 

data”. Negative Binomial distribution was developed by Green (1920), the Probability 

Distribution has two parameters which the dispersion parameter will cater for the extra 

variability in the count data Lord et al (2005), Famoye (2006), Greene (2008), Lee 

(2012). Apart from Negative Binomial Regression in handling the problem of 

overdispersion, Generalised Poisson regression also is used to address the problem of 

overdispersion. The distribution was developed by Nelder and Wedderburn (1972). It 

is a distribution with two parameters which is the dispersion parameter used to model 

the excess variability, Mccullargh (1989), Neeloon (2007). 

Generalised Poisson distribution is one of the distributions used to model count data to 

address both the problem of underdispersion and overdispersion in count data Famoye 

et al (1993), Consul et al (1992), Ismail (2013). It is a generalisation of Poisson 

distribution. The model is applicable to handle the problem of overdispersion because 
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of the extra parameter, unlike Poisson model with the single parameter. The model is a 

good competitor to Negative Binomial when modeling count data. The model has the 

advantage in that it can be used to model the count data without knowing the 

distribution of the count data.          

Com-Poisson is a convolution of three distributions used to capture the problem of 

dispersion when it occurs with count data Shmuelli (2005), Kimberly (2010), Kimberly 

(2011). The distribution has an extra parameter, unlike Poisson distribution that has a 

single parameter. The extra parameter or dispersion parameter is used to capture 

variation or the excess variation but this distribution is not capable when excess zero is 

the cause of the problem. There was a dearth of research on this distribution Shmuelli 

(2005), Lord et al (2008, 2010). 

When modeling excess zero in count data model, the Poisson regression and the 

common models that accommodate overdispersion may not be appropriate. A zero-

inflated model will be applicable. Zero-inflation occurs when there are too many of 

zeros and in excess. For instance, to know the number of people that have been jailed 

in their lifetime, the majority of the respondents might have not been jailed before. In 

this case, a large number of zero which represent people who have not experienced 

such may be recorded. Even the study of the pandemic Corona Virus Disease (Covid-

19) will have zero counts of the disease because a large number of Nigerians at the 

moment are not infected. 

Whenever there is a scenario of too many zero counts, common distributions such  as  

Negative Binomial and Generalised Poisson regression would not be adequate to 

model the count, in this case.   It is needful to use a model such as Zero-Inflated 

Poisson (ZIP) model, Zero-Inflated Generalised Poisson model (ZIGP), Zero-Inflated 

Negative Binomial (ZINB) model, Zero-Truncated Model and Hurdle Models and a 

host of others to fit. If the conventional models are used they may lead to 

underestimation or overestimation of regression coefficients which result in invalid 

conclusions. Moreover, the standard error will be underestimated, and the null 

hypothesis will be rejected when it should have been accepted.  When zeros occur in 

data sets, researchers or analysts deal with it as missing data, delete or impute it,  but at 

times the zeros have meaning, importance, and should be considered as such  

Lindsey(1999). 
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Zero Inflated Poisson model is useful for modeling count data when there are excess 

zeros than expected; that is, when there are excess zero counts.  It was developed by 

Lambert (1992) when he used the Poisson model for defects in manufacturing. It was 

discovered that the Poisson model provided a poor fit because of excess occurrence of 

zero count in the defect during manufacturing.  Lambert (1992) stated that “Poisson 

regression is not appropriate for modeling count with excess zero`` and suggested that 

when modeling count data when there are excess zero, ZIP model will be better. Zero-

inflated Poisson model is a mixture of both the zeros generating process, one for zero 

generation and the other governed the Poisson distribution which generates the count 

which may be zero. Apart from ZIP, Rideout et al (1996) suggested that other zero 

models could also be used because ZIP often provides a poor fit for handling excess 

zero. Likewise Famoye (1993) stated that “it is a motivation for developing ZIPG 

which is regarded as a better model than ZIP”. 

Zero-inflated Generalised Poisson (ZIPG) model is an alternative model to ZIP when 

there is evidence of overdispersion when dealing with excess zeros. The model is 

capable of handling count data when such problem arises. It is a rich family of ZIP and 

data generalisation of ZIP. The ZIP is sometimes incapable of capturing overdispersion 

and that gives room for modification of the ZIP for the ZIPG model. This model is 

capable of handling both underdispersion and overdispersion with count data when it is 

as a result of excess zeros. This model is good when the dependence of the count data 

is affected by some predictors. It is also an alternative model when ZINB fails and 

could not fit the data sets appropriately. According to Famoye (2006), "there are some 

cases in which ZIP may be inadequate and ZINB regression model may fail to 

converge". 

Negative Binomial Regression model is an alternative model for handling 

overdispersion in count data,   however, when there are too many zero counts than 

expected, negative binomial regression may not be adequate to handle the problem. 

Hence, there will be a need to use the zero inflated model for the data. Famoye (2006) 

stated that "overdispersion has the tendency to increase the proportion of zeros" and 

whenever there are too many zeros relative to the Poisson assumption, the negative 

binomial regression, and generalised Poisson regression tend to improve the fit of the 

data, Hinde (2008) also opined that ZINB regression is also good for modeling count 

data as an alternative. 
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ZINB is used to model count data where excess zeros and overdispersion occur. It is a 

combination of Negative Binomial and Logit distributions. The presence of excess 

zeros and the problem of overdispersion often occur with count data. Zero-Inflated 

Negative Binomial Regression was introduced to handle count data with excess zero 

because excess zero masquerades as over-dispersion (Greene (1994), Agarwal (2000) 

Hinde (1998). Due to the restrictive property of the Poisson model, several 

modifications and parameterisation have been done, developed, and suggested, the 

frequent among them is Negative Binomial regression. The model is only useful when 

there is a problem of overdispersion but not capable when there is excess zero in count 

data.  

Zero-Truncated model consists of a response variable with non-zero. The value of the 

response variable can never be zero. The common scenario is the duration of stay by a 

patient in the hospital. The count starts immediately after admission, and hence, the 

response will not be zero. This model is useful when the count can never be zero which 

is suitable in real life settings. 

Hurdle models for excess zeros are flexible and preferred to zero inflated models. They  

consist of two parts, one specifies the generating process for the counts in zero and the 

other process for positive counts. Both Hurdle and zero inflated models are used for 

modeling observation with the occurrence of zeros or excess zeros but the hurdle 

model is different in the way the data are analyzed and interpreted. A hurdle model, 

according to Cameron and Trivedi (2008) is a modified count model in which the two 

processes generating the zeros and positive are constrained to be the same. 

Fuzzy  set introduced  by  Zadeh  L.A in 1965  is  an  extension  of  classic  set.  In a  

classic set, an  element can either  belong  to  a set or not  but in  fuzzy  set,  an element  

may  belong  or  may  not  belong  or  partially  belong  to  the  set  depending  on the  

membership function.  Fuzzy set introduced  membership function  to  show the  

degree to which an element  belongs to a set. The membership value lies in  the  

interval of 0  and  1. Fuzzy  set  is  useful when  dealing  with  concept  that  has  no 

sharp or  precise  boundaries. Fuzzy set has been applied to different fields of study; 

Bezdek (1981) applied fuzzy set  into  pattern  recognition, Yang (1993) used  fuzzy  

to  propose  and  determine threshold  for  lower  and  upper  bound  of   the  parameter 

of two  regressions,  Javidi  and  Mansoury (2017)  applied  fuzzy  set  for  selection  
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and  classification of gene  into redundant  and  non-redundant..  In  the  view of this, 

fuzzy  set  will be  relevant  to this  study,  in order  to  classify overdispersion into  

different  degrees of severity and determine the  threshold of severity. 

1.2 Statement of the Problem 

Studies have shown that different models have been proposed and several parameter- 

isations have been done to solve the problem of overdispersion associated with count, 

but discovered   many a time that the problem of overdispersion is inherent in the 

count data. Count  models are modified and  alternative models are adopted  at the 

slightest difference between mean and variance; even when the difference or the 

variation is negligible. This problem can be solved by re-structuring the model yet 

researchers still modify this model, but the question is: Is it a must to modify Poisson 

model when mean and variance are not equal? If yes, at what point should the 

modification be done?  At what threshold is overdispersion severe? The  threshold at  

which overdispersion is severe is  ambiguous and fuizzy  in nature.   Overdisperson  is 

a  concept with  unsharp boundaries , a piece of  information that the boundary is not 

well clear-cut  but this research would address this problem.     

1.3  Justification  

A lot of works on overdispersion have been done and different modified Poisson 

regression models have been developed without specifying the threshold for 

modification when overdispersion is severe. There is little or no contribution on when 

overdispersion is severe in the literature. Many modified the model without 

considering when taking the severity of overdispersion into account. In the research, 

Fuzzy set approach will be used to classify the different levels of severity of 

overdispersion. 

Why Fuzzy Set Approach? 

A fuzzy set theory is a powerful tool when classification is needed in a case where 

sharp criteria for determining membership function are not clear. The membership 

function is a key ingredient in a fuzzy set; it shows the degree of belongingness of  

each element to the universal set. Overdispersion is vague and appears blurry. "Fuzzy 
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concepts" proposes that "somewhat vague terms" can be operated with, by assigning 

numbers to graduations of applicability. 

 According to Pawlus et al (2012), vagueness and lack of information can be 

successfully modeled by the Fuzzy method. Fuzzy set theory is used because it models 

specific types of uncertainty under specific types of circumstances (Zimmermann 

2001), hence it can be used in categorising the different degrees of overdispersion. The 

basis of every fuzzy model is the membership function (Bezdek, 2014). 

Fuzzy sets theory has been extensively used to relax or generalise classical methods 

from a dichotomous to a gradual characteristic fuzzy set, the characteristic function 

allows various degrees of membership for the elements of a given set (Zimmermann 

2001). 

1.4 Motivation for the Study 

Many researchers have proposed different models to handle the problem of dispersion 

in count data. However, of these models, there is still a dearth of information about 

when dispersion is a serious cause of concern. Some modified at 10% while some 

modified at 75% Lambert (1992). The point and percentage at which researchers 

modify their models are of interest in this study. Is it necessary to always modify the 

models when there is dispersion? If yes, at what level or percentage is the modification 

necessary? 

1.5  Aim and Objectives 

This study aims to determine a threshold for modification of some count models 

(Poisson, Negative Binomial, Conway, and Generalised Poisson models) when the 

problem of overdispersion is inherent.  

The specific objectives are: 

i. To develop a method using fuzzy set to categorise the different levels of 

overdispersion. 

ii. To determine at what point is there need to modify a model (Poisson, Negative 

Binomial Conway, and Generalised Poisson models) when the problem of 

overdispersion is inherent. 

iii. To investigate the effect of the identified threshold on life study.   
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1.6 Significance of the Study 

This research will contribute to knowledge when there is a problem of overdispersion 

and at what point and threshold it is needful to modify Poisson, Negative  Binomial, 

ComPoisson, and Generalised Model when considering count data. The research made 

use of secondary data collected or extracted from the yearly publication of Federal 

Road Safety Corps Nigeria, from the year 2014 to 2018. Five variables were used to 

model the count to know if those variables contributed to the study and their usefulness 

for further studies. 

1.7 Organisation of the Dissertation Presented 

This dissertation consists of five chapters. Chapter one discusses the general 

introduction of count data, the problem of overdispersion associated with count data, 

different models for modeling the count data, motivation of the study, problem 

statement, objectives of the study, and the significance of the study. 

Chapter two is the literature review on count data and overdispersion models. 

Theoretical Framework of the models with the conceptual discourse of the study with 

application to life study. 

Chapter three deals with the research methodology and design. Chapter four presents 

the data and analysis with its interpretation of the results. Chapter five discusses the 

summary of the findings, conclusions and makes recommendations, and suggests 

further studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0  Chapter Overview 

In many real-life settings, count data exhibit overdispersion. Poisson regression is a 

choice model for count data that can only handle problems with a single parameter. 

Poisson regression model, though a common model with count data, fails to model the 

data appropriately because it is restricted, inappropriate, and limited in handling 

overdispersion in count data. It is the simplest model but many a time not adequate to 

model the data. A Poisson distribution has a single parameter which is the parameter of 

the distribution which is the mean, there is a commonly known assumption that mean 

equals the variance i.e equidispersion. 

This distribution is limited, restricted, and inappropriate to capture overdispersion with 

the count data Winkermann (1994), Greene (1994), Famoye (2004), Nwankwo (2015), 

Lambert (1992), Kimberly et al (2010). The presence of overdispersion in count data 

poses a problem in count data because it will lead to a poor fit, invalid, and incorrect 

conclusion of the result. It is important to discuss briefly here different distributions 

that have been used to model count data to capture excess variation. First, the simplest 

model will be discussed and the alternative models which are better to accommodate 

over-dispersion will later be discussed. One of the usual assumptions of Poisson 

distribution known as equi-dispersion which is equality of mean and its variance; count 

data often  manifest overdispersion, when this occurs the variance is greater than the 

mean. When overdispersion occurs in the that  data,  Poisson model, Poisson 

regression will be inappropriate for modeling count data but appropriate only when 

there is no problem of dispersion. When the data do not exhibit dispersion, Poisson 

model can be used to fit the data. The presence of dispersion in count data results in a 

lack of fit in Poisson regression.  
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The Poisson regression model is a common model for count data (Gsclobi 2013). 

Poisson regression is a simple method to model count data but only when the 

assumption still holds. This model will not be adequate to model the count data when 

overdispersion exists with the count data (Winkermman (2003), Famoye (1993), 

Famoye (2004), Famoye (2006), Greene (1994), Nwankwo (2005), Greene (2008) 

Wang et al (1997). The single parameter of Poisson is limited and not capable when 

overdispersion and excess zero are inherent in count data, it will fail to model the 

extra-variation in case it appears. To properly model the count data with 

overdispersion, an extra  parameter  is introduced  to the  model.  Different models 

have been used to capture the problem of overdispresion and several parameterizations 

have been done to solve the problem of overdispersion and excess zero.  

Poisson regression has been applied to different fields of study such as transportation, 

insurance to study the number of claims by the clients and the severity of the claims, 

number of admitted and discharged patients, and   number of students admitted to a 

higher institution to mention but a few (Kimberly et al (2010, 2011), Ozmen (2007), 

Rensham (1994).  

With real-life data, using the Poisson regression model, there is usually evidence of 

overdispersion in count data. The single parameter of Poisson regression makes it 

inappropriate to handle the extra variation in the model. Winkelmann (1994, 2008) 

stated that "Poisson distribution is too restrictive and inappropriate to handle 

dispersion,  it is incapable to handle dispersion because it has only one parameter". 

Likewise, Nwankwo (2015) also stated that "Negative Binomial regression addresses 

the issue of overdispersion by including a dispersion parameter to accommodate the 

unobserved heterogeneity in the count data". 

 Apart from Negative Binomial Distribution, other catalogs of distributions have been 

developed to tackle or solve the problem of overdispersion in count data. According to 

Consul (1989) "Generalized Poisson and Negative Binomial are appropriate for 

modeling dispersion in count data". Generalized Poisson is also appropriate to fit the 

model of count data when over-dispersion arises. The usefulness of Generalized 

Poisson is that it can be used to fit the model even when the probability function of the 

count variable, that the response variable (Y), is unknown, as far as there is equality of 

the Poisson mean and variance. The occurrence of over-dispersion in count data leads 
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to underestimation of the standard errors and overstates the significance of Poisson 

regression parameters.  

There are other mixtures of Poisson regression models that have been suggested to  

address the problem of over-dispersion in count data. The model served as alternative 

to handle dispersion in case it arises. Such models include  Com-Poisson, Poisson-

Lindley distribution, Poisson-inverse Gaussian (PIG), Poisson-lognormal (PLN)  

Srinivas (2008).  Many researchers have proposed different models to overcome the 

problem of overdispersion and application of the model to real life situations to show 

the efficiency and importance of the proposed, developed, and modified models.  

The approach for handling overdispersion is different when the problem of excess zero 

is encountered. At this point, the Zero-inflated model is opted for instead of the 

conventional Poisson model. An extensive discussion of what different researchers 

have done to address the problem of overdispersion in count data will be considered in 

the next section. 

2.1 Terminologies  

Dispersion: This is the greater variability presented in the data sets than expected in 

the given model. The dispersion may be underdispersion or overdispersion. 

Equidispersion: It is the equality of the mean and variance. It  is  one of the popular 

assumptions of Poisson distribution. 

Underdispersion: This phenomenon occurs  when variance is less than mean. 

Overdispersion: It occurs  when the variance is greater than the mean. 

Dispersion parameter: It is the extra or additional parameter introduced in the 

distribution to capture the extra -variation in count data when the Poisson model fails 

to properly fit the model.  

Excess zero: It is the presence of too many occurrences of zero than expected in count 

data. 

Hurdle model: It is a model which consists of two parts, one account for zero counts 

and the other accounts for the distribution of the non-zero. 
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Link function:  It  is a function that allows the incorporation  of explanatory variables 

in a model.  

Threshold: it is a value that serves as a benchmark or yardstick. 

A fuzzy set is a set that consists of elements that can belong, partially belong or totally 

belong to the set. 

Membership function: It is a function that shows the degrees of closeness of elements 

to the sets. It is defined as where the element of set D is mapped to 

value between 0 and 1. 

2.2 Theoretical Framework 

 Poisson Regression Model 

The probability density function is given as   

!
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e
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−

== ,    ...,3 ,2 ,1 ,0=y         0     (2.1) 

Mean =  = )/( YXE            (2.2) 

Variance  = = )/( YXVar           (2.3) 

== )/( )/( YXVarYXE        (2.4)  

Where iy  is the count variable and 𝜃 is the parameter of interest which is also equal to 

its variance(𝜎2).  

log(𝜃) = 𝑙𝑜𝑔𝐸(𝑌/𝑋) =  𝛼 + 𝑋ʹ𝛽       (2.5) 

where SX '  are independent variables, 𝛼 𝜀 𝑅 𝑎𝑛𝑑 𝛽 𝜀 𝑅. The mean is modeled as log-

linear function of the observed variables,  that is, 𝑙𝑜𝑔(𝜃) =  𝑙𝑜𝑔𝐸(𝑌/𝑋) = 𝛼 +

𝑋ʹ𝛽 and the link function, 𝜃 = 𝑒𝑥𝑝(𝑋ʹ𝛽). Poisson regression belongs to the class of 

exponential family and generalised linear model. 

Poisson Model Assumptions 

The following are the underlying assumptions of Poisson regression model; 

]1.0[)( →Ds
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(1) The response variable is non-zero integer. 

(2) It has a single parameter. 

(3) The  parameter of interest (µ) is the mean. 

(4) Equi-dispersion; mean equal its variance. 

(5) The observations are independent  

2.3 Parameter Estimation of Poisson Regression Model 

In Statistics, statistical inference is carried out to estimate the parameter of the 

population because the characteristic of the population parameter is constant and 

unknown. The estimate of sample would be used to infer to the characteristics of the 

population. 

2.4 Maximum Likelihood Estimation of Poisson Regression Model 

In the Poisson model, many methods are used for the estimation of the parameter of 

the model but in this study, the maximum likelihood will only be discussed. It is the 

method of estimation used in Statistics for estimating a parameter of interest. It is done 

by maximizing the likelihood function of the parameter of the model. It is easy to 

obtain the log-likelihood function given as 

                                                                                      (2.6)   

   

Let 𝑌1. . , 𝑌𝑛  be independent random variables from a population with the probability 

density function ),.../( 1 nyf  , the likelihood function is defined by 

 ),.../... ,()/( 11 nn yyLyL  =      (2.7)  
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nyf 
  where yi is  the sample 

 (2.8) 

  

 Let 𝑌𝑖 , 𝑖 = 1, . . 𝑛1, be independent random variables distributed as Poisson with the 

Probability density function as  given  in   (2.1);   
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The parameter   is defined in terms of n ,...1  and the covariates  xi1,…xin  via the 

link function. Taking x0i =1, the log-likelihood is therefore given as   

           

 
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The maximum likelihood estimator solution by taking m = 0,…k,                                   

                                                         (2.12) 

Solution to (2.12) can be obtained numerically by the Newton- Raphson 

2.5 Com-Poisson Regression Model 

 Conway et al (1962) developed the model called Com-Poisson which is also known as 

Conway which was named after Conway. The Com-Poisson is a generalization of 

Poisson distribution by the introduction of extra or additional parameters into the 

Poisson model to capture both under and overdispersion in count data in case the 

Poisson model is not adequate. It belongs to the exponential family. It is the 

convolution of three distributions namely- Poisson, geometric, and Bernoulli 

distributions. Geometric distribution as a special case and Bernoulli distribution as a 

limit case. This distribution was used to proffer a solution to the problem of the 

queuing system when Poisson distribution could not tackle the problem as a result of 

the extra variation. 

2.6 Probability Density Function 

Given  a Com-Poisson distribution the Probability mass function is given as 

 where 

           (2.13)                              

)( 1

1



=

= −=



p

u
iuu xn

i

iim

m

yx
l 




),()!(
),,()(

vZx
vxfxXP

v




 === 



=

=
0 )!(

),(
J

v

j

j
vZ






 
 

16 

X is the random variable, the function ),( vZ 

 

 serves as a normalization constant. 

Hence the 
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The parameter 𝑣 is the additional parameter while 𝜆 is the parameter of the Poisson 

distribution. It is discovered here that mean and variance are not equal. In order to 

modify Poisson model, another parameter was introduced into Poisson distribution 

through convolution of the aforementioned distributions, so that the extra parameter 

will model the extra-variation. And when the parameter (𝑣) equal 1, the Com-Poisson 

becomes Poisson distribution, when 𝑣 tends to infinity it becomes a Bernoulli 

distribution, and Geometric distribution when 𝑣 = 0. There was no or little research on 

the distribution until when it was revived by Shmueli in 2005 (Shmueli 2005). 

Recently, many researchers have explored the distribution to model count data, used to 

capture under and overdispersion in count data, yet, the model has not fully been 

explored and the distribution is limited when excess zero is encountered and the 

threshold for the need for modification was not specified. 

2.7  Maximum Likelihood Estimation of Com-Poisson Regression Model 

Likewise, the maximum estimation can also be done for Com-Poisson regression as it 

is done for the Poisson model when considering the estimation of the parameter of the 

model. Let 𝑌𝑖, 𝑖 = 1, … 𝑛,   be independent random variables distributed as Com-

Poisson regression model with the Probability density function given below 

                        

The log- likelihood  for the observation  (Y= yi =1,..ni) can be written as  

                                  (2.15) 

Under the constraint of v ≥ 0 the estimate of the maximum likelihood can be obtained 

by directly maximizing (2.14). 

 

),()!(
),,()(

vZx
vxfxXP

v




 ===

   − − = 
= 

i i 

n 

i 
i i i v Z y v y L ) , ( log log log log 

1 
  



 
 

17 

2.8  Negative Binomial Regression Model 

Different modifications have been done for the Poisson model to accommodate 

overdispersion in count data. The Negative Binomial Regression model is commonly 

used to model count data in case count data suggests overdispersion (Nwankwo 

(2005), Consul et al (1989), Green (1998), Lord et al (2005). Negative Binomial 

Distribution was developed by Greenwood (1920). This model is used to address 

overdispersion because it is a distribution with extra parameters, unlike Poisson model 

which has a single parameter. Here, the modification from Poisson to Negative 

Binomial Model is considered. 

Let 𝑌 be a random variable distributed as Poisson distribution with the Probability 

Density Function  

 (2.16)                                                      0           3...., 2, 1, 0,y ,
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(2.18)                                                                                       )/( == YXVarVariance

 

(2.19)                                                                                        )/()/( == YXVarYXE

 

where  yi  is  the count and   is the parameter of interest which is also  equal  to  its 

variance for incorporation of the covariates given by  

with independent variables,   α ε R   and   β ε R. The   mean is modeled as   log-linear  

function of the observed variables i.e   and the link  

function, . Unobserved latent heterogeneity can be incorporated into the  

conditional mean and restructure the functional form such as 
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follows Gamma distribution with mean 1 and variance =  𝑐 with Probability 

Density Function             
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The conditional Poisson regression is  
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Thus, the Negative Binomial regression with Probability Density Function is given as 
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By modifying equation (2.16), replace ,by w i ii   it is seen from (2.20) that an 

additional parameter which  is  has been introduced into Poisson model in order to 

modify the model  to have a model which will accommodate overdispersion. Where 

The mean is  

 iiYE =)(                  (2.25) 

and the variance is   

)1()1()( 1

iiii cYVar  +=+= −
              (2.25) 

and  

c=−1                 (2.26) 

c denotes the dispersion parameter equation (2.22) referred to Negative binomial 

regression (2) by Cameron (1986). Both Negative Binomial    Regression 1 and   2 was 
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done by reparamazation of Poisson model, in-order to produce NB-1 another 

parameterizationcan be done by letting  

 1'−= c               (2.27) 

to have Negative Binomial Regression 1 with 

iiYE =)(               (2.28) 

and the variance is  

)1()( cYVar ii +=               (2.29) 

for carrying out statistical test for Negative Binomial regression sometimes it is  
 

difficult to choose a better model of the Negative binomial regression.  Mostly, 

scholars encountered selection problem when using Negative binomial regression 

model to fit count data. This arises because the problem of selection between Negative 

binomial regression model 1 and Negative binomial regression model 2.  The 

functional form of Negative binomial regression model is done in which it is nested 

was introduced by Greene (2008) such as selection can easily be done when carrying 

out the statistical test. This functional form developed by Greene (2008) known as 

Negative binomial regression model – 𝑃(𝑁𝐵 − 𝑃), by letting  

                (2.30) 

The men is 

iiYE =)(                (2.31) 

and the variance is  
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iii cYVar                (2.32) 

where 𝑐 is the dispersion parameter and P is the functional parameter, when 𝑃 = 1 it is 

Negative binomial regression -2 and when 𝑃 = 2 it is Negative binomial regression-2. 

Maximum likelihood method is employed for the parameter estimation.  
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2.9  Maximum Likelihood Estimation of Negative Binomial Regression Model 

Let 𝑌𝑖 , 𝑖 = 1, … 𝑛, be independent random variables distributed as Negative Binomial 

Regression Model with the Probability density function given  in (2.22) 
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The log- likelihood  for the observation  (Yi = yi = 1,..ni) can be written as 
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the maximum likelihood estimates ),ˆ(  may be obtained by maximazing ),ˆ( l  

with respect to   and   Thus; 
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2.10   Generalised Poisson Regression Model 

Apart from Negative binomial regression model for handling overdispersion in count 

data,  Generalised Poisson Model is also used to model count data for both  

underdispersion and overdispersion. Oftentimes, Negative Binomial Regression model 

may not converge when used to fit count data and the source is not as a result of excess 

zero. According to Consul (1989)``the commonly used distribution to address 

overdispersion is the Negative Binomial Distribution while Generalized Poisson 

Distribution handles both under and overdispersion.``  

The Probability mass function of Generalised Poisson Distribution is given as 
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where 0   and max(-1,
4

−
)< 1 . 

The mean  where 

denotes the dispersion factor and   dispersion parameter. This distribution is 

often used to model count data whenever there is problem of dispersion whether it is 

underdispersion or overdispersion. Different parameterizations also have been done for 

Generalised Poisson Regression model namely Generalised Poisson Regression model 

1(GP1) and Generalised Poisson Regression model 2 (GP2), Generalised Poisson 

Regression model 1 (GP1) can be developed by letting in (2.34), 

Generalised Poisson regression with mean  

When   the model reduces to Poisson regression model when it is  the 

model can accommodate underdispersion while  the model  can accommodate 

overdispersion. 

 Another form of parameterization is also done for GP1 by letting    and  

  in (2.34) with mean and variance  while 

c is the dispersion parameter. Generalised Poisson regression model 2(GP2) is 

produced by doing another parameterization by and 

in (2.34) with mean  and variance . Both Generalised 

Poisson regression model 1(GP1) and Generalised Poisson regression model 2 (GP2) 

are not nested and selection between the two models is difficult like the case of 

Negative binomial regression model 1 and 2.   

Another parameterization is also done which is  known as Generalised Poisson 

regression model-P (GP-P) by letting  and  in 

equation (2.34), a functional form of Generalised Poisson regression model is 

produced known as Generalised Poisson regression model-P (GP-P) with the mean 

 and variance where c is the dispersion parameter 

and P is the functional form. When   Generalised Poisson regression model-
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P(GP-P) is reduced to  Poisson regression model , when 0c   the model allows for 

underdispersion and overdispersion when 0c  

Moreover, when P=1. Generalised Poisson regression model-P(GP-P) is reduced to 

Generalised Poisson regression model 1(GP1), and Generalised Poisson regression 

model 1(GP2) when P=2. Both Generalised Poisson regression model GP1 and GP2 

are not nested but GP-P parametrically nests both model so that statistical test can be 

done and tested against the alternative model. These models are limited and cannot 

model the count data when there is problem of excess zero. There is a need to consider 

those models which can accommodate excess zero with count data. 

2.11 Maximum Likelihood Estimation of Generalised Poisson Regression  

Model     

 Let consider Yi, i =1,..n1, be independent random variables distributed as Generalised    

Poisson Regression Model with the Probability density function given  in (2.34) ; 
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The log-likelihood  for the observation  (Y=yi=1,…ni) can be written as 
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2.12 Zero-Inflated Model (ZI Model) 

They are many different types of zero inflated models because different models can 

handle different types of overdispersion as a result of excess zero. The models include 

Zero-inflated Generalised Poisson, Zero-inflated Negative Binomial, Zero- Truncated 

Model. 

2.13 Zero-Inflated Poisson Model (ZIP MODEL) 

Zero-inflated Poisson was developed by Lambert (1992) when modeling for the defect  
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in manufacturing. It was discovered that the Poisson model provided a poor fit because 

of the excess occurrence of zero count in the data used to model defects during 

manufacturing, when  Modeling count data with too many occurrences of zero, zero-

inflated Poisson model will be better. Apart from ZIP, Rideout et al (1995) suggested 

that other models could be used because ZIP often provides a poor fit for handling 

excess zero, when it was used to fit the data there was evidence of overdispersion with 

the count data, this motivated Famoye (2006) to develop Zero-Inflated Generalised  

Poisson model ZIP is obtained by mixing a distribution degenerated at zero with the 

Poisson distribution which accommodates explanatory variables in both the zero 

process and the Poisson distribution. The Probability mass function of Zero-inflated 

Poisson model regression is  
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Where 10  i  and 0i  mean given as  and Variance, 

. Zero-inflated Poisson model reduces to Poisson 

regression model when . To incorporate covariate both log link and logit link 

can be used as the link function.  

2.14 Zero-Inflated Generalised Poisson Model (ZIPG) 

It is an alternative model to ZIP when there is still evidence of overdispersion while 

dealing with excess zeros. The model is capable of handling count data when the 

problem arises. It is a rich family of ZI models. It is a generalization of ZIP; ZIP is 

sometimes incapable of capturing overdispersion that gives room for modification of 

the ZIP for ZIPG. This model is capable of handling both underdispersion and 

overdispersion with count data when it is a result of excess zero. 

This model is good when the dependence of the count data is affected by some 

predictors. It is also an alternative and good competitor to Zero-Inflated Negative 

Binomial Model, whenever ZINB could not fit the data appropriately. According to 

Famoye (2006)," some cases where ZIP model was not inadequate and Zero-Inflated 

Negative Binomial Model may fail to converge as a result ZIPG will be suitable for 

this purpose". The Pdf  of  ZIGP Is given as  
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where yi = 0,1,2,….  and ),,( iyf   are the Pdf of Generalised Poisson Distribution. 

 

2.15 Zero-Inflated Negative Binomial Model (ZINB) 

Negative Binomial Regression is an alternative model for handling overdispersion in 

count data however, whenever there are too many zeros than expected in count data 

Negative Binomial Regression may not be adequate to handle the problem. ZINB was 

introduced to handle count data with excess zero because excess zero masquerades as 

over-dispersion Greene (1994).  

Several modifications have been proposed due to the restrictive property of the Poisson 

model, the most frequent among them is ZINB. ZIP is useful in modeling count data 

when there are excess zeros than expected i.e when there are excess zero counts but 

sometimes it may not fit the count data with excess zero very well. ZINB is used to 

model count data where excess zeros and overdispersion occur. It is a combination of 

Negative Binomial and Logit distribution. The presence of excess zeros and the 

problem of overdispersion often occur with count data. The Pdf  of  ZIGP Is given as  
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(2.40) 

where P Is the proportion of structure zero, is the probability of success and r is the 

dispersion  parameter 

2.16 Zero-Truncated Model  

Zero-Truncated model consists of the response variable with non-zero. The value of 

the response variable can never be zero. The common scenario is the duration of stay 

by a patient in the hospital the count started immediately after admission here the 

response will not be zero. This model is useful when the count can never be zero. The 

Pdf  of  ZIGP Is given as  
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2.17 Hurdle Models for Excess Zeros 

Hurdle models for modeling zero count are flexible and preferred to zero-inflated 

models. They consist of two parts; one specifies the generating process for the counts 

in zero and the other specifies process for positive counts. Zero-inflated and hurdle 

models of count data with extra zeros for example are used when there is a problem of 

excess zero. The hurdle model is a modified model for observation with occurrences of 

excess zero count, both hurdle models and zero-inflated models are used for this 

purpose but hurdle commonly used when there are excess sampling zeros. 
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where the numerator   of represent the probability of crossing the hurdle. 

2.18  Literature Review on Count Data Models 

Winkelmann and Zimmermann (1994) noted that the restriction imposed on the 

Poisson model because of the assumption of the mean-variance relationship limited the 

Poisson model. The work of King (1989) was extended by the introduction of extra 

parameter k into the model to have a wide class of generalized event count (GECk) 

which accommodates both over and underdispersion. This model was applied to 

German data on fertility, divorce, and mobility. The new model was equally applied to 

the data sets used by Winkelmann (2004) et al.  Therefore, the use of General GECK 

was suggested instead of Poisson regression to model count data. Model is limited in 

sense that it failed to consider overdispersion when is of serious concern. 

Lambert (1992) Extended the work of Heibron (1989); noted Poisson model and the 

existing models failed to model count data with too much of zero, therefore, proposed 

Zero-Inflated Poisson (ZIP) model to account for excess zero counts. In the work, ZIP 

regression with an application to defects in manufacture fitted the data sets with 

Poisson model that there was evidence of excess zero in the data, 75%  of ‘zero’ were 

recorded among the data sets,  the ZIP according to the Lambert (1992) could 
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accommodate zero counts and preferred  to  Poisson, negative binomial, Generalised 

Poisson e.t.c. 

Consul and Famoye (1992) modified the Generalised Poisson model developed by 

Consul et al (1973) to model the count data because the model still fails to 

accommodate some levels of overdispersion, especially when the case of excess zero 

comes in. However,  many researchers suggested that  the model is good for modeling 

both under and overdispersion without knowing the probability function of the 

response, it has the advantage of fitting the model without knowing the probability 

function of the response, as far as the mean is equal to the variance of the  Poisson 

model. 

Greene (1994) proposed Zero inflated Negative Binomial Regression (ZINB). Several 

modifications of both the Poisson model and Negative binomial distribution for 

modeling the count data were presented. The problem of overdispersion can be solved 

when Negative binomial regression is used. ZINB was proposed when the existing 

models could not handle the problem of too many zero counts, out of 1319 sample, 

1060 zero occurred in data sets of number of consumers that reported the credit card 

agency, 10 The new model was applied to study consumer credit behaviour. Test to 

differentiate between overdispersion and excess zero was also presented. The 

maximum likelihood method was used for parameters estimation, Vuong's statistic was 

used for the statistical inference. 

Cameron and Trivedi (1996) pointed out that the assumption of equidispersion may not 

hold most of the times in real life settings. When the real life data are used, the 

assumption may fail. The research presented different functional forms of the Negative 

Binomial regression model. The difference between the forms of Negative binomial 

regression was considered but did not suggest the parametric test to choose between 

the two variants of the model. Two different functional forms of Negative binomial 

were developed which were labeled Negative Binomial one (NB1) and Negative 

Binomial two (NB2). The model was applied to health insurance consultation to doctor 

between the periods of two weeks, to know if health insurance lncrease the frequency 

of utilizing the heatlh . It was discovered the data sets were overdispersed;  the sample 

mean was 0.302 and the sample variance was 0.637.  The conducted tests revealed that 
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both models were better than the Poisson model but could not provide a viable 

statistical test to select between the kinds of the Negative binomial. 

Rideout et al (1998) discussed and examined various models that can accommodate 

excess zeros in count data. Different count models were used to examine Horticultural 

study. The conventional models like Poisson, Negative Binomial, Generalised Poisson 

usually fail to account for excess zero in count data and commented that it is better to 

use Zero-Inflated models to handle the problem. In the study, it was discovered that 

both Poisson and Zero-inflated Poisson (ZIP) provided a poor fit, and eventually 

modeled the data sets with Zero-Inflated Negative Binomial (ZINB). ZINB was found 

better to account for the problem of excess zeros. The maximum likelihood method 

was used for parameter estimation and the score test was used for the Statistical 

inference. ZINB was suggested  for the problem of excess zero  in count data, it is 

better to model the count with ZINB,  which was also supported by Lambert (1992) 

but Famoye (2006) said that many a time ZINB fail to capture this problem of excess 

zero as a result proposed a competitive model to ZINB. 

Lindsey (1999) presented a contrary view of detecting overdispersion in count data. 

Assumptions of overdispersion were made about the count data without considering 

the evidence of present overdispersion in the count data. In studying how should 

overdispersion be modeled?  The rule of thumb is that the ratio of the residual deviance 

to the degree of freedom should be equal to one for the presence of overdispersion in 

the count data. The study suggested and proposed that deviance should be twice the 

degree of freedom should be considered, because sometimes Poisson model may 

model the data set appropriately. However, no suggestion or recommendation is made 

on when overdispersion is severed or not.   

Famoye (2004) applied Generalised Poisson regression (GPR) model to life study of 

accident data of Alabama department of Public safety records. The model was used to 

assess the relationship between the occurrence of road crashes and some predictors. 

There was a case of overdispersion when the sample mean and sample variance were 

examined; the estimate was 0.76 and 1.33 respectively. GPR performed better than the 

Poisson model and it is a good competitor to other models that accommodate 

overdispersion in count data.  Deviance statistic was used to account for the presence 

of overdispersion; Akaike information criterion was used to measure the adequacy of 
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the model. GPR reduces to the Poisson model when the dispersion parameter 

converges to zero.  However, this model may not be effective when too many zeros 

counts are encountered. More so, the threshold for modification when overdispersion 

was a serious cause of concern was not addressed. No contribution on the classes of 

overdispersion, whether mild, moderate, severe or not severe was addressed.  

Shmuelli et al (2005) revived and explored Com-Poisson model. It is a two-parameter 

model, a convolution of three distributions: Poisson, Bernoulli, and Geometric 

distributions. The additional parameter is added to the distribution to model both under 

and overdispersion in count data. The application of the model and its usefulness to 

count data was discussed. Different three methods were used for parameter estimation 

simple weighted least squares, maximum likelihood method, and Bayesian approach 

method. The model was used to account for overdispersion which is usually associated 

with count data. Two examples of life studies were applied to validate the usefulness 

of the model. Both Poisson and Com-Poisson were used to model the count data. 

Poisson model was used to fit the retail of clothing; sample  mean and sample variance 

were 3.56 and 11.31which indicates overdispersion.  This model has not been fully 

explored and a comprehensive account of the statistical probabilities property remains 

a gap yet to be filled in the research. This model is limited in such that it is not viable 

to accommodate too frequent zero counts. Therefore, the literature on Com-Poisson is 

very scarce and the application is rarely come across in real life settings. Moreover, no 

point and threshold for classification of severity of overdispersion were discussed.       

Famoye (2006) proposed Zero inflated Generalised Poisson (ZIPG) to model count 

data with excess zero. In the work zero-inflated Generalised Poisson regression model 

with application to domestic violence data, discovered that the conventional models 

could not model the count with a large number of zeros and Zero-inflated model 

proposed by Lambert (1992) was not adequate to model the data appropriately, hence 

for the need to propose ZIPG. The Maximum Likelihood method was used for 

parameter estimation. A score test is used to examine the adequacy of the model. The 

life study was modeled with ZIP, ZINB, and ZIPG but discovered that there was still 

high percentages proportion of zero with ZIP. Both ZINB and ZIPG were able to 

model the data sets appropriately but the iterative technique of ZINB did not converge 

which was also observed by Lambert (1992) when it was used to model the data sets. 
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Greene (2008) applied Negative Binomial Parameter (NBP) to model a large sample of 

German households study. The two variants of the Negative Binomial developed by 

Cameron & Trivedi (1986) posed problem. The problem of choosing the better model 

between the two models and carrying out appropriate statistical test and perform the 

parametric test for the non-nested form of the model between the models. Therefore, 

developed NBP an encompassing model that nested both Negative Binomial 1 (NB1) 

and Negative Binomial 11 (NB2), which enable the possibility of choosing the better 

and appropriate model between the two. But, the model fails to address the problem 

when overdispersion is of serious concern and the threshold for modification when 

severity is inherent in the count data. 

Richards (2008) stated that in an Ecological study, overdispersion is often encountered 

which usually leads to the wrong conclusion. To overcome the problem; two 

approaches were examined. The first method employed compound distribution and the 

other method was the quasi approach which was to model the problem of 

overdispersion. Simulation studies were also used to demonstrate the two approaches. 

Both QAIC and AIC were used for model selection. In the interest for further studies 

simulation is suggested on choosing the better model.  

Kimberly et al (2010) proposed a modified COM-Poisson regression model to address 

the problem of dispersion in count data. Poisson model was not adequate and efficient 

when used to model Airfreight breakage data.  Both life and simulation studies were 

employed for the study. The simulation study was used to test for the accuracy 

estimation process. The model, its estimation and inference was discussed, and the 

relevance of the dispersion parameter was tested. Maximum likelihood method was 

used for parameter estimation. The model was compared with the other existing 

models for the count data, concluded that the new model is preferred to handle count 

data when there is a problem of overdispersion.  One of the limitations of this model is 

that when encountered with excess zero the model may not be a good model for the 

data. An alternative model that can accommodate excess zero should be used.  

Kimberly et al (2011) highlighted and stressed the point of difficulty often encountered 

in modeling count data with Poisson whenever the data are overdispersed. The 

limitation is usually experienced with the Poisson model as a result of equi-dispersion, 

that is, mean equal its variance which is very rare in a real life settings. COM-Poisson 
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model is a flexible model with extra parameter capable to model count data whenever 

there is a problem of dispersion with the count data. Also, according to Shmueli 

(2005), Kimberly (2010), this model is a convolution of the three distributions which 

enable it to be more efficient to handle the problem of overdispersion. An extensive 

and comprehensive discussion of the different modified models and the application 

was later compared with existing models. The model was applied to life insurance. The 

limitation associated with this model is that on some occasions the predictive power 

may not portray the consistency property of the model and may not be adequate and 

appropriate to model when the scenario of excess zero arises in the study of count data. 

Lee et al (2012) in the study" Analysis of overdispersed count data: Application to the 

Human papillomavirus infection in men study demonstrated that the Poisson model is 

not vibrant to model count data with overdispersion and excess zero count data. The 

Poisson, Negative binomial, Zero-inflated model, and Zero Negative Binomial model 

were used to model the data. In the study, discovered Poisson, Negative binomial and 

Zero-inflated Poisson models were not adequate to model the data but Zero-inflated 

Negative Binomial model was the only model adequate for the model which was 

equally observed by Famoye (2006). This study could not account for the problem of 

different classes of overdispersion   

Alfonso et al (2013) provided another approach to handling overdispersion in count 

data when the Poisson model fails to account for overdispersion in count data. The 

standard error of the model should be considered to rectify the problem although the 

parameter estimates may be unbiased yet the parameter is under-estimated which can 

lead to a wrong and invalid conclusion of the model. The simulation method was used 

to study whether the increase of the sample sizes will lead to the reduction of the 

standard error or not. By increasing the sample sizes led to decrease of the estimate of 

standard error. Pearson's chi-square was used for testing of the dispersion parameter 

and non-parametric bootstrapped for simulation of the sample sizes but the method is 

limited in the sense that the simulation study could not give any account to the 

threshold of classification of overdispersion when it is severe. 

Gsclobl (2013) presented Bayesian approach to count model estimation. Both 

Generalised and Negative Binomial regression to the model count data. Negative 

Binomial regression and the Generalized Poisson model could not account for the 
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problem of excess zero. The data were modeled by Zero-inflated Generalised Poisson 

model to model the count data. Bayesian method was used for parameter estimation. 

There was no contribution on the count model when overdispersion is severe.  

Ismail et al (2013) extended the work of Consul and Famoye (1992).  Generalised 

Poisson 1(GP 1), Generalised Poisson 2(GP 2) and GP-P were developed, better 

models than Poisson  and also GP-P, a model that nests parametrically both GP 1 and 

GP 2 regression model which makes it easier to carry out statistical tests and able to 

choose better model between the models. Oftentimes, in the application of Generalised 

Poisson, studies have shown that researchers did not know which model should fit the 

data set, when it comes to the use of Generalised Poisson. Exclusive work was carried 

out to demonstrate the appropriate model to fit the data sets. This study was limited in 

the sense that the threshold for the severity of overdispersion was not addressed. 

Harrison (2014) signified that overdispersion may occur as a result of missing some 

important covariates, excess zero, and failure to account for such phenomenon can 

make parameter estimate biased which could lead to invalid or wrong conclusions. 

Observation level of random effects was considered to deal with the problem of 

overdispersion exhibits in count data. In the study, each of the observations coupled 

with its random effects was used to study the case of extra variation with Poisson. 

Studies have shown that observation level random effect has been a very good method 

in solving the problem of overdispersion but the method is very scarce, unpopular, and 

scanty research on it. Furthermore, the method is not capable to handle a problem of 

excess zero when it is used to model count with excess zeros. 

Payne (2015) attempted to fill the gap by providing a comprehensive method and 

approach to  solve the problem of overdispersion in count data. Different approaches 

were considered namely - the unadjusted Poisson regression, Deviance – scale adjusted 

Poisson regression, Pearson scale adjusted Poisson regression, Negative Binomial 

Regression, and two generalized linear mixed models (GLMM) were applied to model 

the count data. From the study, it was concluded that Negative binomial regression is 

preferred and appropriate to model after fitted first with Poisson model. In their views, 

different models that accommodate overdispersion should be considered for modeling 

the count data. The maximum likelihood method was used for the parameter 

estimation. Both simulation study and life study were considered.  
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Nwankwo and Godwin (2015) affirmed that the Negative binomial regression model 

addresses overdispersion in count data and most often Poisson regression provides a 

poor fit when used to model count data any time overdispersion is inherent in the data. 

In the study" Statistical model of Road traffic crashes data in Anambra State, Nigeria: 

A Poisson Regression Approach.   Three models were used to fit the data, namely, 

Poisson, Generalised Poisson, and Negative Binomial regression model. In their 

findings, they discovered that both the Poisson model and Generalised Poisson could 

not adequately handle the overdispersion presented in the data. Negative Binomial 

regression was able to model the data appropriately; AIC method was used for model 

selection and to show that the Negative Binomial regression is suitable for the Road 

crashes accident. However, this study did not reveal when the overdispersion is mild or 

severe and the point for modification was not provided.   

Alaba et al (2017) used both Poisson and Negative Binomial to investigate the fertility 

pattern among women of childbearing age in Nigeria. Negative Binomial was used for 

modeling the data to account for overdispersion but the different classes of 

overdispersion were not discussed and there was no contribution on when 

overdispersion is of a serious cause of concern.  

Endo (2020) studied the outbreak of Coronavirus 2019 (COVID-19) in the context of 

overdispersion both Poisson and Negative Binomial were used to model the data. The 

spread of the pandemic was considered and the data sets were overdispersed. Cases of 

both local and imported cases of infection of COVID-19 were collected from the 

World Health Organization (WHO). The samples used was made of quarantine and 

screened cases for infection of the virus. The count data was first fitted with the 

Poisson model to detect the presence of overdispersion before fitting with the 

alternative model which in this case is Negative Binomial. The Bayesian information 

method was used for the model selection. However, the level of overdispersion was not 

discussed whether the overdispersion was mild or severe also the threshold for 

classification was not mentioned.     

Durmus and Guneri (2020) applied both the Poisson and GPR model to the number of 

strikes between 1984 and 2017 to account for the problem of overdispersion in case it 

occurs in count data. The problem with the common assumption of equality with 

Poisson regression usually cripples the Poisson model whenever overdispersion is 
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inherent in the data. This problem of overdispersion may occur as a result of the 

inclusion of variables that are not associated with the study, and the dependence 

among the observation of the study. To remedy the problem, a distribution with an 

extra parameter that is suitable to capture the extra-variation and to rectify the malady 

would be used. Further, stated that GPR could be considered as an alternative model 

whenever this problem arises because this model has an extra parameter that can model 

the extra variation. Overdispersion was accounted for with GPR. The model adequacy 

was measured, opined that both AIC and BIC should be used for model selection when 

comparing model selection. Pearson statistics was used to detect the presence of the 

overdispersion, examined the ratio of the residual deviance to the degree of freedom of 

the Poisson model to indicate if the data is overdispersed or not. They discovered the 

data were overdispersed and eventually model fitted with GPR.    

2.19 Literature Review on Threshold Methods. 

Hansen (2000) developed a statistical point of view to threshold estimation. Despite 

the fact of the wide application of the study of threshold there was still limitation and 

underdeveloped use of the statistical application in estimation of the threshold. Least 

squares method was used in Time series analysis to propose an asymptotic method for 

constructing of intervals of the least threshold parameter of the interest. A 

recommendation was made on the use of simulation and bootstrap to determine 

threshold while considering the application of a threshold in study. This study also 

showed that a threshold is needed when there is a complexity in statistics to determine 

a criterion in a statistical study.     

Hector and Gauthier (2003) presented and reviewed the extensive application of 

threshold in research studies. Several accounts and reviews of the application of 

threshold were discussed, relative to modeling, estimation, inference, and application 

to real life settings.  The view which was in line with Hansen (2000) that estimation of 

threshold is still a gap yet to be filled in the study or research.   

Theiwall et al (2005) considered three methods to propose a threshold for the impact 

of citation. The methods are arithmetic mean, geometric mean, and percentiles. The 

precision of these statistics was used to suggest which of the statistics can be used to 

propose a threshold for the study. The averaging method was recommended 

concerning the study of the impact of the citation. The method was also suggested and 



 
 

34 

can be applied to other different fields of study. Poisson and Negative binomial models 

were also used to model the count data where Negative binomial was preferred to the 

Poisson model.   

Mironov (2006) gave a comprehensive discussion on choosing threshold, explained 

how training set could be used to determine the threshold, described the method of 

rank statistic to determine threshold in the study of genomes in Bioinformatics. The 

rank statistic was employed to propose the threshold for the Site selection. In selecting 

the threshold, a value may be predefined to use as the yardstick to compare the 

threshold. Some random values were generated and their probabilities were calculated 

and this was compared to the probability of the value specified. Then both minimum 

and maximum values were determined.      

Javidi and Mansoury (2017) applied Fuzzy set and Negative method to study gene 

selection of count data of Ant colony. Negative binomial is a flexible model that can 

model the count data when overdispersion is present in the data. A fuzzy set was also 

used for the classification of the gene into classes of which gene is redundant and 

which is not redundant. However, the classification of different classes of 

overdispersion when it is severe or not was not considered. 

Bihn et al (2017) used Geometric mean as a tool to determine the threshold and criteria 

in studying the quality of Microbial water. Comprehensive outlines provided to 

determine the threshold for the quality of the water. In order to determine the threshold 

or criteria, a standard criterion or pre-defined values which will serve as the 

benchmark should exist and also a minimum and maximum threshold should be 

provided. In the study, twenty samples were used to carry out the test to propose the 

threshold for the quality of the water.  

Marcos (2020) compared three common methods used in the estimation of threshold in 

ecotoxicology. The methods are maximum likelihood, Bayesian, and Piecewise 

regression. Root mean square error was used to estimate the accuracy of the method, 

and the ratio was used to show the relative improvement of the methodology and 

design. Among the three methods, Bayesian method was the preferred method for the 

study. 
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Yoonseok (2020) considered statistical inference to threshold regression estimation. 

Tests were carried out for the estimation of the regression parameter with restriction of 

the parameter of interest. Rank statistics were used to determine the threshold value of 

the selected observation. The simulation study was carried to establish the threshold 

values. The study was carried to study the threshold applied to the tipping point. In the 

study of the disposition of relocation of the white population whenever the threshold 

values of the minority threshold exceed the specified threshold. Through the study, it 

was revealed that most of the white re-located every ten decades when the threshold of 

the minority exceed the specified threshold.    

Yuan et al (2015) on the account of using an averaging method to propose threshold, 

employed Averaging method and the Operative Characteristic curve (AUC) to the 

study of detection of breast cancer in medical research. These two methods were used 

to propose the threshold for detecting breast cancer and the risk factor for it. 

Comparing the two novel methods common in medical research discovered averaging 

method was more effective for proposing threshold in the medical research. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1  Poisson Regression Model  

Poisson model is a choice model for count data. Oftentimes, count data exhibit 

overdispersion whenever dealing with coun data. The model is modified when there 

may not be need for modification. This research studies the threshold for modification 

for some count data models which are Poisson, Negative Binomial, Com-Poisson, and 

Generalised Poisson model. Fuzzy set method and simulation study was used to 

classify the level of severity of overdispersion into four classes – not severe, 

moderately, severe, and very severe, and averaging method was used to determine the 

threshold. In this chapter, each of the methods will be discussed.   

Considering the Poisson model,  

y!

 
)(

y−

==
e

yYP
,         y = 0,1,2, 3,…      0                              (3.1)    

      

                                                                                                                   )/( == YXEMean        (3.2) 

   

(3.3)                                                                             )/( == YXVarVariance  

(3.4)                                                                            )/()/( == YXVarYXE  

The maximum likelihood method is used for the parameter estimation, usually, the log 

likelihood function is obtained by taking the log-likelihood function thus

  

 

)!ln()ln()/(ln yyyf −−=                                                 (3.5)               

 Such that  
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                                                                             )( == XEMean   (3.7)    

                                                               )( == XEVariance     (3.8)                             

Given 

      0|| =−= mv                                                                         (3.9) 

                

          Such that when 

                        dispersion no is  there          0=                                  (3.10) 

                   rsion     underdispe is  there          0                                (3.11) 

                 sion      overdisper is  there          0                                    (3.12) 

where m is the mean and v is the variance, λ is the degree of severity of overdispersion.  

3.2  Fuzzy Set Approach  

 A fuzzy set is used whenever classification lacks boundaries and criteria; unlike a 

classical set that element can either belong or not belong to a set. In a fuzzy set, an 

element can either belong or partially or not belong to a set with the use of 

membership function which shows the degree of belonging of the element to the set. 

Consider S, the fuzzy subset of D, which is characterised by the membership function 

of d in the     interval [0 , 1]     
is )(  where]1.0[:)( DDD ss  → the degree to which 𝐷 

belongs to 𝑆. 

In general,  

 )( , S DDS =         (3.13)                                                                                
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3.3 Fuzzy-C-Partition 

 Fuzzy-c- Partition 

The fuzzy-c-Partition method is used when dealing with heterogeneous members that 

need to be classified into homogenous groups or classes where there will be a 

homogenous member within the classes.  In the research, this method is used. 

Consider universal set of heterogeneous members called D such that 

 ,..., 21 ddD =                   (3.14)                                                                                

Using Fuzzy –c- partition for the classification 

  1,2,...ni  1,2,...c,j where,     ),......,..( === jnjnjnji ddddD     

                    (3.15) 

 That is c- classes with their respective elements. Each of the classes has a membership 

function that shows the degree of belonging to the subset given as  

 









=

cin not  is   0

cin partially  is  1)(0

cin  totally is  1

)(

Dif

if DD

D if

D ss 
   

          (3.16)                                                               

On Overdispersion 

Now, consider overdispersion, using Fuzzy c- partition for different overdispersion 

levels which are classified as not severe, moderately severe , severe, and very severe, 

that is universal set of  D  into different classes overdispersion.   

Given universal set D such as  

  1000          where,..., 21 = ddddD n                                (3.17)                                                          

Here, 𝐷 𝑖s  the  universal set of overdispersion percentages and d is the element in each 

class of the set. Therefore, 𝐷 was calculated as  
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                                                                                                   (3.18) 

 categorised as  

  wd  w,dr r,d p , = pdD         (3.19)                                             

where p, r, w are the predefined thresholds for the study given as p=10%, r=40%, and 

w=70%. A membership function is a basic tool for a fuzzy set. It shows the degree of 

closeness of belongingness to a particular subset of the universal set. Therefore, we 

constructed a membership function that suits our study which is given below; 
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   where  λ  is the set of severity that is, not severe, moderately severe, severe and very severe.    

    Considered Bezdek (1981) and Yang (1993) for the classification of overdispersion into  

   four distinct classes with their respective membership function. 
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            (3.21) 

        3.4  Fuzzy Class Poisson Regression 

Given a mixture of distribution,  
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Yang (1993) considered a Fuzzy Class Maximum Likelihood (FCML) such that if θ  is 

replaced by fuzzy class variable λd and gd(y/λd) by in place  of f(y/θ) then, fuzzy class 

regression function is  
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i
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i
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id dwyfdG ln)/(ln),,(
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                    (3.23)    

           where 

                                                                                                     (3.24) 

 The derivaties of Gr,y (λ,d,β) with respect to β 

                                                    (3.25) 

where 

                                                                                      (3.26) 

                                                   (3.27)                                       

              

 Thus, we have 

                                                       (3.28) 

Estimating the parameters by maximizing the function   

      Gr,y (λ,d,β) 
                                                                                                     (3.29) 
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          Gr,y (λ,d,β) 
                                                               (3.31) 

Taking the derivatives of (3.31) with respect to D and λd respectively we have   

                                                                                           (3.32) 

                          

                                                                (3.33) 

 

     i=1,2,…,n         d=1,2,…,D 

3.5  Negative Binomial Distribution 

The probability mass function of a Negative Binomial Distribution is                

                                                                                                                                                          

      (3.34)

  

where r is the number  of successes, k is the number of failures and p is the probability 

of success   
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3.6  Fuzzy Class Negative Binomial Regression 

Also, for Negative Binomial replace θ by fuzzy class variable λd and gd(y/λd) in place 

of  ),,( iy yh such that the fuzzy class regression function is  
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The mean is  

                                                                           (3.39) 

And 

)/)1()(  ddyarV +=  

                                                                                        (3.40) 

The variance is quadratic in mean. The Negative binomial distribution can also be 

modeled by the dispersion parameter (θ) such as 

                                                  /1=                                                               (3.41)   

When  θ greater than one, when  α→0 , the Negative Binomial distribution is reduced 

to standard Poisson distribution with parameter λ. Parameter estimation  of  β and λ is 

done by maximizing the log likelihood function 
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3.7 Com-Poisson Regression Model 

The Com-Poisson is defined to be distributed with Probability Mass Function (PMF) 

given by  

                                                                               (3.43) 
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where the normalizing constant Z,                                                                              

                                                                                            (3.44)  

where v is the extra parameter, as v=0, Com-Poisson becomes geometric distribution 

when v =1, Com-Poisson becomes Poisson distribution and when v= ∞ it becomes 

Bernoulli trial. 
                             

 

                                                                                                      (3.45) 
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3.8 Fuzzy Class Com-Poisson Regression Model

 

Also, Com-Poisson replace θ by fuzzy class variable λd and gd(y/λd) in place  of    

),,( vyf iy  such that the fuzzy class regression function is      
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   where 
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Mean and Variance are given as 

                                                                                       (3.49)
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Summing over n, the log likelihood is given by 
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3.9        Generalised Poisson Model 

A random variable Y is said to have  Generalised  Poisson  distribution with 

parameters α >0, θ>0 denoted by G(α, θ) if the probability function is given as 
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          Mean and Variance of the distribution given as 

             and                                       (3.54) 

3.10      Fuzzy Class Generalised Poisson Regression Model 

Likewise, replace α by fuzzy class variable λd and gd(y/λd)  in place  ),/( iyYP =  

such that the fuzzy class regression function is      
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            and                                     (3.57) 

 

3.11      Monte Carlo Design of Experiment of the Study 

Data Generation Process 

Four different models namely Poisson, Negative Binomial, Com-Poisson and 

Generalised Poisson models were used for the simulation study. Different data sets 

were generated for overdispersion to study the case of severity of overdispersion in 

count data. Membership functions were also constructed for classifying the dispersion 

on the basis of severity, where average threshold is 

                                                                                              (3.58)   

where i=1,2,3,...n                                                  

Di is the different dispersion percentages and n is the total number of observations.     

Data were simulated using Monte Carlo design of experiment to establish the presence 

of  overdispersion in  the count data. For each of model; varying  means and variances 

were generated and dispersion percentages were computed from 3.61. Some 

predefined thresholds  were selected such that 

    (p=10%, r= 40%, w =70%)                                                                         (3.59)                                                                            

D = (not severe, moderately severe, severe, very severe)                                (3.60)                                                                                                         

Element of the Universal set D is computed by  

                                                                                                 (3.61) 
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Simulated for n=20, 30, 50, 100, 200, 300, 500, 1000, 5000 
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CHAPTER FOUR 

      RESULTS AND DISCUSSION 

4.0 Chapter   Overview 

This chapter presents the result of the simulation study and the application to life 

study. The simulation study will first be discussed before the life study. A simulation 

study was carried out to determine the threshold for the point of modification for each 

of the models namely: Poisson (PO), Negative Binomial (NB), Com-Poisson (CP), and 

Generalised Poisson model (GP). The averaging method was used to determine the 

threshold. The results are presented in  table 4.1-4.24, where the membership function 

is in parentheses.  

4.1 Fuzzy Set Classification of Different Levels of Overdispersion. 

Table 4.1-4.5 show the results for the Fuzzy c- partition simulation for Poisson model; 

Table 4.1 shows when n=20, the minimum and maximum values for not severe, 

moderately severe, severe and very severe respectively, for  𝜇 = 0.01 𝑎𝑛𝑑  𝜎2 =

 0.05, ,𝐷={1.48(0), 8.90(0), 12.95(0.056), 39.02(0.553), 98.84(1)}. For 𝜇 =

0.05 𝑎𝑛𝑑 𝜎2  =  0.1, 𝐷={0.31(0), 9.52(0), 10.27(0.005), 39.92(0.976), 40.36(0.577), 

65.65(0.937)}.For 𝜇 = 0.5 𝑎𝑛𝑑 𝜎2  =  0.55  𝐷={0,(9.52(0), 0.11(0.002),34.54(0.467), 

53.86(0.769)}, For 𝜇 = 1 𝜎2  =  1.5, 𝐷={(2.23(0), 9.31(0), 11.92(0.037), 

33.94(0.457),42.42(0.606),68.35(0.976)}For 𝜇 = 2 𝑎𝑛𝑑 𝜎2  = {0.22(0),9.30(0), 2.5,

𝐷 =13.52(0.067),9.92(0.976),42.90(0.613),56.11(0.802), 117.11(1)}. For 𝜇 =

10 𝜎2  =  10.5, 𝐷={5.56(0), 10.16(0.003), 39.63(0.564), 40.41(0.577), 53.68(0.767), 

83.03(1), 116(1).} For 𝜇 = 50 𝜎2  =  55, 𝐷={1.72(0), 9.52(0), 10.14(0.003), 

33.97(0.457), 44.46(0.664), 63.79(0.911)},  For 𝜇 = 100 𝑎𝑛𝑑 𝜎2  =  105,

𝐷={1.13(0), 9.81(0), 10.77(0.015), 36.10(0.497), 69.72(0.996), 96.99(1)} respectively.  
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Table 4.1.  Fuzzy set classification of different levels of overdispersion of  (PO)    

        n=20,30. 

               n=20 

  

NOTE:  The  value  in  the  bracket  is  the membership  value.   

 

  Not 

Severe 

 Moderate-

ly severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 1.48 

(0) 

8.90 

(0) 

12.95 

(0.056) 

39.02 

(0.553) 

- - 98.84 

(1) 

- 

0.05 0.1 0.31 

(0) 

9.52 

(0) 

10.27 

(0.005) 

39.92 

(0.570) 

40.36 

(0.577) 

65.65 

(0.937) 

- - 

0.5 0.55 0 9.52 

(0) 

10.11 

(0.002) 

34.54 

(0.467) 

53.86 

(0.769) 

- - - 

1 1.5 2.23 

(0) 

9.31 

(0) 

11.92 

(0.037) 

33.94 

(0.457) 

42.42 

(0.606) 

68.35 

(0.976) 

- - 

2 2.5 0.22 

(0) 

9.30 

(0) 

13.52 

(0.067) 

39.92 

(0.570) 

42.90 

(0.613) 

56.11 

(0.802) 

117.11 

(1) 

- 

10 10.5 5.56 

(0) 

- 10.16 

(0.003) 

39.63 

(0.564) 

40.41 

(0.577) 

53.68 

(0.767) 

83.03 

(1) 

116.34 

(1) 

50 55 1.72 

(0) 

9.52 

(0) 

10.14 

(0.003) 

33.97 

(0.457) 

44.46 

(0.664) 

63.79 

(0.911) 

- - 

100 105 1.13 

(0) 

9.81 

(0) 

10.77 

(0.015) 

36.10 

(0.497) 

69.72 

(0.996) 

- 96.99 

(1) 

- 

                                      

n=30                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 1.48 

(0) 

7.52 

(0) 

14.40 

(0.084) 

39.02 

(0.553) 

61.70 

(0.881) 

65.87 

(0.941) 

73.75 

(1) 

- 

0.05 0.1 1.72 

(0) 

14.40

(0) 

11.45 

(0.028) 

39.02 

(0.553) 

46.15 

(0.659) 

- 71.05 

(1) 

72.73 

(1) 

0.5 0.55 0 5.56 

(0) 

10.11 

(0.002) 

35.71 

(0.490) 

47.71 

(0.862) 

65.60 

(0.937) 

- - 

1 1.5 0 8.90 

(0) 

13.32 

(0.063) 

35.04 

(0.477) 

43.69 

(0.624) 

54.65 

(0.781) 

79.78 

(1) 

225.50

(1) 

2 2.5 0 9.52 

(0) 

11.44 

(0.028) 

37.89 

(0.531) 

43.69 

(0.624) 

58.33 

(0.833) 

96.55 

(1) 

147.83

(1) 

10 10.5 0.84 

(0) 

8.06 

(0) 

11.76 

(0.034) 

39.92 

(0.976) 

40.03 

(0.004) 

61.70 

(0.881) 

- - 

50 55 0 8.50 

(0) 

10.77 

(0.015) 

33.11 

(0.440) 

46.27 

(0.661) 

51.68 

(0.738) 

71.05 

(1) 

124.16

(1) 

100 105 2.84 

(0) 

8.03 

(0) 

11.45 

(0.028) 

32.65 

(0.431) 

45.85 

(0.655) 

68.35 

(0.976) 

83.32 

(1) 

111.11

(1) 
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Table 4.1 when n=30 shows the results for the Fuzzy c- partition simulation  when 

n=30, the minimum and maximum values for not severe, moderately severe,  severe 

and very severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={1.48(0), 7.52 (0), 

14.40(0.084), 39.02(0.553), 61.70(0.881), 65.87(0.941), 73.75(1) }. For 𝜇 =

0.05, 𝜎2  =  0.1, 𝐷={1.72(0), 14.40 (0), 11.45 (0.028), 39.02(0.553), 46.15 

(0.659).71.05(1), 72.73(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 5.56(0), 10.11(0.002), 

35.71(0.490), 47.71(0.862), 65.60(0.937)}. For 𝜇 = 1 𝜎2  =  1.5, 𝐷={(0, 8.90(0), 

13.32(0.0063), 35.04(0.477), 43.69(0.624), 54.65(0.781), 79.78(1), 225.50(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷={0, 9.52(0), 11.44 (0.028), 37.89(0.531), 43.69(0.624) 

58.33(0.833), 99.55(1), 147.83(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷={0.84(0), 0.86(0), 

11.76(0.0.034), 39.92(0.976), 40.03(0.004), 61.70(0.881)} For 𝜇 = 50 𝜎2  =  55,

𝐷={ 0, 8.50(0), 10.77(0.015), 33.11 (0.440), 46.27(0.661), 51.68(0.738), 71.05(1), 

124.16(1),  For 𝜇 = 100 𝜎2  =  105, 𝐷={2.84 (0), 9.81(0), 8.33 (0), 11.45(0.028), 

32.65(0.431), 45.45(0.655), 68.35(0.976), 83.21(1), 111.11(1) } respectively.  

Table 4.2 shows the results for the Fuzzy c- partition simulation  when n=50, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 8.50 (0), 10..47(0.009), 35.43 

(0.484), 47.41 (0.667), 65.81(0.940), 78.13 (1), 189.13(1) }. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷={1.22(0), 8.50 (0), 11.45 (0.028), 37.84 (0.530), 42.65 (0.609). 61.44(0.878), 

87.32(1), 97.17(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0.25(0), 9.81 (0), 11.45 (0.028), 

39.51(0.562), 40.57 (0.580), 67.65 (0.966, 82.3291), 111.11(1))}. For 𝜇 = 1 𝜎2  =

 1.5, 𝐷={(0, 8.90(0), 10.47 (0.009), 39.02 (0.533), 61.70 (0.941), 65.876(0.941), 

73.75(1), 189.13(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷={1.46(0), 9.52(0), 10.38 (0.007), 

31.50(0.410), 40.57(0.580), 68.35(0.976), 71.05(1), 142.55(1)}. For 𝜇 = 10 𝜎2  =

 10.5, 𝐷={0, 9.62(0), 10.47(0.009),  39.36(0.559), 46.15(0.659), 67.65(0.966), 

126.19(1)} For 𝜇 = 50 𝜎2  =  55, 𝐷={ 0.27(0), 9.52(0), 10.42(0.008), 35.71(0.490), 

43.08(0.615), 69.72(0.996), 71.05(1), 185.84(1)}.For 𝜇 = 100 𝜎2  =  105, 𝐷={0, 

9.52(0), 10.11(0.002), 40.00(0.571), 43.69(0.624), 61.70(0.881), 87.32(1)} 

respectively 
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Table 4.2.  Fuzzy set classification of different levels of overdispersion of (PO) 

                    n=50, 100. 

        n=50 

 

 

 

  Not 

Severe 

 Moderate-   

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0 9.81 

(0) 

10.47 

(0.009) 

35.43 

(0.484) 

47.41 

(0.667) 

65.81 

(0.940) 

78.13 

(1) 

189.13 

(1) 

0.05 0.1 0.22 

(0) 

8.50 

(0) 

11.45 

(0.028) 

37.84 

(0.530) 

42.65 

(0.609) 

61.44 

(0.878) 

87.32 

(1) 

97.17 

(1) 

0.5 0.55 0.25 

(0) 

9.81 

(0) 

11.45 

(0.028) 

39.51 

(0.562) 

40.57 

(0.580) 

67.65 

(0.966) 

82.32 

(1) 

111.11 

(1) 

1 1.5 0 8.90 

(0) 

10.47 

(0.009) 

39.02 

(0.553) 

61.70 

(0.881) 

65.87 

(0.941) 

73.75 

(1) 

189.13 

(1) 

2 2.5 1.46 

(0) 

9.52 

(0) 

10.38 

(0.007) 

31.50 

(0.410) 

40.57 

(0.580) 

68.35 

(0.976) 

71.05 

(1) 

142.55 

(1) 

10 10.5 0 9.62 

(0) 

10.47 

(0.009) 

39.36 

(0.559) 

46.15 

(0.659) 

67.65 

(0.966) 

126.19 

(1) 

- 

50 55 0.27 

(0) 

9.52 

(0) 

10.42 

(0.008) 

35.71 

(0.490) 

43.08 

(0.615) 

69.72 

(0.996) 

71.05 

(1) 

185.84 

(1) 

100 105 0 9.52 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

43.69 

(0.624) 

61.70 

(0.881) 

84.33 

(1) 

87.32 

(1) 

                                       n=100   

                           

    

  Not 

Severe 

 Moderate-

ly 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0 9.81 

(0) 

10.38 

(0.007) 

39.92 

(0.976) 

40.16 

(0.574) 

68.35 

(0.976) 

82.32 

(1) 

116.34 

(1) 
0.05 0.1 

0.27(0) 

9.52 

(0) 

10.47 

(0.009) 

39.02 

(0.553) 

41.04 

(0.586) 

68.35 

(0.976) 

71.05 

(1) 

119.23 

(1) 
0.5 0.55 

0.27(0) 

9.52 

(0) 

11.44 

(0.028) 

40.00 

(0.571) 

41.95 

(0.599) 

62.54 

(0.893) 

76.85 

(1) 

246.05 

(1) 
1 1.5 0 9.52 

(0) 

10.47 

(0.009) 

37.17 

(0.518) 

41.49 

(0.593) 

69.72 

(0.996) 

82.32 

(1) 

112.39 

(1) 
2 2.5 

0 

9.62 

(0) 

10.24(0.0

04) 

39.87 

(0.569) 

42.20 

(0.603) 

69.00 

(0.986) 

72.73 

(1) 

82.32 

(1) 
10 10.5 

0.22(0) 

9.81 

(0) 

10.38 

(0.007) 

39.92 

(0.570) 

41.59 

(0.594) 

60.39 

(0.863) 

97.17 

(1) 

149.80 

(1) 
50 55 

0 

9.62 

(0) 

10.77 

(0.015) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

171.43 

(1) 
100 105 

0.25(0) 

9.52 

(0) 

10.24 

(0.004) 

39.02 

(0.553) 

43.00 

(0.614) 

66.79 

(0.954) 

70.15 

(1) 

89.49 

(1) 
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Table 4.2 shows the results for the Fuzzy c- partition simulation  when n=100, the 

minimum and maximum values for not severe, moderately severe,  severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.81(0), 10.38(0.007), 

39.92(0.976), 40.16(0.574), 68.35(0.976), 82.32(1), 116.34(1) }. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷={0.27(0), 9.52(0), 10.47(0.009), 39.02(0.553), 41.04(0.586), 68.35(0.976), 

71.05(1). 119.23(1)}.. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0.27(0), 9.52(0), 11.44(0.028), 

40.00(0.571), 41.95(0.599), 62.54(0.893),  76.85(1), 246.05(1)}. For 𝜇 = 1 𝜎2  =  1.5,

𝐷={(0, 9.52(0), 10.47 (0.009), 37.17(0.518), 41.49(0.593),  69.72(0.996), 82.32(1), 

112.39(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷={0, 9.62(0), 10.24(0.004), 39.87(0.569), 

42.20(0.603), 69.00(0.986), 72.73(1), 82.32(1)}. For 𝜇 = 10 𝜎2  =  10.5,

𝐷={0.22(0), 9.81(0), 10.38(0.007),  39.92(0.570), 41.59(0.594), 60.39(0.863), 

97.17(1), 149.80(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷={ 0, 9.62(0), 10.77(0.015), 

40.00(0.571), 40.03(0.572), 69.72(0.996). 71.05(1), 171.43(1)}. For 𝜇 = 100 𝜎2  =

 105, 𝐷={0, 9.52(0), 10.24(0.004), 39.02(0.553), 43.00(0.614), 66.79(0.954), 

70.15(1), 89.49(1)} respectively. 

Table 4.3 shows the results for the Fuzzy c- partition simulation  when n=200, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.62(0), 10.11(0.002), 40.00 

(0.571), 40.57(0.580), 69.21(0.996), 71.05(1), 185.84(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷={0, 9.52(0), 10.24(0.004), 40.00 (0.571), 40.34(0.576), 69.00(0.986), 72.73(1). 

116.34(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.52(0), 10.77(0.015), 39.36(0.599), 

40.41(0.577), 69.72(0.996), 71.05(1),141.82(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {0, 

9.52(0), 10.77(0.015), 39.36(0.599), 40.41(0.577), 69.72(0.996),  71.05(1),141.82(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷={0.22(0), 9.81(0), 10.24(0.004), 39.922(0.976), 41.14 

(0.588), 67.65(0.966), 70.15(1), 189.13(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷={0.25(0), 

9.85(0), 10.11(0.002),  40.00 (0.571), 41.14(0.588), 66.79(0.954), 70.15(1), 

180.08(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷={ 0, 9.81(0), 10.11(0.002), 37.48 (0.523), 

40.16(0.574), 68.35(0.976). 77.47(1), 159.09(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷={0, 

9.81(0), 10.11(0.002), 40.00 (0.571), 41.27(0.590), 69.00(0.986), 76.85(1), 210.91(1)} 

respectively. 
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Table 4.3  Fuzzy set classification of different levels of overdispersion of (PO) 

                   n=200,300. 

        n=200 

 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

0 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.57 

(0.580) 

69.72 

(0.996) 

71.05 

(1) 

185.84 

(1) 

0.05 0.1 

0 

9.52 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

40.34 

(0.576) 

69.00 

(0.986) 

72.73 

(1) 

116.34 

(1) 

0.5 0.55 

0 

9.52 

(0) 

10.77 

(0.015) 

39.36 

(0.559) 

40.41 

(0.577) 

69.72 

(0.996) 

71.05 

(1) 

141.82 

(1) 

1 1.5 

0 

9.52 

(0) 

10.77 

(0.015) 

39.36 

(0.559) 

40.41 

(0.577) 

69.72 

(0.996) 

71.05 

(1) 

141.82 

(1) 

2 2.5 0.22 

(0) 

9.81 

(0) 

10.24 

(0.004) 

39.92 

(0.976) 

41.14 

(0.588) 

67.65 

(0.966) 

70.15 

(1) 

189.13 

(1) 

10 10.5 0.25 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

41.14 

(0.588) 

66.79 

(0.954) 

70.15 

(1) 

180.08 

(1) 

50 55 

0 

9.81 

(0) 

10.11 

(0.002) 

37.48 

(0.523) 

40.16 

(0.574) 

68.35 

(0.976) 

77.47 

(1) 

159.09 

(1) 

100 105 0.25 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

41.27 

(0.590) 

69.00 

(0.986) 

76.85 

(1) 

210.91 

(1) 

                                       n=300   

                           

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

0 

9.81 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

171.43 

(1) 

0.05 0.1 

0 

9.81 

(0) 

10.38 

(0.007) 

39.92 

(0.976) 

40.16 

(0.574) 

69.72 

(0.996) 

71.05 

(1) 

189.13 

(1) 

0.5 0.55 

0 

9.62 

(0) 

10.11 

(0.002) 

39.92 

(0.976) 

40.21 

(0.574) 

69.72 

(0.996) 

75.93 

(1) 

233.18 

(1) 

1 1.5 

0 

9.62 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

40.34 

(0.576) 

68.35 

(0.976) 

71.05 

(1) 

259.46 

(1) 

2 2.5 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.004) 

69.00 

(0.986) 

70.15 

(1) 

171.43 

(1) 

10 10.5 

0 

9.62 

(0) 

10.11 

(0.002) 

39.92 

(0.976) 

40.57 

(0.580) 

67.36 

(0.962) 

71.05 

(1) 

216.67 

(1) 

50 55 

0 

9.52 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.42 

(0.577) 

69.72 

(0.996) 

72.73 

(1) 

169.75 

(1) 

100 105 

0 

9.81 

(0) 

10.27 

(0.005) 

39.92 

(0.976) 

40.11 

(0.573) 

67.65 

(0.966) 

71.05 

(1) 

216.67 

(1) 
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Table 4.3 shows the results for the Fuzzy c- partition simulation for when n=300, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.81(0), 10.24(0.004), 40.00 

(0.571), 40.03(0.572), 69.72(0.996), 71.05(1), 171.43(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷= {0, 9.81(0), 10.38(0.007), 40.16 (0.574), 69.72 (0.996), 71.05(1). 189.13(1)}. 

For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.62(0), 10.11(0.002), 39.92(0.976), 40.21(0.574), 

69.72(0.996), 75.93(1), 233.18(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {0, 9.62(0), 

10.24(0.004), 40.00 (0.571), 40.34(0.576), 68.35(0.976), 71.05(1), 259.46(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0, 9.81(0), 10.11(0.002), 40.00 (0.571), 40.03 (0.004), 

69.00(0.986), 70.15(1), 171.43(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {0, 9.62(0), 

10.11(0.002), 39.92 (0.976), 40.57(0.580), 67.36(0.962), 71.05(1), 216.67(1)}.  

For 𝜇 = 50 𝜎2  =  55, 𝐷= {0, 9.52(0), 10.11(0.002), 40.00 (0.571), 40.42(0.577), 

69.72(0.996). 72.73(1), 169.75(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= {0, 9.81(0), 

10.27(0.005), 39.92 (0.976), 41.11 (0.573), 67.65(0.966), 71.05(1), 261.67(1)} 

respectively. 

Table 4.4 shows the results for the Fuzzy c- partition simulation for when n=500, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.81(0), 10.24(0.004), 40.00 

(0.571), 40.03(0.572), 69.72(0.996), 71.05(1), 246.05(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷= {0, 9.81(0), 10.24(0.004), 39.92(0.976) 40.41 (0.577), 69.72 (0.996), 70.15(1). 

151.60(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.85(0), 10.16(0.003), 40.00 (0.571), 

40.16(0.574), 69.72(0.996), 70.51(1), 245.45(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {0, 

9.81(0), 10.11(0.002), 40.00 (0.571), 40.03(0.004), 69.00(0.986), 70.15(1), 200.77(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0, 9.85(0), 10.11(0.002), 40.00 (0.571), 40.45 (0.578), 

69.72(0.996), 72.73(1), 289.39 (1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {0, 9.52(0), 

10.11(0.002), 40.00(0.571), 40.34(0.576), 69.00(0.986), 71.05(1), 238.14(1)}.  

For 𝜇 = 50 𝜎2  =  55, 𝐷= {0, 9.81(0), 10.11(0.002), 9.52(0), 40.00(0.571), 

40.03(0.004), 69.72(0.996), 71.05(1), 225.50(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= {0, 

9.62(0), 10.11(0.002), 40.00(0.571), 40.16(0.574), 69.00(0.986), 70.15(1), 205.93(1)} 

respectively. 

 

 



 
 

54 

Table 4.4. Fuzzy set classification of different levels of overdispersion (PO) 

                   n=500, 1000. 

     n=500 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

0 

9.81 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

246.05 

(1) 
0.05 0.1 

0 

9.81 

(0) 

10.24 

(0.004) 

39.92 

(0.976) 

40.41 

(0.577) 

69.72 

(0.996) 

70.15 

(1) 

151.60 

(1) 
0.5 0.55 

0 

9.85 

(0) 

10.16 

(0.003) 

40.00 

(0.571) 

40.16 

(0.574) 

69.72 

(0.996) 

70.51 

(1) 

245.45 

(1) 
1 1.5 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.004) 

69.00 

(0.986) 

70.15 

(1) 

200.77 

(1) 
2 2.5 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.45 

(0.578) 

69.72 

(0.996) 

72.73 

(1) 

298.39 

(1) 
10 10.5 

0 

9.52 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.34 

(0.576) 

69.00 

(0.986) 

71.05 

(1) 

238.14 

(1) 
50 55 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.004) 

69.72 

(0.996) 

71.05 

(1) 

225.50 

(1) 
100 105 

0 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.16 

(0.574) 

69.00 

(0.986) 

70.15 

(1) 

205.93 

(1) 
                                       n=1000   

                           

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

189.13 

(1) 
0.05 0.1 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.16 

(0.574) 

69.00 

(0.986) 

70.15 

(1) 

233.18 

(1) 
0.5 0.55 

0 

9.85 

(0) 

10.01 

(0.002) 

40.00 

(0.571) 

40.20 

(0.574) 

69.72 

(0.996) 

71.05 

(1) 

255.71 

(1) 
1 1.5 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.21 

(0.574) 

69.72 

(0.996) 

71.05 

(1) 

205.93 

(1) 
2 2.5 

0 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

287.20 

(1) 
10 10.5 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

68.35 

(0.976) 

71.05 

(1) 

245.45 

(1) 
50 55 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

258.20 

(1) 
100 105 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.00 

(0.986) 

71.05 

(1) 

287.20 

(1) 
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Table 4.4 shows the results for the Fuzzy c- partition simulation for when n=1000, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.85(0), 10.11(0.002), 

40.00(0.571), 40.03(0.572), 69.72(0.996), 70.15(1), 189.13(1)}. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷= {0, 9.85(0), 10.01(0.002), 40.00(0.571), 40.16(0.574), 69.00(0.986), 

70.15(1), 233.18(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.85(0), 10.16(0.003), 40.00 

(0.571), 40.20(0.574), 69.72(0.996), 71.05(1), 255.71(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= 

{0, 9.81(0), 10.11(0.002), 40.00 (0.571), 40.21(0.574), 40.21(0.004), 71.05(1), 

69.72(0.996), 70.05(1), 205.93(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0, 9.62(0), 

10.11(0.002), 40.00(0.571), 40.03(0.572), 69.72(0.996), 71.05(1), 287.20(1)}. For 𝜇 =

10 𝜎2  =  10.5, 𝐷= {0, 9.85(0), 10.11(0.002), 40.00(0.571), 40.03(0.572), 

68.35(0.976), 71.05(1), 245.45(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {0, 9.81(0), 

10.11(0.002), 40.00(0.571), 40.03(0.004), 69.72(0.996), 71.15(1), 258.20(1)}. For 𝜇 =

100 𝜎2  =  105, 𝐷= {0, 9.81(0), 10.11(0.002), 40.00(0.571), 40.03(0.0572), 

69.00(0.986), 71.05(1), 287.20(1) } respectively. 

Table 4.5 shows the results for the Fuzzy c- partition simulation for when n=5000, 

theminimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={0, 9.85(0), 10.11(0.002), 

40.00(0.571), 40.03(0.572), 69.72(0.996), 70.15(1), 298.39 (1)}. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷= {0, 9.85(0), 10.01(0.002), 40.00(0.571), 40.03(0.572), 69.72(0.996), 

70.15(1), 298.39 (1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.85(0), 10.16(0.003), 40.00 

(0.571), 40.20(0.574), 69.72(0.996), 71.05(1), 255.71(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= 

{0, 9.85(0), 10.07(0.002), 40.00 (0.571), 40.03(0.572), 69.87(0.998), 70.15(1), 

451.61(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0, 9.85(0), 10.11(0.002), 40.00 (0.571), 

40.03(0.572), 69.87(0.998), 70.15(1), 375.00(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {0, 

9.81(0), 10.11(0.002), 40.00(0.571), 40.03(0.572), 69.87(0.998), 70.15(1), 375.00 (1)}.  

For 𝜇 = 50 𝜎2  =  55, 𝐷= {0, 9.85(0), 10.01(0.002), 40.00(0.571), 40.11(0.0573), 

69.87(0.998), 70.15(1), 241.03(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= {0, 9.85(0), 

10.01(0.002), 40.00(0.571), 40.03(0.0572), 69.87(0.998), 70.15(1), 411.54 (1)} 

respectively. 
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Table 4.5. Fuzzy set classification of different levels of overdispersion of (PO) 

      n=5000. 

NEGATIVE BINOMIAL MODEL 

Table 4.6  Fuzzy set classification of different levels of overdispersion of NB                       

         n=20                    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

298.39 

(1) 
0.05 0.1 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

298.39 

(1) 
0.5 0.55 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

311.11 

(1) 
1 1.5 

0 

9.85 

(0) 

10.07 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

451.61 

(1) 
2 2.5 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

307.14 

(1) 
10 10.5 

0 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

375.00 

(1) 
50 55 

0 

9.85 

(0) 

10.01 

(0.002) 

40.00 

(0.571) 

40.11 

(0.573) 

69.87 

(0.998) 

70.15 

(1) 

241.03 

(1) 
100 105 

0 

9.85 

(0) 

10.01 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

411.54 

(1) 

  Not 

Severe 

 Moderate-

ly Severe 
 Severe  Very 

Severe 

 

𝝁 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - 

- - - 

57.63 

(0.823) 

68.95 

(0.985) 

71.87 

(1) 

86.41 

(1) 

0.05 0.1 - 

- 

34.80 

(0.472) - 

46.29 

(0.661) 

68.37 

(0.977) 

71.99 

(1) 

83.23 

(1) 

0.5 0.55 - 

- 

- 

- 

56.27 

(0.804) 

67.61 

(0.966) 

71.62 

(1) 

90.54 

(1) 

1 1.5 - 

- 

- 

- 

51.35 

(0.734) 

67.41 

(0.963) 

70.42 

(1) 

89.82 

(1) 

2 2.5 - 

- 

- 

- 

68.76 

(0.982) 

69.67 

(0.995) 

71.46 

(1) 

91.04 

(1) 

10 10.5 - 

- 

- 

- 

57.56 

(0.822) 

68.32 

(0.976) 

71.16 

(1) 

91.08 

(1) 

50 55 - 

- 

- 

- 

41.49 

(0.593) 

69.09 

(0.987) 

70.62 

(1) 

89.94 

(1) 

100 105 - 

- 

- 

- 

53.89 

(0.770) 

58.35 

(0.834) 

70.28 

(1) 

91.54 

(1) 
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Table 4.6-4.10 show the results for the Fuzzy c- partition simulation for NB; Table 4.6 

shows the result when n=20, the minimum and maximum values for not severe, 

moderately severe,  severe and very severe respectively, for  𝜇 = 0.01, 𝜎2  =

 0.05, ,𝐷={57.63(0.823), 68.95(0.985), 71.87(1), 86.41(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷= {34.80(0.472), 46.29(0.661), 68.37(0.977), 71.99(1), 83.23(1)}. For 𝜇 =

0.5, 𝜎2  =  0.55  𝐷= {56.27(0.804), 67.61(0.966), 71.62(1), 90.54(1)}. For 𝜇 =

1, 𝜎2  =  1.5  𝐷= {51.35(0.734), 67.41(0.963), 70.42(1), 89.82(1)}. For 𝜇 = 2 𝜎2  =

 2.5, 𝐷= {68.76(0.982), 71.46(1), 91.04(1), 375.00(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= 

{57.56(0.822), 68.32(0.976), 71.16(1), 91.08(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= 

{41.49(0.593), 69.09(0.987), 70.62(1), 89.94(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= 

{53.89(0.770), 58.35(0.834), 70.28(1), 91.54(1)} respectively. 

Table 4.7 shows the results for the Fuzzy c- partition simulation for when n=30, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {40.45(0.578), 69.97(0.999), 

70.81(1),90.65(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {44.36(0.633), 69.98(0.999), 

71.04(1),91.20(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {32.49(0.428), 34.89(0.474), 45.16 

(0.645), 69.98(0.999), 70.36(1), 88.81(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {56.44(0.804), 

66.27(0.947), 70.28(1), 88.76(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷 = {55.70(0.976), 

69.94(0.999), 70.34(1), 87.66(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {43.38(0.620), 

69.11(0.987), 70.55(1), 90.20(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷 = {45.36(0.648), 

69.80(0.997), 72.17(1), 92.75(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = {51.95(0.742), 

68.67(0.981), 70.97(1), 90.39(1)} respectively. 

Table 4.7 shows the results for the Fuzzy c- partition simulation for when n=50, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={49.21(0.703), 69.77(0.977),  

70.33(1), 90.72(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= {49.43(0.706), 69.36(0.990), 

70.73(1), 90.26(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {41.84(0.598), 69.52(0.993), 

70.42(1), 92.89(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {35.78(0.497), 49.70(0.710), 

69.90(0.999), 92.06(1) }. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {59.02(0.843), 73.36(1), 

90.88(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {48.28(0.690), 69.78(0.997), 70.54(1), 

93.31(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {41.52(0.593), 69.13(0.988), 70.35(1), 

93.95(1)}. 
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Table 4.7. Fuzzy set classification of different levels of overdispersion  of NB  

n=30, 50. 

n=30 

 

     

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - - - 49.21 

(0.703) 

69.77 

(0.977) 

70.33 

(1) 

90.72 

(1) 
0.05 0.1 - - - - 49.43 

(0.706) 

69.36 

(0.990) 

70.73 

(1) 

90.26 

(1) 
0.5 0.55 - - - - 41.84 

(0.598) 

69.52 

(0.993) 

70.42 

(1) 

92.89 

(1) 
1 1.5 - - 35.78 

(0.497) 

- 49.70 

(0.710) 

69.90 

(0.999) 

70.18 

(1) 

92.06 

(1) 
2 2.5 - - - - 59.02 

(0.843) - 

73.36 

(1) 

90.88 

(1) 
10 10.5 - - - - 48.28 

(0.690) 

69.78 

(0.997) 

70.54 

(1) 

93.31 

(1) 
50 55 - - - - 41.52 

(0.593) 

69.13 

(0.988) 

70.35 

(1) 

93.95 

(1) 
100 105 - - - - 45.91 

(0.656) 

69.80 

(0.997) 

70.16 

(1) 

88.65 

(1) 
                                        

    n=50                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - 32.68 

(0.432) 

- 46.59 

(0.666) 

69.87 

(0.998) 

70.01 

(1) 

94.28 

(1) 
0.05 0.1 - - 34.93 

(0.475) 

39.68 

(0.565) 

40.23 

(0.574) 

69.45 

(0.992) 

70.28 

(1) 

92.23 

(1) 
0.5 0.55 7.86 

(0) 

- 29.26 

(0.367) 

- 44.12 

(0.630) 

69.84 

(0.998) 

70.42 

(1) 

92.89 

(1) 
1 1.5 - - 11.99 

(0.038) 

- 48.46 

(0.692) 

69.28 

(0.990) 

70.18 

(1) 

92.06 

(1) 
2 2.5   17.39 

(0.141) 

- 41.97 

(0.600) 

69.91 

(0.999) 

71.90 

(1) 

90.88 

(1) 
10 10.5   31.93 

(0.418) 

- 47.64 

(0.681) 

69.78 

(0.992) 

70.54 

(1) 

93.31 

(1) 
50 55   - - 42.13 

(0.602) 

69.39 

(0.991) 

70.35 

(1) 

93.95 

(1) 
100 105   - - 45.91 

(0.656) 

69.86 

(0.998) 

70.16 

(1) 

88.65 

(1) 
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For 𝜇 = 100 𝜎2  =  105, 𝐷= {45.91(0.656), 69.80(0.997), 70.16(1), 88.65(1)} 

respectively. 

Table 4.8 shows the results for the Fuzzy c- partition simulation for when n=100, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {32.68(0.432), 46.59(0.666), 

69.87(0.998) 70.01(1),94.28(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= {34.93(0.475), 

39.68(0.565), 40.23(0.574), 69.45(0.992), 70.28(1), 92.23(1)}. For 𝜇 = 0.5, 𝜎2  =

 0.55  𝐷 = {7.86(0), 29.26(0.367), 44.12(0.630), 69.84(0.998), 70.42(1), 92.89(1)}. 

For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {11.99(0.038), 48.46(0.692), 69.28(0.990), 70.18(1), 

92.06(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷 = {17.39(0.141), 41.97(0.600), 69.91(0.999), 

71.90(1), 90.88(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷 = {31.93(0.418), 47.64(0.681), 

69.78(0.992), 70.54(1), 93.31(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷 = {42.13(0.602), 

69.39(0.991), 70.35(1), 93.95(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = {45.91(0.656), 

69.86(0.998), 70.16(1), 88.65(1)} respectively. 

Table 4.8 shows the results for the Fuzzy c- partition simulation for when n=200, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {39.60(0.564), 45.80(0.654), 

69.99(0.999), 70.50(1), 92.55(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {16.53(0.124), 

35.90(0.493), 40.20(0.574), 69.93(0.999), 70.02(1), 93.51(1)}. For 𝜇 = 0.5, 𝜎2  =

 0.55  𝐷 = {20.98(0.209), 44.33(0.633), 69.45(0.992), 70.05(1) 92.25(1)}. For 𝜇 =

1, 𝜎2  =  1.5  𝐷 = {38.71(0.547), 41.44(0.592), 69.96(0.999), 70.02(1), 90.32(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷 = {8.50(0), 36.90(0.512), 43.74(0.625), 69.92(0.999), 

70.14(1), 92.52(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {23.07(0.249), 34.48(0.466), 

43.14(0.616), 69.97(0.999), 70.33(1), 94.40(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷 = 

{41.04(0.586), 69.97(0.999), 70.12(1), 91.69(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = 

{45.91(0.656), 69.57(0.994), 70.06(1), 92.06(1)} respectively. 

Table 4.9  shows the results for the Fuzzy c- partition simulation for when n=300, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {18.63(0.164), 36.31(0.501), 

42.48(0.607), 39.60(0.564), 69.91(0,699), 70.08(1), 95.27(1)}. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷 = {32.41(0.427), 33.86(0.454), 41.26(0.598), 69.85(0.988), 70.05(1), 

93.57(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {22.88(0.245), 25.12(0.288), 47.59(0.680),  
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Table 4.8. Fuzzy set classification of different levels of overdispersion  of NB when 

  n=100,200 

                      n=100 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - 32.68 

(0.432) 

- 46.59 

(0.666) 

69.87 

(0.998) 

70.01 

(1) 

94.28 

(1) 
0.05 0.1 - - 34.93 

(0.475) 

39.68 

(0.565) 

40.23 

(0.574) 

69.45 

(0.992) 

70.28 

(1) 

92.23 

(1) 
0.5 0.55 7.86 

(0) 

- 29.26 

(0.367) 

- 44.12 

(0.630) 

69.84 

(0.998) 

70.42 

(1) 

92.89 

(1) 
1 1.5 - - 11.99 

(0.038) 

- 48.46 

(0.692) 

69.28 

(0.990) 

70.18 

(1) 

92.06 

(1) 
2 2.5   17.39 

(0.141) 

- 41.97 

(0.600) 

69.91 

(0.999) 

71.90 

(1) 

90.88 

(1) 
10 10.5   31.93 

(0.418) 

- 47.64 

(0.681) 

69.78 

(0.992) 

70.54 

(1) 

93.31 

(1) 
50 55   - - 42.13 

(0.602) 

69.39 

(0.991) 

70.35 

(1) 

93.95 

(1) 
100 105   - - 45.91 

(0.656) 

69.86 

(0.998) 

70.16 

(1) 

88.65 

(1) 
                                       n=200   

                           

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - 39.60 

(0.564) - 

45.80 

(0.654) 

69.99 

(0.999) 

70.50 

(1) 

92.55 

(1) 
0.05 0.1 - - 16.53 

(0.124) 

35.90 

(0.493) 

40.20 

(0.574) 

69.93 

(0.999) 

70.02 

(1) 

93.51 

(1) 
0.5 0.55 - - 20.98 

(0.209) - 

44.33 

(0.633) 

69.45 

(0.992) 

70.05 

(1) 

92.25 

(1) 
1 1.5 - - 38.71 

(0.547) - 

41.44 

(0.592) 

69.96 

(0.999) 

70.02 

(1) 

90.32 

(1) 
2 2.5 8.50 

(0) - 

36.90 

(0.512) - 

43.74 

(0.625) 

69.92 

(0.999) 

70.14 

(1) 

92.52 

(1) 
10 10.5 - - 23.07 

(0.249) 

34.48 

(0.466) 

43.14 

(0.616) 

69.97 

(0.999) 

70.33 

(1) 

94.40 

(1) 
50 55 - - - - 41.04 

(0.586) 

69.97 

(0.999) 

70.12 

(1) 

91.69 

(1) 
100 105 - - - - 45.19 

(0.646) 

69.57 

(0.994) 

70.06 

(1) 

92.06 

(1) 
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69.55(0.994), 70.27(1), 94.22(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {18.36(0.159), 

19.50(0.181), 42.42(0.915), 69.94(0.999), 70.00(1), 92.91(1)}. For 𝜇 = 2 𝜎2  =  2.5,

𝐷 = {25.77(0.300), 34.39(0.465), 44.28(0.837), 69.79(0.994), 70.00(1), 92.59(1)}. 

For 𝜇 = 10 𝜎2  =  10.5, 𝐷 = {21.01(0.210), 35.30(0.482), 43.28(0.618), 

23.07(0.249), 69.97(0.999), 70.02(1), 95.88(1)}.For 𝜇 = 50 𝜎2  =  55, 𝐷 = 

{24.72(0.280), 26.92(0.322), 42.33(0.605), 69.97(0.999), 70.10(1), 92.86(1)}. For 𝜇 =

100 𝜎2  =  105, 𝐷 = {35.96(0.494), 40.11(0.573), 69.99(0.999), 70.51(1), 93.50(1)} 

respectively. 

Table 4.9 shows the results for the Fuzzy c- partition simulation for when n=500, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷={23.46(0.256), 36.13(0.498), 

43.13(0.616), 69.95(0.999), 70.09(1), 93.25(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= 

{20.83(0.206), 39.51(0.562), 41.36(0.591), 69.86(0.998), 70.10(1), 95.96(1)}. For 𝜇 =

0.5, 𝜎2  =  0.55  𝐷= {30.23(0.385), 37.36(0.521). 44.12(0.630), 69.97(0.999), 

70.00(1), 93.29(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {30.00(0.381), 39.21(0.556), 

40.35(0.666), 69.92(0.999), 70.00(1), 95.36(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= 

{15.99(0.114), 38.85(0.549), 44.27(0.632), 69.75(0.996), 70.12(1), 95.11(1)}. For 𝜇 =

10 𝜎2  =  10.5, 𝐷= {22.97(0.247), 38.87(0.550), 41.84(0.598), 69.84(0.998), 

70.08(1), 92.69(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {21.17(0.213), 39.78(0.567), 

41.64(0.595). 69.93(0.999), 70.02(1), 94.39(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= 

{13.64(0.069), 38.71(0.547), 40.48(0.578), 69.91(0,999), 70.16(1), 93.22(1)  

respectively. 

Table 4.10. shows the results for the Fuzzy c- partition simulation for when n=1000, 

the minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷={10.47(0.009), 39.36(0.559), 

41.29(0.590), 69.97(0.999), 70.10(1),   96.18(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= 

{17.04(0.134), 39.98 (0.571), 40.26(0.575), 69.99(0.999), 70.12(1), 95.03(1)}. 

For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {6.12(0), 8.72(0), 16.79(0.134), 39.04(0.553), 

41.36(0.574), 69.93(0.999), 70.05(1), 95.05(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {5.41(0), 

36.36(0.559), 41.36(0.591), 69.92(0.999), 72.73(1), 145.65(1)}. For 𝜇 = 2 𝜎2  =  2.5,

𝐷= {0, 9.62(0), 10.16(0.003), 40.00(0.571), 40.03(0.572), 68.40(0.977), 72.73(1), 

249.88(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {0.05(0), 9.96(0), 10.00(0.002),  
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Table 4.9. Fuzzy set classification of different levels of overdispersion  of NB  

                   n=300, 500 

        n=300 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - 18.63 

(0.164) 

36.31 

(0.501) 

42.48 

(0.607). 

69.91 

(0,699) 

70.08 

(1) 

95.27 

(1) 
0.05 0.1 - - 32.41 

(0.427) 

33.86 

(0.454) 

41.26 

(0.598) 

69.85 

(0.988) 70.05(1) 

93.57 

(1) 
0.5 0.55 - - 22.88 

(0.245) 

25.12 

(0.288) 

47.59 

(0.680) 

69.55 

(0.994) 

70.27 

(1) 

94.22 

(1) 
1 1.5 - - 18.36 

(0.159) 

19.50 

(0.181) 

42.42 

(0.915) 

69.94 

(0.999) 

70.00 

(1) 

92.91 

(1) 
2 2.5 - - 25.77 

(0.300) 

34.39 

(0.465) 

44.28 

(0.837) 

69.79 

(0.994) 

70.00 

(1) 

92.59 

(1) 
10 10.5 - - 21.01 

(0.210) 

35.30 

(0.482) 

43.28 

(0.618) 

69.97 

(0.999) 

70.02 

(1) 

95.88 

(1) 
50 55 - - 24.72 

(0.280) 

26.92 

(0.322) 

42.33 

(0.605) 

69.97 

(0.999) 

70.10 

(1) 

92.86 

(1) 
100 105 - - 35.96 

(0.494) 

- 40.11 

(0.573) 

69.99 

(0.999) 

70.51 

(1) 

93.50 

(1) 
                                       n=500   

                           

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - - 23.46 

(0.256) 

36.13 

(0.498) 

43.13 

(0.616) 

69.95 

(0.999) 

70.09 

(1) 

93.25 

(1) 
0.05 0.1 - - 20.83 

(0.206) 

39.51 

(0.562) 

41.36 

(0.591) 

69.86 

(0.998) 

70.10 

(1) 

95.96 

(1) 
0.5 0.55 - - 30.23 

(0.385) 

37.36 

(0.521) 

44.12 

(0.630) 

69.97 

(0.999) 

70.00 

(1) 

93.29 

(1) 
1 1.5 - - 30.00 

(0.381) 

39.21 

(0.556) 

40.35 

(0.666) 

69.92 

(0.999) 

70.00 

(1) 

95.36 

(1) 
2 2.5 

6.37(0) 

- 15.99 

(0.114) 

38.85 

(0.549) 

44.27 

(0.632) 

69.75 

(0.996) 

70.12 

(1) 

95.11 

(1) 
10 10.5 - - 22.97 

(0.247) 

38.87 

(0.550) 

41.84 

(0.598) 

69.84 

(0.998) 

70.08 

(1) 

92.69 

(1) 
50 55 

0.85(0) 

- 21.17 

(0.213) 

39.78 

(0.567) 

41.64 

(0.595) 

69.93 

(0.999) 

70.02 

(1) 

94.39 

(1) 
100 105 - - 13.64 

(0.069) 

38.71 

(0.547) 

40.48 

(0.578) 

69.91 

(0,999) 

70.16 

(1) 

93.22 

(1) 
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Table 4.10. Fuzzy set classification of different levels of overdispersion  of NB  

                   n=1000, 5000 

                       n=1000 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 - 

- 

10.47 

(0.009) 

39.36 

(0.559) 

41.29 

(0.590) 

69.97 

(0.999) 

70.10 

(1) 

96.18 

(1) 
0.05 0.1 

-  

17.04 

(0.134) 

39.98 

(0.571 

40.26 

(0.575) 

69.99 

(0.999) 

70.12 

(1) 

95.03 

(1) 
0.5 0.55 6.12 

(0) 

8.72 

(0) 

16.79 

(0.134) 

39.04 

(0.553) 

41.36 

(0.574) 

69.93 

(0.999) 

70.05 

(1) 

95.05 

(1) 
1 1.5 5.41 

(0) - 

20.96 

(0.209) 

36.36 

(0.559) 

41.36 

( 0.591 

69.92 

(0.999) 

72.73 

(1) 

145.65 

(1) 
2 2.5 0 

(0) 

9.62 

(0) 

10.16 

(0.003) 

40.00 

(0.571) 

40.03 

(0.572) 

68.40 

(0.977) 

72.73 

(1) 

249.88 

(1) 
10 10.5 0.05 

(0) 

9.96 

(0) 

10.00 

(0.002) 

39.91 

(0.570) 

40.20 

(0.574) 

69.53 

(0.993) 

70.33 

(1) 

249.88 

(1) 
50 55 0.01 

(0) 

9.99 

(0) 

10.01 

(0.002) 

39.99 

(0.577) 

40.07 

(0.572) 

69.24 

(0.989) 

70.57 

(1) 

165.03 

(1) 
100 105 0.09 

(0) 

9.88 

(0) 

10.05 

(0.001) 

39.97 

(0.571) 

40.03 

(0.572) 

69.78 

(0.997) 

70.12 

(1) 

78.16 

(1) 
                                       n=5000   

                           

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.65 

(0) 

7.54 

(0) 

11.33 

(0.025) 

39.87 

(0.569) 

40.23 

(0.782) 

69.99 

(0.984) 

70.00 

(1) 

97.86 

(1) 
0.05 0.1 4.32 

(0) 

9.85 

(0) 

13.07 

(0.058) 

39.78 

(0.567) 

40.23 

(0.883) 

69.99 

(0.984) 

70.00 

(1) 

96.42 

(1) 
0.5 0.55 

0 

9.52 

(0) 

10.94 

(0.018) 

39.90 

(0.570) 

40.00 

(0.571) 

69.91 

(0.999) 

70.10 

(1) 

111.11 

(1) 
1 1.5 

0 

9.52 

(0) 

10.16 

(0.003) 

39.97 

(0.571) 

40.00 

(0.571) 

69.88 

(0.998) 

70.05 

(1) 

171.43 

(1) 
2 2.5 

0 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.73 

(0.996) 

70.26 

(1) 

161.59 

(1) 
10 10.5 

0 

10.0 

(0) 

10.02 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.92 

(0.999) 

70.01 

(1) 

139.36 

(1) 
50 55 0.04 

(0) 

9.98 

(0) 

10.01 

(0.002) 

39.99 

(0.577) 

40.00 

(0.571) 

69.96 

(0.999) 

70.00 

(1) 

169.40 

(1) 
100 105 0.07 

(0) 

9.98 

(0) 

10.01 

(0.002) 

39.98 

(0.571) 

40.01 

(0.572) 

69.95 

(0.999) 

70.01 

(1) 

169.88 

(1) 



 
 

64 

39.91(0.570), 40.20(0.574), 69.53(0.993), 70.33(1), 249.88(1)}.  For 𝜇 = 50 𝜎2  =

 55, 𝐷= {0.01(0), 9.99(0), 10.01(0.002), 39.99(0.577), 40.07(0.572), 69.24(0.989), 

70.57(1), 165.03(1)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= {0.09(0), 9.88(0), 10.05(0.001), 

39.97(0.571), 40.03(0.572), 69.78(0.997), 70.12(1), 78.16(1)} respectively. 

Table 4.10 shows the results for the Fuzzy c- partition simulation for when n=5000, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively,  for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷={0.65(0), 7.54(0), 11.33(0.025), 

39.87(0.569), 40.23(0.782), 69.99(0.984), 70.00(1),  97.86(1)}. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷= {4.32(0), 9.85(0), 13.07(0.058), 39.78(0.567), 40.23(0.883), 69.99(0.984), 

70.00(1), 96.42(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0, 9.52(0), 10.94(0.018), 

39.90(0.570), 40.00(0.571), 69.91(0.999), 70.10(1), 111.11(1)}. For 𝜇 = 1, 𝜎2  =

 1.5  𝐷= {0, 9.52(0), 10.16(0.003), 39.97(0.571), 40.00(0.571), 69.88(0.998), 70.05(1), 

171.43(1))}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0, 9.85(0), 10.11(0.002), 40.00(0.571), 

40.03(0.572), 69.73(0.996), 70.26(1), 161.59(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {0, 

10.00(0.002), 10.02(0.002), 40.00(0.571), 40.03(0.572), 69.92(0.999), 70.01(1), 

139.36(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {0.04(0), 9.98(0), 10.01(0.002), 39.99(0.577), 

40.00(0.571), 69.96(0.999), 70.00(1), 169.40(1)} For 𝜇 = 100 𝜎2  =  105, 𝐷= 

{0.07(0), 9.98(0), 10.01(0.002), 39.98(0.571), 40.01(0.572), 69.95(0.999), 70.01(1), 

169.88(1)} respectively. 

Table 4.11-4.15 show the results for the Fuzzy c- partition simulation for  CP;  Table 

4.11 shows the result when n=20, the minimum and maximum values for not severe, 

moderately severe, severe and very severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷 

= {11.20(0.233, 37.25(0.591), 47.68(0.681), 39.87(0.569), 63.91(0.913), 130.15(1)}.  

For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= {0.48(0), 7.55(0), 14.77(0.091), 39.94(0.570), 

45.12(0.645), 58.50(0.836)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷= {0.43(0), 4.32(0), 

10.08(0.002), 38.27(0.538), 42.42(0.606), 44.72(0.639)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= 

{1.22(0), 9.64(0), 19.85(0.188), 34.48(0.466), 41.52(0.593), 44.99(0.643), 99.24(1)}. 

For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {17.53(0.143), 37.93(0.532), 40.23(0.575), 69.30(0.990), 

70.15(1), 86.22(1)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷= {3.61 0), 9.13(0), 12.94(0.056), 

38.69(0.546), 42.03(0.600)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {2.12(0), 4.21(0), 0.04(0), 

10.08(0.002), 38.25(0.538), 40.16(0.574), 54.22(0.775)}. For 𝜇 = 100 𝜎2  =  105, 
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Com-Poisson Model 

Table 4.11.  Fuzzy set classification of different levels of overdispersion of CP. 

           n=20, 30 

        n=20 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

- - 

11.20 

(0.233) 

37.25 

(0.517) 

47.68 

(0.681) 

63.91 

(0.913) 

130.15 

(1) - 
0.05 0.1 0.48 

(0) 

7.55 

(0) 

14.77 

(0.091) 

39.94 

(0.570) 

45.12 

(0.645) 

58.50 

(0.836) - - 
0.5 0.55 0.43 

(0) 

4.32 

(0) 

10.08 

(0.002) 

38.27 

(0.538) 

42.42 

(0.606) 

44.72 

(0.639) - - 
1 1.5 1.22 

(0) 

9.64 

(0) 

19.85 

(0.188) 

34.48 

(0.466) 

41.52 

(0.593) 

44.99 

(0.643) 

99.24 

(1) - 
2 2.5 

- - 

17.53 

(0.143) 

37.93 

(0.532) 

40.23 

(0.575) 

69.30 

(0.990) 

70.15 

(1) 

86.22 

(1) 
10 10.5 3.619 

(0) 

9.13 

(0) 

12.94 

(0.056) 

38.69 

(0.546) 

42.03 

(0.600) - - - 
50 55 2.12 

(0) 

4.21 

(0) 

10.08 

(0.002) 

38.25 

(0.538) 

40.16 

(0.574) 

54.22 

(0.775) - - 
100 105 0.09 

(0) 

8.70 

(0) 

13.50 

(0.067) 

39.44 

(0.561) 

40.38 

(0.577) 

61.11 

(0.873) - - 
                                        

n=30                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 2.65 

(0) 

9.09 

(0) 

13.90 

(0.074) 

38.44 

(0.542) 

40.97 

(0.585) 

52.48 

(0.613) 

91.91 

(1) - 
0.05 0.1 0.49 

(0) 

9.27 

(0) 

10.75 

(0.014) 

38.70 

(0.547) 

40.44 

(0.578) 

55.65 

(0.974) - - 
0.5 0.55 1.69 

(0) 

9.16 

(0) 

10.26 

(0.005) 

38.57 

(0.544) 

41.22 

(0.589) 

48.11 

(0.687) - - 
1 1.5 2.14 

(0) 

9.94 

(0) 

11.00 

(0.019) 

38.95 

(0.551) 

44.61 

(0.637) 

53.20 

(0.760) 

91.80 

(1) - 
2 2.5 0.71 

(0) 

9.18 

(0) 

10.21 

(0.004) 

39.33 

(0.559) 

44.19 

(0.631) 

51.81 

(0.740) - - 
10 10.5 1.63 

(0) 

8.79 

(0) 

10.55 

(0.010) 

38.62 

(0.545) 

43.20 

(0.617) 

67.20 

(0.960) - - 
50 55 2.76 

 

(0) 

9.65 

(0) 

10.59 

(0.011) 

38.40 

(0.541) 

44.86 

(0.641) 

46.23 

(0.660) - - 
100 105 0.46 

(0) 

5.54 

(0) 

13.38 

(0.064) 

39.42 

(0.560) 

40.75 

(0.582) 

55.48 

(0.793) 

74.05 

(1) - 
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  𝐷= {0.09(0), 8.70(0), 13.50(0.067), 39.44(0.561), 40.38(0.577), 61.11(0.873)} 

respectively. 

Table 4.11 shows the results for the Fuzzy c- partition simulation for when n=30, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {2.65(0), 9.09(0),  13.90(0.074), 

38.44(0.542), 40.97(0.585),  52.48(0.613), 91.91(1)}.  For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= 

{0.49(0), 9.27(0), 10.75(0.014), 38.70(0.547), 40.44(0.578), 55.65(0.974)}. For 𝜇 =

0.5, 𝜎2  =  0.55  𝐷= {1.69(0), 9.16(0), 10.26(0.005), 38.57(0.544), 41.22(0.589), 

48.11(0.687)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {2.14(0), 9.94(0), 11.00(0.019), 

38.95(0.551), 44.61(0.637), 53.20(0.760), 91.80(1)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= 

{0.71(0), 9.18(0), 10.21(0.004), 39.33(0.559), 44.19(0.631), 51.81(0.740)}. For 𝜇 =

10 𝜎2  =  10.5, 𝐷= {1.63(0), 8.79(0), 10.55(0.010), 38.62(0.545), 43.20(0.617), 

67.20(0.960)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {2.76(0), 9.65(0), 10.59(0.011), 

38.40(0.541), 44.86(0.641), 46.23(0.660)}. For 𝜇 = 100 𝜎2  =  105, 𝐷= {0.46(0), 

5.54(0), 0.09(0), 13.38(0.064), 39.42(0.560), 40.75(0.582), 55.48(0.793), 74.05(1)} 

respectively. 

Table 4.12  shows the results for the Fuzzy c- partition simulation for when n=50, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {0.04(0), 9.95(0), 10.05(0.001), 

39.39(0.560), 40.41(0.577)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {0.01(0), 9.53(0), 

39.88(0.569), 39.88(0.569), 42.17(0.602), 46.18(0.660), 72.94(1)}. For 𝜇 = 0.5, 𝜎2  =

 0.55  𝐷 = {4.68(0), 9.99(0), 12.73(0.052), 39.35(0.559), 40.80(0.583), 51.55(0.736)}. 

For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {1.34(0), 8.27(0), 12.92(0.056), 38.94(0.551), 

41.11(0.587), 48.26(0.689)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷= {0.23(0), 9.17(0), 

10.01(0.000), 39.75(0.567), 41.55(0.594), 52.05(0.744)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷 

= {0.73(0), 9.36(0), 12.09(0.040), 39.88(0.569), 40.20(0.574), 52.51(0.759)}.  For 𝜇 =

50 𝜎2  =  55, 𝐷 = {1.64(0), 8.02(0), 11.68(0.032), 36.31(0.501), 41.62(0.595), 

53.50(0.764)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = {3.34(0), 8.68(0), 0.46(0), 10.04(0.001), 

39.46(0.561), 45.32(0.647)} respectively. 

Table 4.12 shows the results for the Fuzzy c- partition simulation for when n=100, the 

minimum and maximum values for not severe, moderately severe, severe and very  
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Table 4.12.  Fuzzy set classification of different levels of overdispersion of CP,  

n=50, 100 

        n=50 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.04 

(0) 

9.95 

(0) 

10.05 

(0.001) 

39.39 

(0.560) 

40.41 

(0.577) - - - 
0.05 0.1 0.01 

(0) 

9.53 

(0) 

11.34 

(0.026) 

39.88 

(0.569) 

42.17 

(0.602) 

46.18 

(0.660) 

72.94 

(1) - 
0.5 0.55 4.68 

(0) 

9.99 

(0) 

12.73 

(0.052) 

39.35 

(0.559) 

40.80 

(0.583) 

51.55 

(0.736) - - 
1 1.5 1.34 

(0) 

8.27 

(0) 

12.92 

(0.056) 

38.94 

(0.551) 

41.11 

(0.587) 

48.26 

(0.689) - - 
2 2.5 0.23 

(0) 

9.17 

(0) 

10.01 

(0.000) 

39.75 

(0.567) 

41.55 

(0.594) 

52.05 

(0.744) - - 
10 10.5 0.73 

(0) 

9.36 

(0) 

12.09 

(0.040) 

39.88 

(0.569) 

40.20 

(0.574) 

52.51 

(0.759) - - 
50 55 1.64 

(0) 

8.02 

(0) 

11.68 

(0.032) 

36.31 

(0.501) 

41.62 

(0.595) 

53.50 

(0.764) - - 
100 105 3.34 

(0) 

8.68 

(0) 

10.04 

(0.001) 

39.46 

(0.561) 

45.32 

(0.647) - - - 
                                        

n=100                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.20 

(0) 

9.42 

(0) 

10.40 

(0.008) 

39.64 

(0.565) 

40.85 

(0.584) - - - 
0.05 0.1 0.50 

(0) 

9.42 

(0) 

10.39 

(0.008) 

36.53 

(0.505) 

41.53 

(0.593) 

46.23 

(0.660) - - 
0.5 0.55 0.20 

(0) 

9.30 

(0) 

10.17 

(0.003) 

39.74 

(0.567) 

40.19 

(0.574) 

43.49 

(0.621) - - 
1 1.5 1.30 

(0) 

9.20 

(0) 

10.66 

(0.012) 

38.84 

(0.549) 

40.90 

(0.584) 

47.68 

(0.681) - - 
2 2.5 0.14 

(0) 

9.13 

(0) 

11.19 

(0.023) 

39.56 

(0.563) 

49.21 

(0.703) - - - 
10 10.5 0.52 

(0) 

9.83 

(0) 

10.66 

(0.012) 

39.18 

(0.556) 

45.89 

(0.656) - - - 
50 55 0.22 

(0) 

9.85 

(0) 

10.00 

(0.000) 

39.24 

(0.557) 

40.24 

(0.575) - - - 
100 105 0.67 

(0) 

7.45 

(0) 

10.00 

(0.000) 

38.75 

(0.548) 

40.96 

(0.585) 

47.74 

(0.682)  - 
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severe respectively, for 𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {0.20(0), 9.42(0), 10.40(0.008), 

39.64(0.565), 40.85(0.584)}.  

For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {0.50(0), 9.42(0), 10.39(0.008), 36.53(0.505), 

46.23(0.660)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {0.20(0), 9.30(0), 10.17(0.003), 

39.74(0.567), 40.19(0.574), 43.49(0.621)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷= {1.30(0), 

9.20(0), 10.66(0.012), 38.84(0.549), 40.90(0.584), 47.68(0.681)}. For 𝜇 = 2 𝜎2  =

 2.5, 𝐷 = {00.14(0), 9.13(0), 11.19(0.023), 39.56(0.563), 49.21(0.703)}. For 𝜇 =

10 𝜎2  =  10.5, 𝐷 = {0.52(0), 9.83(0), 10.66(0.012), 39.18(0.556), 45.89(0.656)}.  

For 𝜇 = 50 𝜎2  =  55, 𝐷 = {0.22(0), 9.85(0), 10.00(0.000), 39.24(0.557), 

40.24(0.575)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = {0.67(0), 7.45(0), 10.00(0.000), 

38.75(0.548), 40.96(0.585), 47.74(0.682)} respectively. 

Table 4.13 shows the results for the Fuzzy c- partition simulation for when n=200, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷 = {1.83(0), 9.83(0), 10.28(0.006), 

39.81(0.568, 42.78(0.611), }. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {0.07(0), 9.90(0), 

10.280.006), 37.07(0.516), 41.61(0.594)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {0.03(0), 

9.84(0), 10.05(0.001), 39.91(0.570)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷  = {1.67(0), 9.99(0), 

10.06(0.001), 38.46(0.542)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷 = {0.98(0), 9.98(0), 

10.12(0.002), 39.97(0.571)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷 = {0.20(0), 9.92(0), 

10.28(0.005), 39.18(0.500), 41.75(0.596)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷 = {0.22(0), 

9.84(0), 10.38(0.007), 37.46(0.523), 41.10(0.587)}. For 𝜇 = 100 𝜎2  =  105, 𝐷 = 

{1.72(0), 9.89(0), 10.57(0.011), 39.01(0.552), 42.56(0.608)} respectively. 

Table 4.13  shows the results for the Fuzzy c- partition simulation for when n=300, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷 = {2.23(0), 9.41(0), 10.32(0.006), 

37.90(0.531), 40.47(0.578)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {0.43(0), 9.41(0), 

10.05(0.001), 10.58(0.011), 37.59(0.526)}. For 𝜇 = 0.5,  𝜎2  =  0.55  𝐷  = {3.98(0), 

91(0), 0.03(0), 9.84(0), 38.95(0.511)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷  = {0.92(0), 9.42(0), 

10.15(0.003), 36.41(0.503)}. For 𝜇 = 2 𝜎2  =  2.5, 𝐷 = {2.68(0), 9.71(0), 

10.12(0.002), 36.22(0.499)}. For 𝜇 = 10 𝜎2  =  10.5, 𝐷 = {1.53(0), 9.84(0), 

10.57(0.011), 36.56(0.506)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷 = {5.66(0), 9.87(0),  
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Table 4.13. Fuzzy set classification of different levels of overdispersion of CP  

 n=200, 300 

        n=200 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 1.83 

(0) 

9.83 

(0) 

10.28 

(0.006) 

39.81 

(0.568) 

42.78 

(0.611) - - - 
0.05 0.1 0.07 

(0) 

9.90 

(0) 

10.28 

(0.006) 

37.07(0.

516 

41.61 

(0.594) - - - 
0.5 0.55 0.03 

(0) 

9.84 

(0) 

10.05 

(0.001) 

39.91 

(0.570) - - - - 
1 1.5 1.67 

(0) 

9.99 

(0) 

10.06 

(0.001) 

38.46 

(0.542) - - - - 
2 2.5 0.98 

(0) 

9.98 

(0) 

10.12 

(0.002) 

39.97 

(0.571) - - - - 
10 10.5 0.20 

(0) 

9.92 

(0) 

10.28 

(0.005) 

39.18 

(0.500) 

41.75 

(0.596) - - - 
50 55 0.22 

(0) 

9.84 

(0) 

10.38 

(0.007) 

37.46 

(0.523) 

41.10 

(0.587) - - - 
100 105 1.72 

(0) 

9.89 

(0) 

10.57 

(0.011) 

39.01 

(0.552) 

42.56 

(0.608) - - - 
                                        

n=300                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 2.23 

(0) 

9.41 

(0) 

10.32 

(0.006) 

37.90 

(0.531) 

40.47 

(0.578) - - - 
0.05 0.1 0.43 

(0) 

9.41 

(0) 

10.58 

(0.011) 

37.59 

(0.526) - - - - 
0.5 0.55 3.98 

(0) 

9.91 

(0) 

10.05 

(0.001) 

38.95 

(0.511) - - - - 
1 1.5 0.92 

(0) 

9.42 

(0) 

10.15 

(0.003) 

36.41 

(0.503) - - - - 
2 2.5 2.68 

(0) 

9.71 

(0) 

10.12 

(0.002) 

36.22 

(0.499) - - - - 
10 10.5 1.53 

(0) 

9.84 

(0) 

10.57 

(0.011) 

36.56 

(0.506) - - - - 
50 55 5.66 

(0) 

9.87 

(0) 

10.18 

(0.003) 

37.08 

(0.516) - - - - 
100 105 3.38 

(0) 

9.81(

0) 

10.03 

(0.001) 

37.41 

(0.522) - - - - 
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Table 4.14.  Fuzzy set classification of different levels of overdispersion of CP  

  n=500, B=1000 

n=500 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.62 

(0) 

9.96 

(0) 

10.37 

(0.007) 

34.97 

(0.476) - - - - 
0.05 0.1 6.50 

(0) 

9.96 

(0) 

11.01 

(0.019) 

36.93 

(0.513) - - - - 
0.5 0.55 7.39 

(0) 

9.95 

(0) 

10.01 

(0.000) 

34.73 

(0.471) - - - - 
1 1.5 3.40 

(0) 

6.19 

(0) 

10.15 

(0.003) 

33.10 

(0..440) - - - - 
2 2.5 8.21 

(0) 

9.97 

(0) 

10.07 

(0.001) 

35.57 

(0.487) - - - - 
10 10.5 6.99 

(0) 

9.93 

(0) 

10.63 

(0.012) 

37.29 

(0.520) - - - - 
50 55 6.57 

(0) 

9.88 

(0) 

10.49 

(0.009) 

34.89 

(0.474) - - - - 
100 105 6.36 

(0) 

9.88 

(0) 

10.06 

(0.001) 

38.46 

(0.542) - - - - 
                                        

n=1000                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 7.48 

(0) 

10.60 

(0) 

34.20 

(0.011) 

37.48 

(0.461) - - - - 
0.05 0.1 

 - - 

11.10 

(0,021) 

32.13 

(0.422) - - - - 
0.5 0.55 8.11 

(0) - 

10.82 

(0.016) 

32.14 

(0.422) - - - - 
1 1.5 8.23 

(0) - 

11.73 

(0.033) 

32.64 

(0.431) - - - - 
2 2.5 

- - 

10.93 

(0.018) 

32.34 

(0.426) - - - - 
10 10.5 

- - 

10.22 

(0.004) 

31.14 

(0.403) - - - - 
50 55 7.74 

(0) - 

10.62 

(0.012) 

33.09 

(0.440) - - - - 
100 105 8.76 

(0) - 

10.94 

(0.018) 

31.83 

(0.416) - - - - 
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Table 4.15. Fuzzy set classification of different levels of overdispersion of CP  

  n=5000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 

- - 

16.07 

(0.116) 

28.46 

(0.352) - - - - 
0.05 0.1 

- - 

16.53 

(0.124) 

27.49 

(0.333) - - - - 
0.5 0.55 

- - 

16.07 

(0.115) 

27.77 

(0.388) - - - - 
1 1.5 

- - 

15.64 

(0.107) 

27.68 

(0.337) - - - - 
2 2.5 

- - 

16.06 

(0.115) 

28.46 

(0.352) - - - - 
10 10.5 

- - 

16.53 

(0.124) 

27.49 

(0.333) - - - - 
50 55 

- - 

16.07 

(0.116) 

27.77 

(0.338) - - - - 
100 105 

- - 

15.64 

(0.107) 

27.68 

(0.337) - - - - 
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10.18(0.003), 37.08(0.516)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷 = {3.38(0), 9.81(0), 

10.03(0.001), 37.41(0.522)} respectively. 

Table 4.14 shows the results for the Fuzzy c- partition simulation for when n=500, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {0.62(0), 9.96(0), 10.37(0.007), 

34.97(0.476)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷 = {6.50(0), 9.96(0), 11.01(0.019), 

36.93(0.513)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {7.39(0), 9.95(0), 10.01(0.000), 

34.73(0.471)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {3.40(0), 6.19(0), 10.15(0.003), 

33.10(0.440)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷= {8.21(0), 9.97(0), 10.07(0.001), 

35.57(0.487)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {6.99(0), 9.93(0), 10.63(0.012), 

37.29(0.520)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {6.57(0), 9.88(0), 10.49(0.009), 

34.89(0.474)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷 = {6.36(0), 9.88(0), 10.06(0.001), 

38.46(0.542)} respectively. 

Table 4.14 shows the results for the Fuzzy c- partition simulation for when n=1000, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {7.48(0), 10.60(0), 34.20(0.011), 

37.48(0.461}. For 𝜇 = 0.05,  𝜎2  =  0.1, 𝐷= {11.10(0,021), 32.13(0.422}. For 𝜇 =

0.5, 𝜎2  =  0.55  𝐷 = {8.11(0), 10.82(0.016), 32.14(0.422)}. For 𝜇 = 1,  𝜎2  =

 1.5  𝐷  = {8.23(0), 11.73(0.033), 32.64(0.431)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷 = 

{10.93(0.018), 32.34(0.426)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷= {10.22(0.004), 

31.14(0.403)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {7.74(0), 10.62(0.012), 33.09(0.440)}. 

For 𝜇 = 100, 𝜎2  =  105, 𝐷= {8.76(0), 10.94(0.018), 31.83(0.416)} respectively. 

Table 4.15  shows the results for the Fuzzy c- partition simulation for when n=5000, 

the minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷 = {16.07(0.116), 28.46(0.352)}. 

For 𝜇 = 0.05,  𝜎2  =  0.1, 𝐷 = {16.53(0.124), 27.49(0.333)}. For 𝜇 = 0.5,  𝜎2  =

 0.55  𝐷  = {16.07(0.115), 27.77(0.388)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {15.64(0.107), 

27.68(0.337)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷 = {16.06(0.115), 28.46(0.352)}. For 𝜇 =

10, 𝜎2  =  10.5, 𝐷 = {16.53(0.124), 27.49(0.333)}.For  𝜇 = 50, 𝜎2  =  55, 𝐷 = 

{16.07(0.116), 27.77(0.338)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷  = {15.64(0.107), 

27.68(0.337)} respectively. 
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Generalised Poisson Model 

Table 4.16.  Fuzzy set classification of different levels of overdispersion of GP  

  n=20, 30. 

     n=20 

 

 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.25 

 (0) 

5.41 

(0) 

12.44 

(0.005) 

19.72 

( 0.185) 

44.53 

(0.363) 

66.40 

( 0.948) 

85.92 

(1) 

125.00 

(1) 

0.05 0.1 0.25 

(0) 

8.82 

(0) 

11.76 

(0.031) 

39.02 

(0.553) 

40.63 

(0.580) 

65.87 

(0.941) 

77.47 

( 1) 

98.78 

(1) 

0.5 0.55 0.75  

(0) 

9.26 

(0) 

18.68 

(0.165) 

39.02 

(0.553) 

40.41 

(0.577) 

65.60 

(0.937) 

70.15 

( 1) 

118.58 

(1) 

1 1.5 5.56 

 (0) - 

11.67 

(0.032) 

38.14 

(0.536) 

59.90 

( 0.856) - 

118.58 

(1) 

146.30 

(1) 

2 2.5 1.74 

 (0) 

8.82 

(0) 

11.76 

(0.034) 

27.76 

(0.338) 

43.80 

( 0.626) 

50.61 

( 0.755) 

90.00 

(1) - 

10 10.5 3.69 

(0) 

9.30 

(0) 

11.44 

(0.028) 

38.27 

( 0..539) 

47.41 

( 0.677) 

69.72 

( 0.996) 

112.39 

(1) 

117.71 

(1) 

50 55 1.73  

(0) 

7.99 

(0) 

10.47 

(0.009) 

39.92 

(0.570) 

52.37 

(0.748) - 

86.57  

(1) 

111.11 

(1) 

100 105 4.08 

( 0) 

9.31 

(0) 

13.64 

(0.069) 

27.98 

(0.342) 

43.15 

(0.616) 

65.87 

(0.941) 

90.00  

(1) - 

     n=30 

 

    

z  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.27  

(0) 

8.06 

(0) 

13.74 

(0.071) 

39.92 

(0.570) 

46.15 

(0.659) 

60.79 

(0.998) 

72.73 

(1) 

87.32 

(1) 

0.05 0.1 0.22 

(0) 

8.16 

(0) 

11.67 

(0.009) 

39.92 

(0.570) 

43.51 

(0.622) 

63.18 

(0.802) 

89.43 

(1) - 

0.5 0.55 0.27 

 (0) 

9.81 

(0) 

13.02 

(0.058) 

37.48 

(0.523) 

42.20 

(0.577) 

61.44 

(0.996) 

81.15 

(1) 

84.28 

(1) 

1 1.5 0.85 

 (0) 

9.31 

(0) 

16.35 

(0.121) 

38.71 

(0.547) 

41.95 

(0.738) 

67.65 

(0.966) 

80.17 

(1) 

85.92 

(1) 

2 2.5 0.00 

(0) 

9.62 

(0) 

10.47 

(0.009) 

29.74 

(0.376) 

45.89 

(0.617) 

52.87 

(0.755) - - 

10 10.5 0.84 

 (0) 

9.52 

(0) 

12.64 

(0.050) 

37.48 

(0.523) 

41.84 

(0.598) 

43.70 

(0.624) 

81.15 

(1) - 

50 55 1.46 

 (0) 

9.62 

(0) 

10.24 

(0.004) 

35.71 

(0.490) 

47.22 

(0.622) 

53.68 

(0.766) - - 

100 105 0.00 

(0) 

5.56 

(0) 

10.62 

(0.012) 

40.00 

(0.571) 

40.21 

(0.574) 

67.36 

(0.962) 

83.03 

(1) 

124.16 

(1) 
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10.18(0.003), 37.08(0.516)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷 = {3.38(0), 9.81(0), 

10.03(0.001), 37.41(0.522)} respectively. 

Table 4.16 – 4.19 show the results for the Fuzzy c- partition simulation for GP,   Table 

4.16 shows the results when n=20, the minimum and maximum values for not severe, 

moderately severe, severe and very severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 

 𝐷 = {0.25(0), 5.41 (0), 12.44 (0.005), 19.72( 0.185), 44.53(0.363), 66.40(0.948), 

85.92(1), 125.00(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1, 𝐷= {0.25(0), 8.82 (0), 11.76 (0.031), 

39.02(0.553), 40.41(0.577), 65.60(0.937), 70.15(1), 118.58 (1)}. For 𝜇 = 0.5, 𝜎2  =

 0.55  𝐷 = {0.75 (0), 9.26 (0), 18.68(0.165), 39.02(0.553), 40.41(0.577), 65.60(0.937), 

70.15(1), 118.58 (1)}. For 𝜇 = 1,  𝜎2  =  1.5  𝐷= {5.56 (0), 11.67(0.032), 

38.14(0.536), 59.90(0.856), 118.58(1), 146.30 (1)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷= 

{1.74(0), 8.82(0), 11.76(0.034), 27.76 (0.338), 43.80(0.626), 50.61(0.755), 90.00(1)}. 

For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {3.69(0), 9.30 (0), 11.44(0.027), 38.27 (0.539), 

47.41(0.677), 69.72(0.996), 112.39(1), 117.71(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = 

{1.73 (0), 7.99 (0), 10.47(0.009), 10.47(0.009), 39.92(0.570), 52.37(0.748), 86.57 (1), 

111.11 (1)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷 = {4.08(0), 9.31 (0), 13.64(0.069), 27.98 

(0.342), 43.15 (0.616), 65.87 (0.941), 90.00 (1)} respectively. 

Table 4.16 shows the results for the Fuzzy c- partition simulation for when n=30, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {0.27(0), 8.06 (0), 13.74 (0.019), 

39.92(0.570), 46.15 (0.659), 60.79(0.998), 72.73(1), 87.32(1)}. For 𝜇 = 0.05,  𝜎2  =

 0.1, 𝐷 = {0.22(0), 8.16 (0), 11.67 (0.009), 39.92(0.570), 43.51 (0.622), 63.18(0.802), 

89.43(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {0.27 (0), 9.81 (0), 0.75 (0), 13.02 (0.058), 

37.48 (0.523), 42.20 (0.577), 61.44(0.996), 81.15 (1), 84.28(1)}. For 𝜇 = 1,  𝜎2  =

 1.5, 𝐷= {0.85 (0), 9.31 (0), 16.35 (0.121), 38.71 (0.547), 41.95 (0.738), 67.65 

(0.966), 80.17(1), 85.92(1)}. For 𝜇 = 2 , 𝜎2  =  2.5, 𝐷= {0, 9.62 (0), 10.47 (0.009), 

29.74 (0.376), 45.89 (0.617), 52.87 (0.755)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {0.84 (0), 

9.52 (0), 12.64 (0.050), 43.70 (0.624), 81.15(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷= {1.46 

(0), 9.62 (0), 10.24 (0.004), 35.71 (0.490), 47.22(0.622), 53.68 (0.766)}. For 𝜇 = 100,

𝜎2  =  105, 𝐷 = {0, 5.56 (0), 10.62 (0.012), 40.21 (0.574), 67.36 (0.962), 83.03(1)} 

respectively.  
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Table 4.17. Fuzzy set classification of different levels of overdispersion of GP  

  n=50, 100 

                  n=50 

 

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.52 

(0) 

10.99 

(0.019) 

39.02 

(0.553) 

40.57 

(0.580) 

69.87 

(0.998) 

71.05 

(1) 

128.48 

(1) 
0.05 0.1 0.27 

(0) 

9.81 

(0) 

10.47 

(0.009) 

39.04 

(0.553) 

40.03 

(0.572) 

67.36 

(0.992) 

80.95 

(1) 

84.33 

(1) 
0.5 0.55 2.22 

(0) 

9.62 

(0) 

10.11 

(0.002) 

39.36 

(0.559) 

40.41 

(0.577) 

65.60 

(0.937) 

76.85 

(1) 

160.54 

(1) 
1 1.5 1.46 

(0) 

9.81 

(0) 

10.42 

(0.009) 

40.00 

(0.571) 

40.03 

(0.572) 

66.02 

(0.943) 

70.15 

(1) 

111.11 

(1) 
2 2.5 0.31 

(0) 

9.81 

(0) 

10.38 

(0.007) 

39.92 

(0.570) 

41.67 

(0.595) 

69.72 

(0.996) 

76.36 

(1) 

171.43 

(1) 
10 10.5 0.00 

(0) 

8.71 

(0) 

10.27 

(0.005) 

37.84 

(0.530) 

41.49 

(0.593) 

65.87 

(0.941) 

76.85 

(1) 

149.80 

(1) 
50 55 0.00 

(0) 

9.52 

(0) 

10.27 

(0.005) 

39.92 

(0.570) 

43.53 

(0.622) 

68.35 

(0.976) 

71.05 

(1) 

137.50 

(1) 
100 105 0.00 

(0) 

9.52 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

41.14 

(0.588) 

68.35 

(0.976) 

80.58 

(1) 

161.59 

(1) 
                                        

n=100                             

    

  Not 

Severe 

 Moderate-

ly Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.52 

(0) 

10.99 

(0.019) 

39.02 

(0.553) 

40.57 

(0.580) 

69.87 

(0.998) 

71.05 

(1) 

128.48 

(1) 
0.05 0.1 0.27 

(0) 

9.81 

(0) 

10.47 

(0.009) 

39.04 

(0.553) 

40.03 

(0.572) 

67.36 

(0.992) 

80.95 

(1) 

84.33 

(1) 
0.5 0.55 2.22 

(0) 

9.62 

(0) 

10.11 

(0.002) 

39.36 

(0.559) 

40.41 

(0.577) 

65.60 

(0.937) 

76.85 

(1) 

160.54 

(1) 
1 1.5 1.46 

(0) 

9.81 

(0) 

10.42 

(0.009) 

40.00 

(0.571) 

40.03 

(0.572) 

66.02 

(0.943) 

70.15 

(1) 

111.11 

(1) 
2 2.5 0.31 

(0) 

9.81 

(0) 

10.38 

(0.007) 

39.92 

(0.570) 

41.67 

(0.595) 

69.72 

(0.996) 

76.36 

(1) 

171.43 

(1) 
10 10.5 0.00 

(0) 

8.71 

(0) 

10.27 

(0.005) 

37.84 

(0.530) 

41.49 

(0.593) 

65.87 

(0.941) 

76.85 

(1) 

149.80 

(1) 
50 55 0.00 

(0) 

9.52 

(0) 

10.27 

(0.005) 

39.92 

(0.570) 

43.53 

(0.622) 

68.35 

(0.976) 

71.05 

(1) 

137.50 

(1) 
100 105 0.00 

(0) 

9.52 

(0) 

10.24 

(0.004) 

40.00 

(0.571) 

41.14 

(0.588) 

68.35 

(0.976) 

80.58 

(1) 

161.59 

(1) 
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Table 4.17  shows the results for the Fuzzy c- partition simulation for when n=50, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe  

For 𝜇 = 0.05 , 𝜎2  =  0.1, 𝐷 = {0.27(0), 7.64 (0), 10.42 (0.009), 35.71 (0.490), 54.05 

(0.772), 67.65 0.966), 83.87(1), 180.08(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55  𝐷 = {0.84 (0), 

8.82 (0), 11.44 (0.028), 39.36 (0.559), 42.20 (0.603), 66.02(0.943), 71.53(1), 

105.54(1)}. For 𝜇 = 1, 𝜎2  =  1.5,   𝐷 = {1.46 (0), 9.81 (0), 11.44 (0.028), 35.75 

(0.490), 41.95 (0.599), 69.72(0.996), 80.00 1), 206.87 (1)}. For 𝜇 = 2 , 𝜎2  =  2.5,

𝐷= {1.79(0), 9.31 (0), 11.76 (0.034), 39.02 (0.553), 45.89 (0.656), 67.36 (0.962), 

72.73(1), 120.22 (1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {1.13 (0), 8.31 (0), 10.62 

(0.012), 40.00(0.571), 41.84 (0.598), 66.02(0.943), 72.73(1), 140.85 (1)}.  For 𝜇 =

50 , 𝜎2  =  55, 𝐷= {0.25(0), 8.31 (0), 13.32 (0.063), 40.00(0.571), 47.22(0.675), 

69.72(0.996), 78.13(1), 140.85 (1)}. For 𝜇 = 100 , 𝜎2  =  105, 𝐷 = {0.25(0), 9.62 (0), 

10.77 (0.015), 37.70 (0.528), 43.15(0.616), 69.72(0.996), 71.05(1), 98.84 (1)} 

respectively.  

Table 4.17 shows the results for the Fuzzy c- partition simulation for when n=100, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05,  𝐷 = {0, 9.52(0), 10.99 (0.019), 

39.02(0.553),  40.57 (0.580), 69.87(0.998), 71.05(1),  128.48(1)}. For 𝜇 = 0.05,

𝜎2  =  0.1, 𝐷 = {0.27(0), 9.81(0), 10.47(0.009), 39.04(0.553), 40.03 (0.572), 

67.36(0.992), 80.95(1), 84.33 (1)}. For 𝜇 = 0.5, 𝜎2  =  0.55, 𝐷= {0, 9.62(0), 

10.11(0.002), 39.36 (0.591), 40.41(0.577), 65.60(0.937), 76.85(1), 160.54(1)}. 

For 𝜇 = 1,  𝜎2  =  1.5, 𝐷 = {1.46 (0), 9.81(0), 10.42(0.008), 40.00(0.571), 40.03 

(0.572), 66.02(0.996), 70.15(1), 111.11(1)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷= {0.31(0), 

9.81(0), 10.38(0.007), 39.92(0.570), 41.67 (0.595), 69.72(0.996), 76.36(1), 171.43(1)}. 

For 𝜇 = 10, 𝜎2  =  10.5, 𝐷= {0, 9.52 (0), 10.27(0.005), 37.84 (0.530),), 

41.49(0.593), 65.87(0.941), 76.85(1), 149.80(1)}.  For 𝜇 = 50 𝜎2  =  55, 𝐷= {0, 9.52 

(0), 10.27 (0.005), 39.92(0.570), 43.53(0.580), 68.35(0.976), 71.05(1), 137.50(1)}. 

For 𝜇 = 100 𝜎2  =  105, 𝐷= {0, 9.52(0), 10.24(0.004), 40.00(0.571), 41.14(0.588), 

68.35(0.976), 80.58(1), 161.59(1)} respectively.  

Table 4.18 shows the results for the Fuzzy c- partition simulation for when n=200, the 

minimum and maximum values for not severe, moderate, severe and very severe  
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Table 4.18. Fuzzy set classification of different levels of overdispersion of GP  

  n=200, 300 

         n=200 

  Not 

Severe 

 Moderate-

ly  Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.31 

 

(0) 

9.62 

(0) 

10.11 

(0.002) 

39.21 

(0.556) 

41.14 

(0.588) 

67.65 

(0.966) 

70.15 

(1) 

182.98 

(1) 
0.05 0.1 0.00 

(0) 

9.31 

(0) 

10.11 

(0.002) 

39.02 

(0.553) 

40.11 

(0.573) 

69.72 

(0.996) 

70.15 

(1) 

175.00 

(1) 
0.5 0.55 0.00 

(0) 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

41.15 

(0.588) 

68.35 

(0.976) 

72.73 

(1) 

255.71 

(1) 
1 1.5 

0.25 

(0) 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.57 

(0.580) 

69.72 

(0.996) 

76.85 

(1) 

 

291.18 

(1) 
2 2.5 0.00 

(0) 

9.81 

(0) 

10.77 

(0.015 

39.84 

(0.568) 

40.41 

(0.577) 

69.72 

(0.996) 

70.15 

(1) 

287.20 

(1) 
10 10.5 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

39.92 

(0.570) 

43.08 

(0.615) 

66.40 

(0.949) 

72.73 

(1) 

140.11 

(1) 
50 55 0.25 

(0) 

9.85 

(0) 

10.47 

(0.009) 

40.00 

(0.571) 

40.63 

(0.580) 

65.87 

(0.941) 

78.13 

(1) 

141.82 

(1) 
100 105 0.00 

(0) 

9.52 

(0) 

11.04 

(0.020) 

40.00 

(0.571) 

43.18 

(0.617) 

69.72 

(0.996) 

72.73 

(1) 

146.83 

(1) 
      

n=300 

    

  Not 

Severe 

 Moderate-

ly  Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

152.53 

(1) 

0.05 0.1 0.00 

(0) 

9.62 

(0) 

10.96 

(0.018) 

40.00 

(0.571) 

40.03 

(0.572) 

69.00 

(0.986) 

71.05 

(1) 

241.03 

(1) 

0.5 0.55 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

39.92 

(0.570) 

40.57 

(0.580) 

69.72 

(0.996) 

72.73 

(1) 

328.43 

(1) 

1 1.5 0.00 

(0) 

9.52 

(0) 

10.27 

(0.005) 

40.00 

(0.571) 

40.16 

(0.574) 

69.00(0.

986) 

70.15 

(1) 

124.16 

(1) 

2 2.5 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.57 

(0.580) 

68.35 

(0.976) 

71.05 

(1) 

142.55 

(1) 

10 10.5 0.00 

(0) 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.00 

(0.986) 

73.94 

(1) 

375.00 

(1) 

50 55 0.00  

(0) 

9.81 

(0) 

10.11 

(0.002) 

39.92 

(0.570) 

40.42 

(0.577) 

69.72 

(0.996) 

70.15 

(1) 

205.93 

(1) 

100 105 0.22 

(0) 

9.81 

(0) 

10.24 

(0.004) 

39.92 

(0.570) 

41.11 

(0.587) 

69.72 

(0.996) 

71.05 

(1) 

171.43 

(1) 
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respectively, for  𝜇 = 0.01,  𝜎2  =  0.05, 𝐷  = {0.31(0), 9.62(0), 10.11 (0.002), 

39.21(0.556), 41.14(0.588), 67.65(0.966), 70.15(1), 182.98(1)}. For 𝜇 = 0.05, 𝜎2  =

 0.1, 𝐷= {0, 9.31(0), 10.11(0.002), 39.02(0.553), 40.11(0.573), 69.72(0.996),70.15(1), 

75.00(1)}. For 𝜇 = 0.5,  𝜎2  =  0.55, 𝐷= {0, 9.62(0), 10.11(0.002), 40.00(0.571), 

41.15(0.588), 68.35(0.976), 255.71(1)}. For 𝜇 = 1, 𝜎2  =  1.5, 𝐷= {0.25(0), 9.62(0), 

10.11(0.002), 40.00(0.571), 40.57(0.580), 69.72(0.996), 70.15(1), 76.85(1), 

291.18(1)}. For 𝜇 = 2, 𝜎2  =  2.5, 𝐷= {0, 9.81(0), 10.77(0.015), 39.84(0.568), 

40.41(0.577), 69.72(0.996), 70.15(1), 287.20(1)}. 70.15(1), 175.00(1)}. For 𝜇 =

0.5,  𝜎2  =  0.55, 𝐷= {0, 9.62(0), 10.11(0.002), 40.00(0.571), 41.15(0.588), 

68.35(0.976), 255.71(1)}. For 𝜇 = 1, 𝜎2  =  1.5, 𝐷= {0.25(0), 9.62(0), 10.11(0.002), 

40.00(0.571), 40.57(0.580), 69.72(0.996), 70.15(1), 76.85(1), 291.18(1)}. For 𝜇 = 2,

𝜎2  =  2.5, 𝐷= {0, 9.81(0), 10.77(0.015), 39.84(0.568), 40.41(0.577), 69.72(0.996), 

70.15(1), 287.20(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷= {0, 9.81(0), 10.11(0.002), 

39.92(0.570), 43.08(0.615), 66.40(0.949), 72.73(1), 140.11(1)}.  For 𝜇 = 50, 𝜎2  =

 55, 𝐷= {0.25(0), 9.85(0), 10.47(0.009), 8.31 (0), 13.32 (0.063), 40.00(0.571), 

40.63(580), 65.87(0.941), 78.13(1), 141.82(1)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷= {0, 

9.52 (0), 11.04(0.020), 40.00(0.571), 43.18(0.617), 69.72(0.996), 146.83(1)} 

respectively.  

Table 4.18 shows the results for the Fuzzy c- partition simulation for when n=300, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {0, 9.81(0), 10.11 (0.002), 40.00 

(0.571), 40.03 (0.572), 69.72 (0.996), 71.05(1), 152.53(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷 = {0, 9.62(0), 10.96(0.018), 40.00 (0.571), 40.03 (0.572), 69.00 (0.986), 71.05(1), 

241.03(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55 , 𝐷 = {0, 9.81(0), 10.11(0.002), 39.92 (0.570), 

40.57 (0.580), 69.72 (0.996), 72.73(1), 328.43(1)}. For 𝜇 = 1, 𝜎2  =  1.5, 𝐷 = {0), 

9.52(0), 10.27(0.005), 40.00(0.571), 40.16 (0.574), 69.00(0.986), 70.15(1), 124.16(1)}. 

For 𝜇 = 2 , 𝜎2  =  2.5, 𝐷 = {0, 9.81(0), 10.11(0.002), 40.00(0.571), 40.57 (0.580), 

68.35 (0.976), 71.05(1), 142.55(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {0, 9.62(0), 

9.81(0), 10.11(0.002), 40.00(0.571), 40.03 (0.572), 69.00(0.986), 40.42 (0.577), 

73.94(1), 375.00(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {0, 9.81(0), 10.11(0.002), 39.92 

(0.570), 69.72 (0.996), 70.15(1), 205.93 1)}. For 𝜇 = 100 , 𝜎2  =  105, 𝐷 = {0.22(0), 
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9.81(0), 10.24(0.004), 39.92 (0.570), 41.11(0.587), 69.72(0.996), 71.05(1), 171.43(1)} 

respectively.  

Table 4.19 shows the results for the Fuzzy c- partition simulation for when n=500, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, 𝐷 = {0, 9.81(0), 10.42 (0.009), 40.00 

(0.571), 40.15(0.574), 68.17 (0.974), 70.15(1), 180.08(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷 = {0, 9.81(0), 10.16(0.003), 40.00 (0.571), 40.41 (0.577), 69.72 (0.996), 70.15(1), 

255.78(1)}. For 𝜇 = 0.5,  𝜎2  =  0.55  𝐷 = {0, 9.85(0), 10.16(0.003), 39.92 (0.570), 

40.57 (0.580), 68.17 (0.974), 70.11(1), 205.93(1)}. For 𝜇 = 1,  𝜎2  =  1.5, 𝐷 = {0), 

9.81(0), 10.11(0.002), 40.00(0.571), 40.36 (0.577), 69.72(0.996), 70.15(1), 286.37 

(1)}. For 𝜇 = 2 , 𝜎2  =  2.5, 𝐷 = {0, 9.81(0), 10.14(0.003), 39.36 (0.559), 40.21 

(0.574), 69.00(0.986), 71.05(1), 205.36(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷= {0, 

9.85(0), 10.27(0.005), 40.00(0.571), 40.63 (0.580), 69.72(0.996), 70.15(1), 205.36(1)}.  

For 𝜇 = 50.  𝜎2  =  55, 𝐷= {0, 9.62(0), 10.11(0.002), 40.00(0.571), 69.72 (0.996), 

76.36(1), 171.43(1)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷 = {0, 9.52(0), 10.11(0.002), 

40.00(0.571), 40.03(0.572), 69.72(0.996), 70.15(1), 280.00 (1)} respectively.  

Table 4.19 shows the results for the Fuzzy c- partition simulation for when n=1000, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively,For  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 

(0.571), 40.03(0.572), 69.72 (0.996) 70.15(1), 362.82(1)}. For 𝜇 = 0.05,  𝜎2  =  0.1,

𝐷 = {0, 9.81(0), 10.38(0.007), 39.97 (0.571), 40.57 (0.580) 69.72 (0.996) 70.15(1), 

231.75 (1)}. For 𝜇 = 0.5, 𝜎2  =  0.55, 𝐷 = {0, 9.81(0), 10.11(0.002), 40.00 (0.571), 

40.03(0.572), 69.87 (0.998, 70.51(1), 216.67(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {0), 

9.81(0), 10.11(0.002), 40.00(0.571), 40.03 (0.572), 69.72(0.996), 71.15(1), 189.13(1)}. 

For 𝜇 = 2, 𝜎2  =  2.5, 𝐷 = {0, 9.85(0), 10.14(0.003), 40.00(0.571), 40.03 (0.572), 

69.72(0.996), 71.51(1), 216.67(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {0, 9.81(0), 

10.11(0.002), 40.00(0.571), 40.03 (0.572), 40.00(0.571), 69.72(0.996), 70.15(1), 

320.49(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {0, 9.62(0), 10.27(0.005), 40.00(0.571), 

40.03(0.572) 69.72 (0.996), 70.15(1), 245.45(1)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷= {0, 

9.8(0), 10.11(0.002), 40.00(0.571), 40.03(0.572), 69.72(0.996), 71.05(1), 258.20 (1)} 

respectively. For  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 

(0.571), 40.03(0.572), 69.72 (0.996) 70.15(1), 362.82(1)}.  
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Table 4.19. Fuzzy set classification of different levels of overdispersion of GP  

        n=500, 1000, 5000 

         n=500 

  Not 

Severe 

 Moderate-

ly  Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min Max Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.81 

(0) 

10.42 

(0.009) 

40.00 

(0.571) 

40.15 

(0.574) 

68.17 

(0.974) 

70.15 

(1) 

180.08 

(1) 

0.05 0.1 0.00 

(0) 

9.81 

(0) 

10.16 

(0.003) 

40.00 

(0.571) 

40.41 

(0.577) 

69.72 

(0.996) 

70.15 

(1) 

255.78 

(1) 

0.5 0.55 0.00 

(0) 

9.85 

(0) 

10.16 

(0.003) 

39.92 

(0.570) 

40.57 

(0.580) 

68.17 

(0.974) 

70.11 

(1) 

205.93 

(1) 

1 1.5 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.36 

(0.577) 

69.72 

(0.996) 

70.15 

(1) 

286.37 

(1) 

2 2.5 0.00 

(0) 

9.81 

(0) 

10.14 

(0.003) 

39.36 

(0.559) 

40.21 

(0.574) 

69.00 

(0.986) 

71.05 

(1) 

205.36 

(1) 

10 10.5 0.00 

(0) 

9.85 

(0) 

10.27 

(0.005) 

40.00 

(0.571) 

40.63 

(0.580) 

69.72 

(0.996) 

70.15 

(1) 

205.36 

(1) 

50 55 0.00 

 (0) 

9.62 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.16 

(0.574) 

69.72 

(0.996) 

76.36 

(1) 

171.43 

(1) 

100 105 0.00 

(0) 

9.52 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

280.00 

(1) 

   

 

  

n=1000 

    

  Not 

Severe  
Moderate-

ly  Severe 

 Severe  Very 

Severe 

 

𝜇 𝜎2 Min  Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

362.82 

(1) 

0.05 0.1 0.00 

(0) 

9.81 

(0) 

10.38 

(0.007) 

39.97 

(0.571) 

40.57 

(0.580) 

69.72 

(0.996) 

70.15 

(1) 

231.75 

(1) 

0.5 0.55 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.51 

(1) 

216.67 

(1) 

1 1.5 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

71.05 

(1) 

189.13 

(1) 

2 2.5 0.00 

(0) 

9.85 

(0) 

10.14 

(0.003) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.51 

(1) 

216.67 

(1) 
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10 10.5 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

320.49 

(1) 

50 55 0.00  

(0) 

9.62 

(0) 

10.27 

(0.005) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72 

(0.996) 

70.15 

(1) 

245.45(

1) 

100 105 0.00 

(0) 

9.81 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.72(0.

996) 

71.05 

(1) 

258.20 

(1) 

     n=5000     

  Not 

Severe 

 Moderate-

ly  Severe 

 Severe  Very 

Severe 

 

𝜇  𝜎2   Min Max Min Max Min Max Min Max 

0.01 0.05 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

298.39 

(1) 

0.05 0.1 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

328.43 

(1) 

0.5 0.55 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

342.47 

(1) 

1 1.5 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

271.74 

(1) 

2 2.5 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

71.05 

(1) 

280.00 

(1) 

10 10.5 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.11 

(1) 

338.46 

(1) 

50 55 0.00  

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

323.74 

(1) 

100 105 0.00 

(0) 

9.85 

(0) 

10.11 

(0.002) 

40.00 

(0.571) 

40.03 

(0.572) 

69.87 

(0.998) 

70.15 

(1) 

347.06 

(1) 
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𝐷 = {0, 9.81(0), 10.38(0.007), 39.97 (0.571), 40.57 (0.580) 69.72 (0.996) 70.15(1), 

231.75 (1)}. For 𝜇 = 0.5, 𝜎2  =  0.55, 𝐷 = {0, 9.81(0), 10.11(0.002), 40.00 (0.571), 

40.03(0.572), 69.87 (0.998, 70.51(1), 216.67(1)}. For 𝜇 = 1, 𝜎2  =  1.5  𝐷 = {0), 

9.81(0), 10.11(0.002), 40.00(0.571), 40.03 (0.572), 69.72(0.996), 71.15(1), 189.13(1)}. 

For 𝜇 = 2, 𝜎2  =  2.5, 𝐷 = {0, 9.85(0), 10.14(0.003), 40.00(0.571), 40.03 (0.572), 

69.72(0.996), 71.51(1), 216.67(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {0, 9.81(0), 

10.11(0.002), 40.00(0.571), 40.03 (0.572), 40.00(0.571), 69.72(0.996), 70.15(1), 

320.49(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {0, 9.62(0), 10.27(0.005), 40.00(0.571), 

40.03(0.572) 69.72 (0.996), 70.15(1), 245.45(1)}. For 𝜇 = 100, 𝜎2  =  105, 𝐷= {0, 

9.8(0), 10.11(0.002), 40.00(0.571), 40.03(0.572), 69.72(0.996), 71.05(1), 258.20 (1)} 

respectively.  

Table 4.19 shows the results for the Fuzzy c- partition simulation for when n=5000, the 

minimum and maximum values for not severe, moderately severe, severe and very 

severe respectively, for  𝜇 = 0.01, 𝜎2  =  0.05, ,𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 

(0.571), 40.03(0.572), 69.87(0.998),  70.15(1), 298.39(1)}. For 𝜇 = 0.05, 𝜎2  =  0.1,

𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 (0.571), 40.03(0.572), 69.87(0.998), 70.15(1), 

328.43(1)}. For 𝜇 = 0.5, 𝜎2  =  0.55, 𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 (0.571), 

40.03(0.572), 69.87(0.998), 70.15(1), 342.47(1)}. For 𝜇 = 1,  𝜎2  =  1.5, 𝐷 = {0, 

9.85(0), 10.11 (0.002), 40.00 (0.571), 40.03(0.572), 69.87(0.998), 70.15(1), 

271.74(1)}. For 𝜇 = 2,  𝜎2  =  2.5, 𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 (0.571), 

40.03(0.572), 69.87(0.998), 70.05(1), 280.00(1)}. For 𝜇 = 10, 𝜎2  =  10.5, 𝐷 = {0, 

9.85(0), 10.11 (0.002), 40.00 (0.571), 40.03(0.572), 69.87(0.998), 70.11(1), 338.46 

(1)}.  For 𝜇 = 50, 𝜎2  =  55, 𝐷 = {0, 9.85(0), 10.11 (0.002), 40.00 (0.571), 

40.03(0.572), 69.87(0.998), 70.15(1), 323.74(1)}. For 𝜇 = 100,  𝜎2  =  105, 𝐷 = {0, 

9.85(0), 10.11 (0.002), 40.00 (0.571), 40.03(0.572), 69.87(0.998), 70.15(1), 347.06 

(1)} respectively.  

4.2. Averaging Method for Determination of Threshold 

The averaging method was used for the determination of the threshold in this research.  

The average of each of the dispersion percentages was computed to determine the 

threshold. Table 20-23  are the threshold values for each of the sample sizes that is, the 

minimum values and the maximum values. At this point, the minimum and maximum 
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threshold At this point, the minimum and maximum threshold values are presented 

values are presented in the Table with different dispersion percentages and sample 

sizes. The minimum values refer to the point the model should begin to be considered 

for modification however, the minimum threshold can still be tolerated while the 

maximum values indicate the point in which the model should be considered for 

modification. 

Table 4.20  shows that for sample size n=20 for the Poisson model the minimum 

threshold value is 16.78% and the maximum threshold value is 34.07% which means 

for the sample size n=20 Poisson model should be modified when the threshold is 

34.07%. The minimum threshold value for the Negative Binomial is 69.35% and the 

maximum threshold value is 78.43%,. For Com-Poisson model the minimum threshold 

value is 19.33% and the maximum threshold value is 54.69%; and for Generalised 

Poisson model the minimum threshold value is 23.75% and the maximum threshold 

value is 37.09%. At the maximum threshold values, the following models should be 

considered for modification. 

Table 4.20 shows that for sample size n=30, for the Poisson model the minimum 

threshold value is 20.20% and the maximum threshold value is 30.75% which means 

for the sample size n=30 Poisson model should be modified when the threshold is 

30.75%. The minimum threshold value for the Negative Binomial is 69.85% and the 

maximum threshold value is 77.08%. For Com-Poisson model the minimum threshold 

value is 17.89% and the maximum threshold value is 26.95%; and for Generalised 

Poisson model the minimum threshold value is 16.75% and the maximum threshold 

value is 36.48%.  

Table 4.20 shows that for sample size n=50, for the Poisson model the minimum 

threshold value is 24.85% and the maximum threshold value is 32.19 % which means 

for the sample size n=50, Poisson model should be modified when the threshold is 

32.19%. The minimum threshold value for the Negative Binomial is 72.96% and the 

maximum threshold value is 76.55%. For Com-Poisson model, the minimum threshold 

value is 20.57% and the maximum threshold value is 25.12%, and for Generalised 

Poisson model the minimum threshold value is 25.51% and the maximum threshold 

value is 36.55%. At the maximum threshold values, the following models should be 

considered for modification Table 4.20 shows that for sample size n=50, for the  is 
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32.19 % which means for the sample size n=50, Poisson model should be modified 

when the threshold is 32.19%. The minimum threshold value for the Negative 

Binomial is 72.96%   and the maximum threshold value is 76.55%.    

For Com-Poisson model, the minimum threshold value is 20.57% and the maximum 

threshold value is 25.12%, and for Generalised Poisson model the minimum threshold 

value is 25.51% and the maximum threshold value is 36.55%. At the maximum 

threshold values, the following models should be considered for modification 

Table 4.21 shows that for sample size n=100, for the Poisson model the minimum 

threshold value is 23.80% and the maximum threshold value is 30.76% which means 

for the sample size n=100 Poisson model should be modified when the threshold is 

30.76%. The minimum threshold value for the Negative Binomial is 73.17% and the 

maximum threshold value is 75.46%. For Com-Poisson model, the minimum threshold 

value is 19.98 % and the maximum threshold value is 22.62%, and for Generalised 

Poisson model the minimum threshold value is 24.15% and the maximum threshold 

value is 31.59%. At the maximum threshold values, the following models should be 

considered for modification. 

Table 4.21 shows that for sample size n=200, for the Poisson model the minimum 

threshold value is 26.65% and the maximum threshold value is 29.09% which means, 

for the sample size n=200, the Poisson model should be modified when the threshold is 

29.09%. The minimum threshold value for the Negative Binomial is 74.14% and the 

maximum threshold value is 76.01%.  For Com-Poisson model, the minimum 

threshold value is 21.14% and the maximum threshold value is 22.12%, and for 

Generalised Poisson model the minimum threshold value is 24.83% and the maximum 

threshold value is 32.45%. At the maximum threshold values, the following models 

should be considered for modification. 

Table 4.21 shows that for sample size n=300, for the Poisson model the minimum 

threshold value is 25.70% and the maximum threshold value is 29.95% which means 

for  the sample size n=300 Poisson model should be modified when the threshold is 29. 

95%. The minimum threshold value for the Negative Binomial is 73.97% and the 

maximum threshold value is 75.98%.  Com-Poisson model, the minimum threshold va- 
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Table 4.20. Averaging Method for Determination of Threshold n=20, 30, 50 

                         n=20  

 𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 24.17 69.35 34.76 32.58 

0.05 0.1 26.61 73.57 26.53 27.14 

0.5 0.55 16.78 76.31 24.94 34.36 

1 1.5 23.41 75.17 25.10 37.09 

2 2.5 30.44 77.51 54.69 24.50 

10 10.5 34.07 76.79 19.33 35.12 

50 55 19.32 75.35 25.49 28.70 

100 105 20.86 78.43 30.46 23.75 

            

          n=30 

   

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 25.08 77.08 26.52 36.48 

0.05 0.1 24.33 73.39 21.92 28.61 

0.5 0.55 21.36 69.85 20.54 28.94 

1 1.5 29.19 76.76 26.95 24.59 

2 2.5 30.50 72.98 17.89 16.75 

10 10.5 20.20 75.40 25.62 21.39 

50 55 29.34 73.70 24.02 18.88 

100 105 30.75 73.34 25.52 30.42 

       

 

            n=50 

   

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01     0.05 26.37 76.55 25.05 30.44 

0.05 0.1 26.69 72.96 22.56 33.73 

0.5 0.55 26.03 74.23 22.30 32.50 

1 1.5 25.93 74.71 25.12 36.55 

2 2.5 32.19 74.24 20.57 29.69 

10 10.5 24.85 76.49 24.86 32.74 

50 55 29.70 73.21 21.56 27.86 

100 105 26.88 74.92 25.00 25.51 
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Table 4.21. Averaging Method for Determination of Threshold, n=100, 200, 300 

                          n=100 

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 27.98 73.89 21.42 27.29 

0.05 0.1 25.64 74.85 20.85 24.15 

0.5 0.55 30.76 73.17 20.95 30.48 

1 1.5 23.80 73.25 22.62 30.79 

2 2.5 26.05 75.00 20.47 31.70 

10 10.5 25.59 74.96 21.55 24.15 

50 55 29.46 75.46 19.98 31.59 

100 105 24.99 75.36 21.84 26.93 

  n=200    

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 28.45 75.65 22.10 28.28 

0.05 0.1 27.38 75.79 21.40 27.19 

0.5 0.55 27.44 74.14 21.15 29.10 

1 1.5 28.45 74.94 21.14 32.45 

2 2.5 28.88 74.61 21.48 28.59 

10 10.5 29.09 74.63 21.38 24.83 

50 55 27.26 76.01 22.12 25.68 

100 105 26.65 74.57 22.11 29.28 

         n=300  

 

  

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01     0.05 26.99 75.00 21.52 27.12 

0.05 0.1 27.66 74.90 21.56 28.56 

0.5 0.55 29.95 75.84 21.8 28.50 

1 1.5 28.18 74.80 21.79 24.53 

2 2.5 26.84 75.98 22.17 30.10 

10 10.5 28.78 73.97 21.68 27.85 

50 55 25.70 75.09 21.85 28.22 

100 105 26.52 75.17 21.66 27.82 
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 lue is 21.80% and the maximum threshold value is 22.17%, and for Generalised 

Poisson model the minimum threshold value is 24.53% and the maximum threshold 

value is 30.10%. At the maximum threshold values, the following models should be 

considered for modification. 

Table 4.22 shows that for sample size n=500. For the Poisson model the minimum 

threshold value is 26.43% and the maximum threshold value is 28.90% which means, 

for the sample size n=500, Poisson model should be modified when the threshold is 

28.90%. The minimum threshold value for the Negative Binomial is 74.26% and the 

maximum threshold value is 75.49%. For Com-Poisson model, the minimum threshold 

value is 21.49% and the maximum threshold value is 22.28%, and for Generalised 

Poisson model, the minimum threshold value is 27.09% and the maximum threshold 

value is 30.32%. At the maximum threshold values, the following models should be 

considered for modification. 

Table 4.22 shows that for sample size n=1000, for the Poisson model, the minimum 

threshold value is 27.06% and the maximum threshold value is 29.51% which means 

for the sample size n=1000, Poisson model should be modified when the threshold is 

29.51%. The minimum threshold value for the Negative Binomial is 27.60% and the 

maximum threshold value is 75.28%. For Com-Poisson model, the minimum threshold 

value is 31.14% and the maximum threshold value is 34.20%, and for Generalised 

Poisson model the minimum threshold value is 27.26% and the maximum threshold 

value is 30.34%. At the maximum threshold values, the following models should be 

considered for modification. 

Table 4.22  shows that for sample size n=5000, For the Poisson model the minimum 

threshold value is 27.60% and the maximum threshold value is 28.24% which means 

for the sample size n=5000, Poisson model should be modified when the threshold is 

28.24%. The minimum threshold value for the Negative Binomial is 29.05% and the 

maximum threshold value is 74.86%. For Com-Poisson model the minimum threshold 

value is 22.13% and the maximum threshold value is 22.20%, and for Generalised 

Poisson model, the minimum threshold value is 28.21% and the maximum threshold 

value is 29.20%. At the maximum threshold values, the following models should be 

considered for modification. 
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Table 4.23 shows for sample size n = 20, 30… 5000, the minimum and the maximum 

threshold value for the P0, NB, CP, and GP model respectively. When n= 20, the 

minimum threshold value for PO, NB, CP, and GP is  16.78%, 69.35%, 19.33% and 

23.75%  while the maximum threshold value is 34.07%, 78.43%, 54.69% and 37.09% 

respectively. When n= 30, the minimum threshold value for PO, NB, CP, and GP is  

20.2%, 69.85%, 17.89%, and 16.75%  while the maximum threshold value  is 30.75%, 

77.08%, 26.52% and 36.4%8 respectively. 

When n= 50, the minimum threshold value for PO, NB, CP, and GP is   24.85%, 

72.96%, 20.57% and 25.51%  while the maximum threshold value  is 26.88%, 76.55%, 

25.12% and 33.73%. When n= 100, the minimum threshold value for PO, NB, CP, and 

GP is   23.80%, 73.17%, 19.98% and 24.15%   while the maximum threshold value  is  

30.76%, 75.46%, 21.48% and 31.70% respectively. When n= 200, the minimum 

threshold value for PO, NB, CP, and GP is 26.65%, 74.14%, 21.14% and 24.83% 

while the maximum threshold value  is  29.09%, 76.01%, 22.12% and 34.45% 

respectively. When n= 300, the minimum threshold value for PO, NB, CP, and GP is 

25.70%, 73.97%, 21.52% and 24.53% while the maximum threshold value  is   

29.95%, 75.98%, 22.17% and 30.10% respectively. 

When n= 500, the minimum threshold value for PO, NB, CP, and GP is  26.43%, 

74.26%, 21.49% and 27.09% while the maximum threshold value  is  28.25%, 75.18%, 

22.12% and 30.32% respectively. When n= 1000, the minimum threshold value for 

PO, NB, CP, and GP is  27.06%, 27.56%, 31.14% and 27.26% while the maximum 

threshold value  is  29.51%, 75.28%, 34.20% and 30.34% respectively. When n= 5000, 

the minimum threshold value for PO, NB, CP, and GP is  27.60%, 29.05%, 74.86%, 

22.13%, and 28.21% while the maximum threshold value  is   28.24%, 74.86%, 

22.20% and 29.20% respectively. The largest sample size n=5000 were used to 

determine the threshold for the Modification of the four-count models. Table 4.24  

shows  for sample size n = 5000, the minimum and the maximum threshold value for 

the P0, NB, CP, and GP  model is 27.60%, 28.24%, 29.05%, 74.86%, 22.13%, 

22.20%, 28.21% and 29.20%  respectively. 

4.3. Application to Accident Data 

In this research, the Poisson regression model, Negative Binomial regression model, 

Com-Poisson, and Generalised Poisson model were used to model the incidence of 
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Road traffic crashed in Nigeria. The study is based on the secondary data from the 

Bulletin of the Federal Road Safety Corps of Nigeria between 2014- 2018. A cross-

sectional data of incidence of Road crash in Nigeria in all the thirty-six states and 

Federal Capital Territory (FCT) of Nigeria were collected from the Bulletin of Federal 

Road Safety Corps of Nigeria between 2014 and 2018. The models are commonly used 

ones for count data and numbers of road crashes are good examples of count data. Six 

variables were used for this analysis; they are the number of crashes (Y) which is also 

the count SPV=Speed violation (SPV),  Using of Phone while driving (UPD), 

Overloading (OVL), Dangerous driving ( DGD), and Sleeping while driving (SOS) are 

the independent variables. Usually, the test of multicollinearity is carried out to 

determine if there is a violation of the basic assumptions of the classical linear 

regression model. Table 4.25  is the result of the multicollinearity test using the 

Tolerance and Variance Inflation Factor to verify the assumption of the model. 

4.4 MULTICOLLINEARITY 

In regression analysis, a multicollinearity test is usually conducted to ensure that there 

is no violation of one of the basic assumptions of the linear regression model to have a 

reliable result of the study. In the research, the test is conducted for the independent 

variable to ensure there is no multicollinearity among the explanatory variables. The 

Variance inflation factor and tolerance are conducted for the five explanatory variables 

The rule of thumb is that when the variance inflation factor (VIF) that is VIF >10 then, 

collinearity or multicollinearity exists among the variables. As it is shown from Table 

4.25  none of the explanatory variable  variance inflation factor is greater than 10, this 

means that multicollinearity does not exist among the variables and can therefore be 

used for modeling the count data and can also be used for further study of  accident 

data. 

4.6 Parameter Estimation and Statistical Inference 

The parameters of the model were estimated to study the impact of the covariates on 

the study. Table 4.27 – 4.30  present the results for the  estimation and the figure 4.1-

4.10 for additional information. Figure 4.1 to Figure 4.6 show that the distribution of 

the  accident data. 

Table 4.27 shows the result of the analysis of the Road accident data for Poisson mod-  
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Table 4.22. Averaging Method for Determination of Threshold n=500, 1000, 5000 

    n=500 

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 26.68 75.18 22.12 27.37 

0.05 0.1 28.26 74.26 21.84 29.65 

0.5 0.55 28.90 74.83 21.87 27.09 

1 1.5 27.42 74.44 22.11 30.32 

2 2.5 28.25 74.80 21.95 28.35 

10 10.5 26.78 75.49 22.28 28.08 

50 55 26.43 74.74 21.70 27.39 

100 105 27.77 74.98 21.49 29.31 

  n=1000    

𝜇  𝜎2  Poisson  Negative 

Com-

Poisson GP 

0.01 0.05 28.23 74.89 34.20 28.40 

0.05 0.1 27.80 75.28 32.13 27.26 

0.5 0.55 27.06 74.36 32.14 30.34 

1 1.5 27.17 75.24 32.64 28.00 

2 2.5 27.76 29.22 32.34 28.32 

10 10.5 28.77 27.60 31.14 29.25 

50 55 29.51 32.45 33.09 29.77 

100 105 28.55 42.19 31.83 29.68 

            n=5000    

𝜇  𝜎2  Poisson   

Com-

Poisson GP 

0.01     0.05 27.67 74.86 22.13 28.33 

0.05 0.1 27.60 74.53 22.20 28.92 

0.5 0.55 27.63 37.17 22.16 28.21 

1 1.5 27.91 38.16 22.15 29.20 

2 2.5 28.24 29.05 22.17 28.28 

10 10.5 28.12 35.35 22.16 28.92 

50 55 28.21 41.37 22.19 28.47 

100 105 27.96 44.12 22.17 28.42 
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Table 4.23. Summary of the minimum and maximum threshold values for the 

four count models. 

Model/S

ample 

sizes 

Poisson    NB     CP  GP  

 Min max Min Max Min Max Min Max 

20 16.78 34.07 69.35 78.43 19.33 54.69 23.75 37.09 

30 20.2 30.75 69.85 77.08 17.89 26.52 16.75 36.48 

50 24.85 26.88 72.96 76.55 20.57 25.12 25.51 33.73 

100 23.8 30.76 73.17 75.46 19.98 21.84 24.15 31.70 

200 26.65 29.09 74.14 76.01 21.14 22.12 24.83 32.45 

300 25.70 29.95 73.97 75.98 21.52 22.17 24.53 30.10 

500 26.43 28.25 74.26 75.18 21.49 22.12 27.09 30.32 

1000 27.06 29.51 27.56 75.28 31.14 34.20 27.26 30.34 

5000 27.60 28.24 29.05 74.86 22.13 22.20 28.21 29.20 

 

Table 4.24. The Threshold values for the Models 

Model Minimum Maximum 

Poisson 27.60 28.24 

Negative Binomial 29.05 74.86 

Com-Poisson 22.13 22.20 

Generalised Poisson 28.21 29.20 

 

Table 4.25. Collinearity statistics 

Model Tolerance VIF 

SPV 0.697 1.434 

UPD 0.801 1.249 

OVL 0.752 1.327 

DGD 0.813 1.229 

SOS 0.972 1.029 
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4.5 Exploratory Data Analysis  

 

 

Figure 4.1. Plot for number of crashes 

 

Figure 4.2. Plot for number of SPV 
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Figure 4.3. Plot for number of UPD 

 

Figure 4.4. Plot for number of OVL 
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Figure 4.5. Plot for number of DGD. 

 

 

Figure 4.6. Plot for number of SOS 
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el. The estimate of the intercept and of the coefficient of SPV, UPD, OVL, DGD, and 

SOS is 4.786, 3.568x10-3, 5.172x10-2, 3.271x10-2, 1.146x10-3,  4.786, and 3.042x10-2 

respectively. The  estimate of standard error for the intercept  and for the coefficient of 

SPV, UPD, OVL, DGD, and SOS is  8.152x10-3, 3.334x10-5, 3.274x10-3, 1.502x10-3, 

6.588x10-5, and 1.715x10-3 respectively. The score for the intercept and the 

explanatory variables is 587.0700, 106.6900, 17.4500, 21.7900, 17.3900 and 17.7400. 

The P-value for each of the coefficients is 2x10-16. The P-value is compared to the 

level of significance which is 5% for this research. It is revealed from the analysis that 

the intercept and the explanatory variable used to model the data are significant.   

Table 4.28 shows the  estimation of Negative Binomial model for the intercept and of 

the coefficient of SPV, UPD, OVL, DGD, and SOS is 4.6292, 0.0043, 0.0140, 0.0408, 

0.0015 and 0.0270 respectively. The estimate of standard error for the intercept and 

for the coefficient of SPV, UPD, OVL, DGD, and SOS is 0.0558, 0.0004, 0.0303, 

0.0136, 0.0007 and 0.0136 respectively. The Normal score for the intercept and the 

explanatory variables is 82.9294, 11.9830, 0.4622, 3.0069, 2.1892 and 1.9846. The P-

value for each of the coefficients is 2x10-16. The P-value is compared to the level of 

significance which is 5% for this research. It is revealed from the analysis that the 

intercept and the explanatory variables used to model the data are significant.   

Table 4.29. shows the estimation of Com-Poisson model for the intercept and of the 

coefficients of SPV, UPD, OVL, DGD, and SOS is 4.7722, 0.0036, 0.0515, 0.0329, 

0.0011 and 0.038 respectively. The estimate of standard error for the intercept and for 

the coefficient of SPV, UPD, OVL, DGD, and SOS is 0.4784, 0.0040, 0.0054, 0.0031, 

0.0001 and 0.0044 respectively. The Normal score for the intercept and the 

explanatory variables is 9.9747, 9.2976, 9.5533, 10.7090, 9.9900 and 8.7119 

respectively. The P-value for  intercept and of the coefficient of SPV, UPD, OVL, 

DGD, and SOS  is 1.966x10-23, 1.436x10-20, 1.257x10-21, 9.234x10-27, 1.687x10-23, 

and 2.989x10-18 respectively. The P-value is compared to the level of significance 

which is 5% for this research. It is revealed from the analysis that the intercept and the 

explanatory variable used to model the data are significant.   

Table 4.30. shows the estimation of Generalised Poisson model of the intercept  and 

of the coefficient of SPV, UPD, OVL, DGD, and SOS is 14.7516, 0.0036 , 0.0630, 
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0.0367, 0.0010, and 0.0372 respectively. The estimate of standard error for the 

intercept and for the coefficient of SPV, UPD, OVL, DGD, and SOS is 0.0563, 

0.0002, 0.0217, 0.0098, 0.0005 and 0.0108 respectively. The Normal score for the 

intercept and the explanatory variables is 84.3590, 15.5730, 2.9010, 3.7560, 2.1960 

and 3.4320 respectively. The P-value for intercept and of the coefficient of SPV, 

UPD, OVL, DGD, and SOS  is 1.966x10-23, 1.436x10-20, 2x10-16, 2x10-16, 0.0037, 

0.0002, 0.0281 and 0.0006 respectively. The P-value is compared to the level of 

significance which is 5% for this research. It is revealed from the analysis that the 

intercept and the explanatory variable used to model the data are significant.   

Figure 4.7-4.11. is the Quantile-Quantile (QQ) plot  for PO, NB, CP and GP to com-

pare with Normal Distribution. It reveals  from the plots that the points are not on the 

straight line. If all the points fall on the straight line, it is shows that the distribution is 

normally distributed. 

4.7 Model Selection 

Model selection is necessary whenever different models are used for data set to 

propose the best model that properly fit the data sets. The Akaike Information 

Criterion (AIC) is used to select the best model to fit the data in this research. The AIC 

values for the models were presented in Table 4.31. The model with the least value has 

a better fit which is the most appropriate to fit the data. Table 4.31 shows the result of 

the AIC for the four models used to fit the road crash accident data to know the most 

appropriate model to fit the accident data. The AIC for PO, NB, CP and GP is 8836.70, 

2211.03, 8657 and 2205.42 respectively. GP has the least value.  

Multi-collinearity test was carried out using the Variance Inflation Factor (VIF) to 

know if there is a violation of the basic assumption of the classical linear regression 

model before fitting the count with the different models. From the results, it is revealed 

that none of the values is greater than 10 because when the VIF is greater than 10 there 

is evidence of collinearity. The count data was first fitted with the Poisson model 

which showed evidence of overdispersion, The p values at (p < 0.005)  shows that all 

the variables used for the models are significant at 5% level of significance which 

means all the variables contributed to the causes of the road accident and these  should 
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Table 4.26. Fuzzy set methods for classifying the Accident data different 

percentages of overdispersion. 

Variable Mean Variance dispersion Group Membership 

Crashes 255.10 52,579.23 99.51 Very 

Severe 

1 

 

Table 4.27. Parameter Estimation of Poisson Regression Model 

Parameter Estimate Standard error Z-value P-value 

Intercept 4.786 8.152x10-3 587.0700 2x10-16 

SPV 3.568x10-3 3.334x10-5 106.6900 2x10-16 

UPD 5.172x10-2 3.274x10-3 17.4500 2x10-16 

OVL 3.271x10-2 1.502x10-3 21.7900 2x10-16 

DGD 1.146x10-3 6.588x10-5 17.3900 2x10-16 

SOS 3.042x10-2 1.715x10-3 17.7400 2x10-16 

 

Table 4.28. Parameter Estimation of Negative Binomial Regression model 

Parameter Estimate Standard error Z-value P-value 

Intercept 4.6292 0.0558 82.9294 2x10-16 

SPV 0.0043 0.0004 11.9830 2x10-16 

UPD 0.0140 0.0303 0.4622 2x10-16 

OVL 0.0408 0.0136 3.0069 2x10-16 

DGD 0.0015 0.0007 2.1892 2x10-16 

SOS 0.0270 0.0136 1.9846 2x10-16 

 

Table 4.29. Parameter Estimation of Com-Poisson Regression Model 

Parameter Estimate Standard error Z-value P-value 

Intercept 4.7722 0.4784 9.9747 1.966x10-23 

SPV 0.0036 0.0040 9.2976 1.436x10-20 

UPD 0.0515 0.0054 9.5533 1.257x10-21 

OVL 0.0329 0.0031 10.7090 9.234x10-27 

DGD 0.0011 0.0001 9.9900 1.687x10-23 

SOS 0.0381 0.0044 8.7119 2.989x10-18 
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Table 4.30. Parameter Estimation of Generalised Poisson Regression Model 

Parameter Estimate Standard error Z-value P-value 

Intercept 14.7516   0.0563   84.3590  2x10-16 

SPV 0.0036 0.0002 15.5730 2x10-16 

UPD 0.0630 0.0217 2.9010 0.0037 

OVL 0.0367 0.0098 3.7560 0.0002 

DGD 0.0010 0.0005 2.1960 0.0281 

SOS 0.0372 0.0108 3.4320 0.0006 

 

Table 4.31. Akaike Information Criteria (AIC) 

Model AIC 

Poisson  8836.70 

Negative Binomial  2211.03 

Com- Poisson 8657.64 

General Poisson 2205.42 
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Figure 4.7. QQ- Plot for Poisson Model 

 

Figure 4.8. QQ- Plot for Negative Binomial Model. 
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Figure 4.9. QQ-Plot for Com-Poisson Model. 

 

Figure  4.10. QQ-Plot for Generalised Poisson Model. 
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 be included in further study of the road accident crashes. 

The count data was first modeled with the Poisson model which showed the evidence 

of overdispersion. The residual of deviance to its degree of freedom was examined, the 

rule of thumb is that whenever the ratio of residual deviance to its degree of freedom is 

equal to one it means that overdispersion does not exist in the data, the data is properly 

fitted by the Poisson Model but if the ratio of residual of the freedom to its degree of 

freedom is less than one, there is under dispersion but it is problem of overdispersion 

when the ratio of residual of the freedom to its degree of freedom greater than one. The 

residual deviance is 7519.70, the degree of freedom is 179, the ratio of the residual 

deviance to the degree of freedom is 42.01 which is greater than one. This is a scenario 

of overdispersion. At this point, alternative models are considered. 

4.8 Discussion of Results 

In the literature,   model  have been developed to solve the problem of overdispersion 

this has been discussed in literature review. Models have  been modified and 

extensively discussed  but the  threshold before modifying  models when the problem 

of overdispersion inherent in the data was not considered. In this research, different 

models for count data have been considered with the threshold when needed to modify 

the models when the need arises. A fuzzy set has been used to classify the different 

levels of overdispersion, which are: Not severe, Moderate, severe, and very severe 

which is based on membership function. This has been applied to the life study of road 

crashes accident between the years 2014 and 2018.  Different dispersion percentages 

result from the simulation study in order to propose the threshold to modify model in  

the problem of overdispersion is not properly taking care of , the output of the result of 

simulation will be make available on request. In this study, Fuzzy-c was used to 

categorise the degree of severity namely Not severe, Moderate, severe, and very severe 

with their corresponding membership function..  A dispersion percentage of (0 - 10%) 

is classified as not severe with the membership function of 0. dispersion percentage of 

(11 - 30%) as moderately severe, (30 - 69%) as severe while 70% and  above  as  Very 

severe.    

The  thresholds proposed  fills the gap in research  in sense that  count  data models 

were modified without considering when  overdispersion is of  serious cause of 

concern. Famoye  (2004)   modified  Poisson  model when the sample mean and 
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sample variance were 0.76 and 1.32 respectively, in line with this study in Table 4.1-

4.9 the first column is mean –variance  when there is problem of overdispersion as 

pointed out by Consul et al (1992, Greene (1994) , Ismail et al (2013).  Trivedi and 

Cameroon (1986) modified Poisson model when the sample mean  was 0.302 and 

sample variance was 0.637,but Trivedi and Cameroon (1986) did not consider the 

threshold before modifying the model. Shmuelli (2005) used  an alternative model for 

the data when the sample mean and sample variance were 3.56 and 11.31 respectively,  

Lambert(1992) encountered too many zeros (75% of zeros)  when modeling number of 

defect in manufacturing, another model was employed  to fit the data. In relationship to 

this research work.  

Table 4.1-4.5 presented the summary of different dispersion percentages of 

overdispersion of the simulation study of Poission model. In Table 4.1, the minimum 

value for not severe is 0 and the maximum value is 9.81 with a corresponding 

membership function of 0,  the moderate has the minimum value of 10.11 with 

membership function of 0.02 and maximum value of 12.95 corresponding membership 

function of 0.056, severe with the minimum dispersion percentage of  40.36 with the 

membership function of 0.577 and maximum value of  69.72 with membership 

function of 0.996 and very severe has a minimum dispersion percentage of 83.03  with 

membership function of 1 and  the maximum value of 116  with membership function 

of   1. The class of not severe takes a minimum of 0 with a corresponding membership 

function 0 and maximum takes a value of 9.52 with membership function of 0  in 

Table 4.1  while moderate has a minimum dispersion percentage 10.11 with  0.002 as 

the membership function and maximum value  of 39.92 with membership function of  

0.570, severe has a value of 40 .03 as the minimum and 68.35 with membership 

function of  0.976 as the maximum value while very severe has a minimum of 71.05 

and maximum value with membership function of 1.  

Table 4.2 has minimum and maximum value of 0 and 9.81 with membership function 

of 0 for not severe, 10.11 and 40.00 for minimum and maximum value with 

membership function of 0.002 and 0.571 respectively for moderate, severe has a value 

of 40.57 with membership function of 0.580 and maximum value 61 70 with 

membership function of  0.881 while very severe has a minimum of 71 05 and 169.13 

with membership function of  1. In Table 4.2, not severe has a minimum of 0 and 

maximum value of 9.81 with membership function of  0 , moderate has a minimum  of  
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10.24 and maximum value of  11.44 with membership function of 0.004 and 0.028 

respectively, severe has a minimum 40.03 has a maximum value of 66.79 with 

membership function  of 0.572 and 0.954 respectively, while very severe has a 

minimum of 97.17 and 171.43 with membership function of  1. 

The class of not severe takes a minimum of 0 with a corresponding membership 

function 0 and maximum takes a value of 9.25 with membership function of 0 in Table 

4.3 while moderate has a minimum dispersion percentage 10.11 with  0.002 and 

maximum value 40.00  with  the membership function of 0.571 , severe has a value of 

40 .16 as the minimum and 69.72 with membership function of  0.996 as the maximum 

value while very severe has a minimum of 70.15 and maximum value  of 210 with 

membership function of 1. Table 4.3 has minimum and maximum value of  0 and 9.81 

with membership function of 0 for not severe, 10.11 and 40.00 for minimum and 

maximum value with membership function of 0.002 and 0.571 respectively for 

moderate, severe has a value of 40.03 with membership function of 0.572 and 

maximum value 69.72  with membership function of  0.996 while very severe has a 

minimum of 70.15 and 259 with membership function of  1.  

Table 4.4  has minimum and maximum value of 0 and 9.81 with membership function 

of 0 for not severe, 10.11 and 40.00 for minimum and maximum value with 

membership function of 0.002 and 0.571 respectively for moderate, severe has a value 

of 40.03 with membership function of 0.572 and maximum value 69.72 with 

membership function of  0.996 while very severe has a minimum of 71 05 and 298 

with membership function of  1. In Table 4.4, not severe has a minimum of 0 and 

maximum value of 9.61 with membership function of  0 , moderate has a minimum  of  

10.01 and maximum value of  40.00 with membership function of 0.002 and 0.0571 

respectively, severe has a minimum 40.03 has a maximum value of 66.72 with 

membership function  of 0.572 and 0.996 respectively, while very severe has a 

minimum of 70.15 and 287 with membership function of  1.  

The class of not severe takes a minimum of 0 with a corresponding membership 

function 0 and maximum takes a value of 9.85 with membership function of 0 in  

Table 4.5,  while moderate has a minimum dispersion percentage 10.01 with  0.002 

and maximum value 40.00  with  the membership function of 0.571 , severe has a 

value of 40 .03 as the minimum and 69.87 with membership function of  0.998 as the 
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maximum value while very severe has a minimum of 70.15 and maximum value  of 

411.54 with membership function of 1.  

Table 4.6 – 4.10  presented the summary of different dispersion percentages of Over- 

dispersion of the simulation study of  Negative Binomial Model. Table 4.6  Class of 

Severe has a minimum value of 41.49 with membership function of 0.593 and 

maximum value 69.67  with membership function of  0.956 while very severe has a 

minimum of 70.28 and 91.04  with membership function of  1. Table 4.6 ,  32.40 and 

34.89  for minimum and maximum value with membership function of 0.408 and 

0.474  respectively for moderate, severe has a value of 66.27 with membership 

function of 0.947  and maximum value 69.98 with membership function of  0.977 

while very severe has a minimum of 70.28 and 91.04 with membership function of  1.  

In  Table 4.7, class of   severe has a minimum 41.52 has a maximum value of 69.90 

with membership function  of 0.593 and 0.999 respectively, while very severe has a 

minimum of 70.16 and 92 75 with membership function of  1. In Table 4.7, moderate 

has a minimum dispersion percentage 11.99 with  0.038 and maximum value 39.68  

with  the membership function of 0.565 , severe has a value of 41.90  as the minimum 

and 69.91 with membership function of  0.99  as the maximum value while very severe 

has a minimum of 70.01 and maximum value  of 94.28 with membership function of 1.  

Table 4.8,  has  the minimum and maximum value of  16.53 and 35.90  with 

membership function of 0.124  and 0.493 respectively for moderate, severe has a value 

of 40.20 with membership function of 0.574 and maximum value 69.69  with 

membership function of  0.999 while very severe has a minimum of 70.02 and 93.57 

with membership function of  1. Table 4.8  has 18.36  and 36.31  for minimum and 

maximum value with membership function of 0.159 and 0.699 respectively for 

moderate, severe has a value of 40.11 with membership function of 0.573 and 

maximum value 69.99 with membership function of  0.999 while very severe has a 

minimum of 70.00 and 95.27 with membership function of  1.  

Table 4.9,  15.99 and 39.78 for minimum and maximum value with membership 

function of 0.114 and 0.567 respectively for moderate, for the class of severe has a 

value of 40.35 with membership function of 0.666 and maximum value 69.97  with 

membership function of  0.999 while very severe has a minimum of 70.00 and 95.96 
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with membership function of  1. Table 4.9,   has minimum and maximum value of 0 

and 9.99 with membership function of 0 for not severe, 10.00 and 40.00 for minimum 

and maximum value with membership function of 0.002 and 0.571 respectively for 

moderate, severe has a value of 40.03 with membership function of 0.572 and 

maximum value 69.99 with membership function of  0.999 while very severe has a 

minimum of 70. 05 and 249.88  with  membership function of  1. In Table 4.10,  not 

severe has a minimum of 0 and maximum value of  10.00  with membership function 

of  0 , moderate has a minimum  of  10.01 and maximum value of  40.00 with 

membership function of 0.002 and 0.0571 respectively, severe has a minimum 40.00 

has a maximum value of 69.99 with membership function  of 0.571 and 0.999 

respectively, while very severe has a minimum of 70.00 and 171.43  with membership 

function of  1. 

Table 4.11 - 4.15 presented the summary of different dispersion percentages of 

overdispersion of the simulation study of Com-Poission model. In Table 4.11 the 

minimum value for not severe is 0.09 and the maximum value is 9.64 with a 

corresponding membership function of 0,  the moderate has the minimum value of 

10.08 with membership function of 0.02 and maximum value of 39.94 corresponding 

membership function of 0.570, severe with the minimum dispersion percentage of  

40.16 with the membership function of 0.574 and maximum value of  69.30 with 

membership function of 0.990 and very severe has a minimum dispersion percentage 

of 70.15  and  the maximum value of 86.22 with membership function of 1.  

The class of not severe takes a minimum of 0.40 with a corresponding membership 

function 0 and maximum takes a value of 9.94 with membership function of 0 in Table 

4.11  while moderate has a minimum dispersion percentage 10.21 with  0.004 as the 

membership function and maximum value  of 39.42 with membership function of  

0.566, severe has a value of 40 .44 as the minimum and maximum value of 67.20 with 

membership function of  0.578 and 0.960 respectively;  while very severe has a 

minimum of 74.05 and  the maximum value  is greater than  91.9 with membership 

function of 1.  

Table 4.12,  has minimum and maximum value of 0.01  and 9.99  with membership 

function of 0 for not severe, 10.01 and 39.88  for minimum and maximum value with 

membership function of 0.001 and 0.569  respectively for moderate, severe has a value 
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of 40.20 with membership function of 0.574 and maximum value 53.50 with 

membership function of  0.764 while very severe has a minimum of 72.94 and the 

maximum value  is greater than  72.94  with membership function of  1. In Table 4.12,  

not severe has a minimum of 0.14 and maximum value of 9.85 with membership 

function of  0 , moderate has a minimum  of  10.00 and maximum value of  39.74 with 

membership function of  0 and 0.567 respectively, severe has a minimum value of  

40.19  and  a maximum value of 47.74 with membership function  of 0.574  and 0.682  

respectively. 

The class of not severe takes a minimum of 0.03 with a corresponding membership 

function 0 and maximum takes a value of 9.98 with membership function of 0 in Table 

4.13,   while moderate has a minimum dispersion percentage 10.05 with  0.001 and 

maximum value 39.91  with  the membership function of 0.570 , severe has a value of 

40 .10 as the minimum with membership function of  0.587. Table 4.13,  has  

minimum and maximum value of  0.43 and 9.91 with membership function of 0 for not 

severe, 10.05 and 38.95 for minimum and maximum value with membership function 

of 0.001 and 0.511 respectively for moderate. Table 4.14,  has  minimum and 

maximum value of  0.62 and  9.93  with membership function of 0 for not severe, 

10.01 and 38.46 for minimum and maximum value with membership function of 0.001 

and 0.522 respectively for moderate. Table 4.14,   has  minimum and maximum value 

of  0.43 and 10.60 with membership function of 0 for not severe, 10.22 and 37.48  for 

minimum and maximum value with membership function of 0.004 and 0.461 

respectively for moderate. Table 4.15 has  minimum and maximum value of  15.64 and 

28.46  for moderate with membership function 0.107 and 0.352 respectively.  

Table 4.16- 4.19 presented the summary of different dispersion percentages of 

overdispersion of the simulation study of  Generalised Poisson Model. In Table  4.16 

the minimum value for not severe is 0.25 and the maximum value is 9.82 with a 

corresponding membership function of 0,  the moderate has the minimum value of 

10.47  with membership function of 0.09  and maximum value of 39.92 with a  

corresponding membership function of 0.570, severe with the minimum dispersion 

percentage of  40.41 with the membership function of 0.577 and maximum value of  

69.72 with membership function of 0.996 and very severe has a minimum dispersion 

percentage of 85.92  with membership function of 1 and  the maximum value of 

146.30 with membership function of   1. In Table 4.16 , not severe has a minimum of 0 
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and maximum value of 9.81 with membership function of  0 , moderate has a 

minimum  of  10.24 and maximum value of  40.00 with membership function of 0.004 

and 0.0571 respectively, severe has a minimum value of  40.21 and a  maximum value 

of 66.72 with membership function  of 0.574  and 0.966 respectively.  

Table 4.17,  0.25 and 9.81  for minimum and maximum value with membership 

function of 0 for not severe, 10.42 and 40.00 for minimum and maximum value with 

membership function of 0.009 and 0.571 respectively for moderate, for the class of 

severe ,  a  minimum  value of 41.95 with membership function of 0.599 and 

maximum value 69.72  with membership function of  0.996 while very severe has a 

minimum of 83.87 and  206.87 with membership function of  1. Table 4.17  has 

minimum and maximum value of 0 and 9.81 with membership function of 0 for not 

severe, 10.11 and 40.00 for minimum and maximum value with membership function 

of 0.002 and 0.571 respectively for moderate, for class of severe,  a value of 40.03 with 

membership function of 0.572 and maximum value 69.87  with membership function 

of  0.998 while very severe has a minimum of 71. 05 and 171.43  with  membership 

function of  1.  

In Table 4.18,  not severe has a minimum of 0 and maximum value of  9.85  with 

membership function of  0 , moderate has a minimum  of  10.11 and maximum value 

of  40.00 with membership function of 0.002 and 0.0571 respectively, severe has a 

minimum 40.11 and maximum has a value of 69.72 with membership function  of 

0.573 and 0.996 respectively, while very severe has a minimum value of 70.15 and 291 

with membership function of  1. Table  4.18  has minimum and maximum value of  0 

and 9.85 with membership function of 0 for not severe, 10.11 and 40.00 for minimum 

and maximum value with membership function of 0.002 and 0.571 respectively for 

moderate, severe has a value of 40.03 with membership function of 0.572 and 

maximum value 69.72  with membership function of  0.996 while very severe has a 

minimum of 70.15 and 328 with membership function of  1.  

Table 4.19   has minimum and maximum value of 0 and 9.81 with membership 

function of 0 for not severe, 10.11 and 40.00 for minimum and maximum value with 

membership function of 0.002 and 0.571 respectively for moderate, severe has a value 

of 40.15 with membership function of 0.574 and maximum value 69.72 with 
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membership function of  0.996 while very severe has a minimum of 70.15 and 286.37 

with membership function of  1.  

In Table 4.19 , not severe has a minimum of 0 and maximum value of 9.61 with 

membership function of  0 , moderate has a minimum  of  10.01 and maximum value 

of  40.00 with membership function of 0.002 and 0.0571 respectively, severe has a 

minimum 40.03 has a maximum value of 66.72 with membership function  of 0.572 

and 0.996 respectively, while very severe has a minimum of 70.15 and 287 with 

membership function of  1. The class of not severe takes a minimum of 0 with a 

corresponding membership function 0 and maximum takes a value of 9.85 with 

membership function of 0 in Table 4.19 while moderate has a minimum dispersion 

percentage 10.11 with  0.002 and maximum value 40.00  with  the membership 

function of 0.571 , severe has a value of 40 .03 as the minimum and 69.72 with 

membership function of  0.996 as the maximum value while very severe has a 

minimum of 70.05 and maximum value  of 362 with membership function of 1.  

The study has filled the gap in research, in line with Famoye (2004), Trivedi and 

Cameron (1986),  Shmeulli (2004), Consul et’al (1992) polnted out that overdispersion 

occurs when  mean and variance are not equal  and different models have been 

developed. And the first column of Table 4.1-4.19 in this chapter is a case of 

overdispersion.  Means are  0.01, 005,0.5, 1, 2, 10, 50 and 100 while variances   are 

0.05, 0.1, 0.1, 0.55, 1.5, 10.5, 55, and 105 which is the case of overdispersion . Column 

2 – 4 Table 4.1-4.19  is the modified Fuzzy c method  of  Bezdek (1981) and Yang 

(1993), this methodology has extensively discussed  in chapter three of this study with 

unique membership function constructed to address the severity of overdispersion. 

According to Zimmermann (2014), Yang (1993), Yang (2017), Yang (2009a),  

Yang(2009b), “vaguess and lack of information can be successful modeled by the 

Fuzzy method , which is the  case of  overdispersion. 

In line with Bezdek (1981) and Yang (1993), overdispersion has been classified into 

different degree of severity; namely Not severe, Moderate, Severe, and Very Severe 

with their corresponding membership function in Column 2 – 4 of Table 4.1-4.19.  

This  study fills the gap in the research and in literature relating to the  problem of 

overdispersion in count data model as presented on .Table 4.20 – 4.22  presented the 

point and threshold for modification. Table 4.20 – 4.24  fill the gap in research for 
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when overdispersion should be modified unlike Famoye (2004), Trivedi and Cameron 

(1986),  Shmeulli (2004), Consul et’al (1992) that modified model without considering 

when overdispersion is  serious cause of concern. In this research Poisson model  

should be modified when  dispersion percentage less than 28.24%, Negative Binomial  

less than 74.86%,ComPoisson  less than 22.20%, and Generalised Poisson model  less 

than 29.20%. 

Table 4.23 examines for the  presence of collinearity among  the explanatory variables 

used  to  model  the crashes of the accident  data. Nwakwo (2015) opined that 

“correlation  between the explanatory variables  should  be examined before fitting  the  

model .The Variance  inflation  factor (VIF) will be computed, if  VIF greater  than 10 

indicates  the  presence of  collinearity among  the  variables .The explanatory 

variables are Speed violation (SPV),  Using of Phone while driving (UPD), 

Overloading (OVL), Dangerous driving ( DGD), and Sleeping while driving 

(SOS).The Variance  inflation  factor for Speed violation is 1.434, ),  Using of Phone 

while driving is 1.249,  Overloading  is 1.327. Dangerous driving is 1.229 and 

Sleeping while driving is 1.029 which  indicates  each of VIF than one , it  means the 

variables are  suitable  to study the crashes of the accident  data. 

Figure 4.1-4.6 is exploratory data analysis to know the  distribution of the  data of life 

study .this shows from the plot that data are normally  disturbuted. Table 4.26 is the 

Fuzzy set method for classifying the accident  data. The mean of the life study is 

255.10 and  the variance is 52 579.23 which show a case of overdispersion Famoye 

(2004), modified Poisson model when mean was 0.76 and variance  was  1.35, in light  

with  Famoye (2004) the mean and variance  of  the  accident  data is 255.10 and  the 

variance is 52 579.23; in addition dispersion percentage was  computed  to know the 

severity of the  dispersion.  This research  fill the gap by computation of dispersion 

percentage  from the  methodology in chapter  three and according to the modified 

method of  Bezdek(1981) and Yang (1983), Zimmerman  (2001), according  to this 

study   the dispersion  percentage  is 99.5% which classified  as very  severe  with the 

membership of 1, thus this study fill the  gap in research by classifying overdispersion 

into different category with the modified Fuzzy set method. 

Table  4.27-4.30 is the parameter estimation of the models used to fit the  life study.It 

is to examine the  significance of the variables  to  the life study. Hypothesis was 
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carried  out at  5% level  of significant. The result  reveals that all the variables  

contributed to the incidence of Road traffic crashes , for the  P-value less than  the 

level  of significance. In line with Nwakwo(2015), Famoye(2004), Famoye(2006), 

Srinvas(2008), Shmuelli(2005)  that those variables be included when modeling Road 

Traffic  Crashes. 

Table 4.31 is the Akaike Information Criteria (AIC). This study attempt  the  

appropriate  model for the  life  study. The four models were used to fit data.  AIC is 

used  for  model  selection. From  the  Table  4.31, the least AIC is considered to be 

suitable model for  the  count data .The Table  reveals  that Generalised Poisson  

Model  is the model  with least  value of AIC that is 2205.42 in line with 

Famoye(2004). 

Figure 4.7-4.10 is  the Quantile- Quantile- plot(QQ) plots for  the  four  models to 

verified  if the samples from the parent population, the plots  depict the samples  are 

from  parent population . 

The discussion of the results, therefore, have shown the gap this study  has filled in 

research  and  literature. 
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CHAPTER FIVE 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

5.1  Summary 

This section is the summary of the findings discussed in the previous chapters with the 

conclusion and recommendations. It was revealed from the literature that there is a 

dearth of literature on the threshold for the point for modification of overdispersion 

when it occurs. Previous studies did not consider the threshold to know if there  is need 

for modification when there is overdispersion.  It was observed that researchers modify 

existing models when there is a slight difference between the mean and variance of the 

Poisson model and oftentimes, the developed models sometimes provide a poor fit 

when used to model count data. Many modified the model even when there may be  no 

need for modification 

Many of the scholars modified the Poisson model to capture the problem of 

overdispersion without first examining the cause which contributed to the problem of 

overdispersion and the excess zero. Oftentimes, apparent overdispersion may be 

encountered when dealing with count data and many of the researchers still go ahead 

to modify this model when the restructuring of the model will resolve this problem 

Hilbe(1998) but researchers  just  modify when there is no need for this. This is the 

motivation of this study in providing the threshold for the modification of the models 

considered in this study with this threshold proposed the researchers should cross-

check the severity of the overdispersion before modifying the overdispersion model.  

Overdispersion was classified into different degrees of severity with the use of a Fuzzy 

set namely: Not severe (Mild), Moderate, Severe, and Very severe with the 

construction of the membership function for each of the classes and the threshold were 

determined by Averaging method. 

The summary of the finding from the results show that overdisprsion is severe for the 

following models when the dispersion percentage is 28.24% for  Poison model, 
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22.20% for Com-Poisson, 74.86%  for   Negative  Binomial and  29.20 for Generalised 

at this threshold the model should be considered for modification. The result for the 

Road Traffic Crashes revealed that there is evidence  of overdispersion inherent  in the  

data  the  ratio of residual deviance  to degree of freedom is 42.1.  The dispersion 

percentage  of the road crashes is 99.5% which belongs to the class of very severe with 

membership function of 1. The explanatory variables namely Speed violation (SPV),  

Using of Phone while driving (UPD), Overloading (OVL), Dangerous driving ( DGD), 

and Sleeping while driving (SOS)all contributed  to the causes of the road  crashes 

because the  p- value for SPV, UPD, OVL, DGD, SOS are 2e-16, 2e-16, 2e-16, 2e-16, and 

2e-16 respectively less than 0.05 level of significance. The AIC for model selection  

for the four models  for PO, NB, CP and GP is 8836.70, 2211.03, 8657 and 2205.42 

respectively. This shows that GP has the least value and appropriate for modeling the 

accident data. 

5.2 Conclusion 

In line with the simulation study and  accident data analysis,  it can be reasonably 

concluded that the aim and objectives of this research were achieved. The simulation 

study provided the threshold for the  modification of  the  models under consideration. 

Each threshold for the modification of the model had been determined and 

membership function was also constructed for the study. With the use of the Akaike 

information criterion, the appropriate model for the count data was selected which 

showed that the Generalised Poisson model was the most appropriate model for the 

count data. 

5.3 Recommendations  

As earlier mentioned this research has contributed to research that there is a need to 

consider threshold when overdispersion is a serious cause of concern. Based on the 

assumptions and analyses when there is a problem of overdispersion, there is no need 

to modify these models when 

• Poisson model is less than 28.24%, 

• Negative Binomial is less than 74.86%, 

• ComPoisson is less than 22.20%, and 

• Generalised Poisson model is less than 29.20% 
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At these points,   these models should not be considered for modification when the 

above thresholds are not attained. 

5.4 Contributions To Knowledge 

 Different models have been modified to solve the problem of  overdispersion  

in count data but there is still  dearth of research when overdispersion is of serious 

cause of concern. This research,  therefore,   has contributed to knowledge by: 

• Categorised  different percentages of overdispersion and determined  when  

overdispersion is a serious cause of concern. 

•  Different membership functions have been constructed to determine the 

threshold when the models should be modified. 

• Threshold for modification of Poisson model, Negative Binomial, Com-

Poisson and Generalised Poisson models are 28.24%, 74.86%, 22.20%, 

29.20% respectively. 

5.5 Suggestions for Further Studies. 

The study observed the possible areas of extension of this work include:-  

- Determination of threshold for modification for other count data models. 

- Consider Bayesian method rather than the classical method used to maximise 

the use of apriori information about the models. 

criterion, the appropriate model for the count data was selected which showed that the 

Generalised Poisson model was the most appropriate model for the count data. 
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APPENDIX 

 

TABLE 1: DATA PRESENTATION FOR THE ACCIDENT DATA 

Crashes SPV UPD OVL DGD SOS 

87 27 0 0 9 0 

288 65 0 0 50 0 

57 31 0 1 8 0 

272 115 2 2 29 0 

493 114 0 5 27 9 

95 4 1 0 5 0 

290 143 2 14 53 2 

14 5 0 0 2 0 

197 81 2 5 51 0 

290 152 1 1 664 1 

248 93 1 3 39 4 

239 137 0 0 21 1 

60 36 0 1 7 0 

263 111 1 2 31 1 

1395 578 3 6 118 4 

179 35 0 0 34 1 

241 64 0 0 37 0 

101 32 0 1 9 0 

525 196 3 7 60 1 

404 122 0 1 34 0 

159 57 3 18 18 0 

149 69 0 4 10 0 

254 30 0 0 8 0 

199 4 0 1 27 2 

321 78 0 4 43 0 

878 198 4 13 180 5 

602 192 3 1 79 4 

298 112 2 7 27 0 

285 152 0 2 63 7 

266 140 0 0 19 1 

272 122 1 8 21 0 

245 47 0 0 23 1 

137 48 0 0 9 1 

158 42 2 3 1 1 

83 15 0 0 29 0 

70 8 0 0 19 2 

266 41 1 4 60 0 

86 49 0 1 4 0 

163 31 0 1 18 1 
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50 25 0 1 10 0 

255 96 2 3 40 1 

226 61 0 4 15 2 

69 20 1 0 1 0 

388 128 5 4 49 8 

9 4 0 0 1 0 

138 49 0 3 21 1 

200 94 2 0 30 1 

287 100 3 3 45 0 

274 139 0 1 21 0 

55 29 0 0 4 0 

250 26 0 5 18 1 

1342 393 7 3 135 3 

189 68 1 3 17 0 

170 40 0 0 36 0 

149 70 2 0 10 2 

502 147 0 6 91 1 

269 155 2 1 47 0 

225 50 6 5 12 0 

143 65 0 1 7 3 

331 73 0 1 9 0 

207 22 0 0 15 4 

403 84 0 6 52 8 

798 215 2 5 128 3 

523 197 1 7 49 3 

428 218 0 3 26 0 

211 85 0 0 41 3 

266 110 0 4 34 1 

270 147 0 2 41 2 

236 36 0 1 24 1 

96 40 0 1 5 0 

164 52 3 4 6 1 

106 9 0 0 38 3 

53 14 0 0 13 0 

203 54 1 3 24 2 

102 67 0 2 3 0 

162 60 0 1 16 0 

51 28 1 0 5 0 

230 71 3 6 28 5 

308 88 0 2 20 2 

45 15 0 1 1 4 

342 191 1 1 33 0 

26 6 0 0 2 0 

98 48 1 0 0 0 

129 62 0 0 5 3 
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269 71 0 3 30 5 

268 135 0 6 13 0 

49 23 1 1 4 3 

238 59 0 2 4 0 

1373 483 2 6 194 3 

18 85 1 1 7 0 

119 51 1 0 10 1 

144 69 2 7 13 1 

715 335 0 8 115 1 

390 206 0 4 31 1 

247 60 4 6 16 1 

145 67 2 1 15 0 

27 117 0 0 7 1 

197 62 0 3 15 5 

441 145 1 3 45 4 

530 153 3 9 40 8 

535 298 4 2 35 3 

387 229 0 5 3 0 

255 108 0 2 49 4 

245 88 0 2 23 4 

321 152 1 2 32 5 

244 43 0 3 18 0 

111 51 0 0 5 0 

122 37 2 5 18 6 

156 17 0 0 45 1 

101 16 1 2 17 0 

164 52 1 3 8 1 

68 42 0 1 5 1 

129 63 0 2 2 0 

90 51 0 0 11 0 

259 115 1 2 35 2 

338 105 1 4 30 9 

45 22 1 0 0 1 

324 237 0 0 20 0 

36 15 0 0 2 0 

64 44 0 0 12 0 

134 65 0 3 3 0 

277 59 0 0 19 1 

226 117 1 4 15 0 

56 32 0 0 10 0 

195 99 1 2 14 1 

1106 623 1 7 133 1 

159 80 2 0 22 0 

156 94 0 0 22 1 

218 109 0 3 16 0 
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755 480 3 8 92 0 

303 206 4 5 12 0 

250 117 5 1 24 0 

153 81 0 4 9 3 

374 204 0 1 4 0 

183 98 0 3 10 0 

425 217 1 3 42 1 

502 237 2 5 70 3 

516 254 1 10 26 3 

378 199 0 2 15 1 

357 205 3 1 48 6 

213 138 0 1 10 3 

346 186 2 5 48 2 

235 82 1 1 1 0 

102 50 3 0 10 1 

91 31 0 1 13 2 

137 15 2 0 65 20 

82 22 0 3 8 0 

101 46 2 2 2 0 

68 26 1 2 11 2 

889 491 2 1 133 0 

472 51 0 1 3 0 

262 50 0 0 3 0 

115 54 0 0 19 0 

244 85 0 3 20 6 

40 13 0 0 0 0 

140 135 0 0 0 0 

31 15 0 1 0 0 

53 26 0 1 6 0 

95 46 0 3 6 0 

67 29 0 0 9 4 

151 89 0 0 4 0 

62 24 0 0 5 0 

132 64 2 2 8 0 

141 64 0 3 31 0 

97 35 0 0 5 4 

164 82 1 11 3 0 

701 362 2 12 58 0 

252 150 2 11 10 4 

217 108 2 5 21 0 

94 73 0 1 5 0 

275 161 0 3 7 0 

190 87 0 0 11 0 

265 141 0 1 14 2 

730 389 0 4 32 2 
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350 197 2 4 16 9 

466 240 0 4 24 3 

398 224 0 2 14 4 

236 110 0 1 9 2 

355 175 0 2 47 4 

187 67 3 1 7 0 

88 38 2 1 3 1 

72 29 1 5 10 0 

103 14 0 3 42 14 

97 37 0 2 17 2 

94 38 0 1 11 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

126 

R Package source 

getwd() 

setwd("C:/Users/ACER/Desktop/analysis") 

 

n=20 

# Specify the number of replications 

# number of retained replications 

s = 20 

 

 

# store all draws in the following matrices 

# initialize them here 

m = matrix(nrow = n, ncol = 1) 

v = matrix(nrow = n, ncol = 1) 

d = matrix(nrow = n, ncol = 1) 

g = matrix(nrow = n, ncol = 1) 

M = matrix(nrow = n, ncol = 1) 

 

#################### Code for 

Dispersion####################################### 

Simulation for Poisson Distribution 

for (i in 1:n){ 

Y1 <- rpois(s, 2 * exp(rnorm(s, mean=0.01, sd=0.05))) 

m[i,]<-mean(Y1) 

v[i,]<-sd(Y1)^2 

d[i,]<-abs((mean(Y1)-(sd(Y1)^2))/(sd(Y1)^2))*100 

} 
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#Simulation for Negative Binomial distribution 

#for (i in 1:n){ 

#x1 <- rnbinom(s, mu = 4, size = 1) 

#m[i,]<-mean(x1) 

#v[i,]<-sd(x1)^2 

#d[i,]<-abs((mean(x1)-(sd(x1)^2))/(sd(x1)^2))*100 

#} 

 

 

#Simulation for Conway Maxwell 

#install.packages("degreenet", dependencies=T) 

#library(degreenet) 

#for (i in 1:n){ 

#x1 <- simcmp(n=5000, v=c(7,3)) 

#m[i,]<-mean(x1) 

#v[i,]<-sd(x1)^2 

#d[i,]<-abs((mean(x1)-(sd(x1)^2))/(sd(x1)^2))*100 

#} 

#testOverdispersion(d) 

 

 

p=10 

r=40 

w=70 

Group = g 

Member = m 
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result = data.frame(m,v,d,g,M) 

colnames(result)<- c("mean","Variance","Dispersion","Group","Member") 

head(result) 

 

 

 

result$Group[result$Dispersion <= 10] = "Not Severe" 

result$Group[result$Dispersion >= 10 & result$Dispersion <= 40]="Moderate" 

result$Group[result$Dispersion >= 40 & result$Dispersion <= 70]="Severe" 

result$Group[result$Dispersion >= 70]="Very Severe" 

head(result,15) 

 

 

 

 

 

d1=result$Dispersion[result$Group == "Not Severe"] 

d2=result$Dispersion[result$Group == "Moderate"] 

d3=result$Dispersion[result$Group == "Severe"] 

d4=result$Dispersion[result$Group == "Very Severe"] 

 

 

 

 

p=10 
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r=40 

w=70 

 

M1= rep(0,length(d1)) 

M2=(4*d2-r)/210 

M3 =d3/70 

M4=rep(1,length(d4)) 

 

 

 

result$Member[result$Dispersion <= 10] = "0" 

result$Member[result$Dispersion >= 10 & result$Dispersion <= 40]=M2 

result$Member[result$Dispersion >= 40 & result$Dispersion <= 70]=M3 

result$Member[result$Dispersion >= 70]="1" 

result 

result$Member 

w = table(result$Member) 

t = as.data.frame(w) 

names(t)[1] = 'membership' 

 

as.data.frame.table(table(membership = result$Member)) 

result20=head(result,n)  

result20 

group=result20[,4] 

table(group) 

write.csv(result20,"rpois20.csv") 
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#hist(Y1<-(rpois(n, mean=0.01)), breaks=seq(0, 30), col="grey60", freq=F, ylim=c(0, 

0.45), las=1, main="", xlab="Y")  

 

 

#Membership Category 

result$Dispersion 

 

library(RNGforGPD) 

GenUniGpois(5, -0.4, 100, method = "Inversion") 

GenUniGpois(2, 0.9, 100, method = "Branching") 

GenUniGpois(12, 0.5, 100, method = "Normal-Approximation") 

 

data <- GenUniGpois(3, 0.9, 100, method = "Inversion", details = FALSE) 

 

data <- GenUniGpois(10, 0.4, 10, method = "Chop-Down", details = FALSE) 

 

n=100 

# Specify the number of replications 

# number of retained replications 

s = 20 

 

 

# store all draws in the following matrices 

# initialize them here 

m = matrix(nrow = n, ncol = 1) 

v = matrix(nrow = n, ncol = 1) 

d = matrix(nrow = n, ncol = 1) 
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g = matrix(nrow = n, ncol = 1) 

M = matrix(nrow = n, ncol = 1) 

 

 

#Simulation for Generalized Poisson distribution 

#for (i in 1:n){ 

#data <- GenUniGpois(3, 0.9, 100, method = "Inversion", details = FALSE) 

#x1 <- data$data 

#m[i,]<-mean(x1) 

#v[i,]<-sd(x1)^2 

#d[i,]<-abs((mean(x1)-(sd(x1)^2))/(sd(x1)^2))*100 

#} 

 

 

 

 

 

 


